1
|
Tsai K, Nonnenmann MW, Rohlman D, Baker KK. Development of Shortened Enrichment Methods for Detection of Salmonella Typhimurium Spiked in Milk. ACS FOOD SCIENCE & TECHNOLOGY 2023; 3:831-837. [PMID: 37228389 PMCID: PMC10204049 DOI: 10.1021/acsfoodscitech.2c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/25/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Rapid and accurate testing of pathogenic Salmonella enterica in dairy products could reduce the risk of exposure to the bacterial pathogens for consumers. This study aimed to reduce the assessment time needed for enteric bacteria recovery and quantification in food using the natural growth properties of Salmonella enterica Typhimurium (S. Typhimurium) in cow's milk and efficiently using rapid PCR methods. Over 5 h of 37 °C enrichment, culture and PCR methods measured increases in the non-heat-treated S. Typhimurium concentration at similar rates, with an average increase of 2.7 log10 CFU/mL between the start of enrichment and 5 h. In contrast, no bacteria were recovered by culture after S. Typhimurium in milk received heat treatment, and the number of gene copies of heat-treated Salmonella detected by PCR did not increase with the enrichment time. Thus, comparing culture and PCR data over just 5 h of enrichment time can detect and differentiate between replicating bacteria and dead bacteria.
Collapse
Affiliation(s)
- Kevin Tsai
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52246, United States
| | - Matthew W Nonnenmann
- Department
of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska 69198, United States
| | - Diane Rohlman
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52246, United States
| | - Kelly K. Baker
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52246, United States
| |
Collapse
|
2
|
Dhital R, Mustapha A. DNA concentration by solid phase reversible immobilization improves its yield and purity, and detection time of E. coli O157:H7 in foods by high resolution melt curve qPCR. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Nikam PS, Palachandra S, Kingston JJ. In vitro selection and characterization of ssDNA aptamers by cross-over SELEX and its application for detection of S. Typhimurium. Anal Biochem 2022; 656:114884. [DOI: 10.1016/j.ab.2022.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
|
4
|
Wang YL, Zhang X, Wang Q, Liu PX, Tang W, Guo R, Zhang HY, Chen ZG, Han XG, Jiang W. Rapid and visual detection of Staphylococcus aureus in milk using a recombinase polymerase amplification-lateral flow assay combined with immunomagnetic separation. J Appl Microbiol 2022; 133:3741-3754. [PMID: 36073301 DOI: 10.1111/jam.15811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022]
Abstract
AIMS The aim of this study was to develop a novel approach using lateral flow recombinase polymerase amplification (RPA-LF) combined with immunomagnetic separation (IMS) for the rapid detection of Staphylococcus aureus in milk. METHODS AND RESULTS Under optimum conditions, the average capture efficiency values (CEs) for S. aureus strains (104 CFU ml-1 ) was above 95.0% in PBST and ~80% in milk within 45 min with 0.7 mg immunomagnetic beads. The RPA-LF assay, which comprised DNA amplification via RPA at 39°C for 10 min and visualization of the amplicons through LF strips for 5 min, detected S. aureus within 15 min. The method only detected S. aureus and did not show cross-reaction with other bacteria, exhibiting a high level of specificity. Sensitivity experiments confirmed a detection limit of RPA-LF assay as low as 600 fg reaction-1 for the S. aureus genome (corresponding to approximately 36 CFU of S. aureus), which was about 16.7-fold more sensitive than that of the conventional PCR method. When RPA-LF was used in combination with IMS to detect S. aureus inoculated into artificially contaminated milk, it exhibited a detection limit of approximately 40 CFU reaction-1 . CONCLUSIONS The newly developed IMS-RPA-LF method enabled detection of S. aureus at levels as low as 40 CFU reaction-1 in milk samples without culture enrichment for an overall testing time of only 70 min. SIGNIFICANCE AND IMPACT OF THE STUDY The newly developed IMS-RPA-LF assay effectively combines sample preparation, amplification, and detection into a single platform. Because of its high sensitivity, specificity, and speed, the IMS-RPA-LF assay will have important implications for the rapid detection of S. aureus in contaminated food.
Collapse
Affiliation(s)
- Ya-Lei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xin Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Peng-Xuan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wei Tang
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai-Yang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhao-Guo Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xian-Gan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
5
|
Kim U, Moon YJ, Kim JH, Lee SY, Oh SW. Development of modified enrichment broth for short enrichment and recovery of filter-injured Salmonella Typhimurium. Int J Food Microbiol 2022; 362:109497. [PMID: 34896913 DOI: 10.1016/j.ijfoodmicro.2021.109497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/31/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022]
Abstract
The filter concentration method facilitates the rapid detection of foodborne pathogens. The filter concentration method lowered the limit of detection (LOD) of artificially inoculated cabbage with Salmonella Typhimurium; however, the procedure injured foodborne pathogens during filtering procedure. Thus, to detect injured pathogens under the detection limit, an enrichment broth promoting pathogen resuscitation and growth is required. To rapidly recover, cultivate and lower the time to result (TTR) of S. Typhimurium detection after filter concentration method, a brain heart infusion (BHI) broth-based modified enrichment broth (MEB) was developed. The MEB was developed by fitting growth curves to a modified Gompertz model; 1.00 g/L of sodium pyruvate, 0.20 g/L proline and 2.0 g/L magnesium sulphate additives were optimized as additional components to rapidly grow filter-injured S. Typhimurium. As a result, the rate of filter-injured S. Typhimurium went from 100% to 0.0% using MEB within 3.5 h. In contrast, BHI required 4 h and buffered peptone water (BPW) required more than 4 h to decrease the injury rate to 0.0%. Using MEB, BHI and BPW, filter-injured S. Typhimurium in cabbages were enriched to 4.056 ± 0.026 Log CFU/25 g, 3.571 ± 0.187 Log CFU/25 g and 3.708 ± 0.156 Log CFU/25 g, respectively. Additionally, 1-9 CFU/mL S. Typhimurium in cabbage was detected within 3.0 h, including 1 h enrichment with MEB, whereas 5.0 h was required for BHI and BPW. Thus, the MEB developed in this study showed great potential as a short enrichment broth for the rapid detection of filter-injured S. Typhimurium.
Collapse
Affiliation(s)
- Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Ye-Ji Moon
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Jin-Hee Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - So-Young Lee
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Huang C, Mahboubat BY, Ding Y, Yang Q, Wang J, Zhou M, Wang X. Development of a rapid Salmonella detection method via phage-conjugated magnetic bead separation coupled with real-time PCR quantification. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Wang Z, Cai R, Gao Z, Yuan Y, Yue T. Immunomagnetic separation: An effective pretreatment technology for isolation and enrichment in food microorganisms detection. Compr Rev Food Sci Food Saf 2020; 19:3802-3824. [PMID: 33337037 DOI: 10.1111/1541-4337.12656] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022]
Abstract
The high efficiency and accurate detection of foodborne pathogens and spoilage microorganisms in food are a task of great social, economic, and public health importance. However, the contamination levels of target bacteria in food samples are very low. Owing to the background interference of food ingredients and negative impact of nontarget flora, the establishment of efficient pretreatment techniques is very crucial for the detection of food microorganisms. With the significant advantages of high specificity and great separation efficiency, immunomagnetic separation (IMS) assay based on immunomagnetic particles (IMPs) has been considered as a powerful system for the separation and enrichment of target bacteria. This paper mainly focuses on the development of IMS as well as their application in food microorganisms detection. First, the basic principle of IMS in the concentration of food bacteria is presented. Second, the effect of different factors, including the sizes of magnetic particles (MPs), immobilization of antibody and operation parameters (the molar ratio of antibody to MPs, the amount of IMPs, incubation time, and bacteria concentration) on the immunocapture efficiency of IMPs are discussed. The performance of IMPs in different food samples is also evaluated. Finally, the combination of IMS and various kinds of detection methods (immunology-based methods, nucleic acid-based methods, fluorescence methods, and biosensors) to detect pathogenic and spoilage organisms is summarized. The challenges and future trends of IMS are also proposed. As an effective pretreatment technique, IMS can improve the detection sensitivity and shorten their testing time, thus exhibiting broad prospect in the field of food bacteria detection.
Collapse
Affiliation(s)
- Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| |
Collapse
|
8
|
Hyeon JY, Mann DA, Wang J, Kim WK, Deng X. Rapid detection of Salmonella in poultry environmental samples using real-time PCR coupled with immunomagnetic separation and whole genome amplification. Poult Sci 2020; 98:6973-6979. [PMID: 31347691 PMCID: PMC8913963 DOI: 10.3382/ps/pez425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/11/2019] [Indexed: 11/23/2022] Open
Abstract
We evaluated the combination of immunomagnetic separation (IMS), multiple displacement amplification (MDA), and real-time PCR to detect Salmonella from poultry environmental samples. The limits of detection (LODs) of IMS-MDA real-time PCR with different culture enrichment hours (0, 4, 6, and 8 h) were determined in artificially inoculated litter samples from a specific pathogen-free (SPF) poultry farm. In addition, Salmonella detection rate of IMS-MDA real-time PCR with 8-h culture enrichment was compared with that of conventional real-time PCR and culture-based detection by analyzing 174 poultry environmental samples (boot swabs, drag swabs, and litter), and the levels of Salmonella in the samples were quantified using the most probably number method. The LODs of IMS-MDA real-time PCR with 0, 4 to 6, and 8-h enrichment were 10, 1, and 0.1 CFU/g, respectively. Salmonella was detected in 25 of the 174 environmental samples (14.4%) by IMS-MDA real-time PCR, compared with 24 (13.8%) by conventional real-time PCR and 19 (10.9%) by culturing. Cohen's kappa index indicated strong concordance (0.79) between IMS-MDA real-time PCR and culture detection. We demonstrated the potential of the IMS-MDA real-time PCR assay as a faster and more sensitive alternative to culture-based Salmonella detection from poultry environmental samples.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30223
| | - David A Mann
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30223
| | - Jinquan Wang
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - Xiangyu Deng
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30223
| |
Collapse
|
9
|
Ren J, Man Y, Li A, Liang G, Jin X, Pan L. Detection of
Salmonella enteritidis
and
Salmonella typhimurium
in foods using a rapid, multiplex real‐time recombinase polymerase amplification assay. J Food Saf 2020. [DOI: 10.1111/jfs.12784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Junan Ren
- Beijing Food & Wine Inspection and Testing Station Beijing China
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Risk Assessment Lab for Agro‐ products (Beijing), Ministry of Agriculture Beijing China
| | - Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Risk Assessment Lab for Agro‐ products (Beijing), Ministry of Agriculture Beijing China
| | - An Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Risk Assessment Lab for Agro‐ products (Beijing), Ministry of Agriculture Beijing China
| | - Gang Liang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Risk Assessment Lab for Agro‐ products (Beijing), Ministry of Agriculture Beijing China
| | - Xinxin Jin
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Risk Assessment Lab for Agro‐ products (Beijing), Ministry of Agriculture Beijing China
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Risk Assessment Lab for Agro‐ products (Beijing), Ministry of Agriculture Beijing China
| |
Collapse
|
10
|
Huang S, Hui TB, Yuk HG, Zheng Q. Development of an Effective Two-Step Enrichment Process to Enhance Bax System Detection of Healthy and Injured Salmonella Enteritidis in Liquid Whole Egg and Egg Yolk. J Food Prot 2020; 83:397-404. [PMID: 32050033 DOI: 10.4315/0362-028x.jfp-19-280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/12/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT The BAX system for pathogen detection has been highly accurate in a variety of food products. However, false-negative results have been reported for the detection of pathogens in liquid egg products because of failed pathogen resuscitation and the existence of inhibitory components. In this study, a short-time enrichment step was used to simultaneously resuscitate the target cells to the detection level and to dilute the inhibitory components to reduce detection interference. The MP medium (BAX system) enabled faster multiplication of healthy Salmonella cells than did buffered peptone water (BPW) in tested liquid whole egg and egg yolk. However, MP failed to resuscitate heat-injured cells even after 24 h of incubation. Therefore, MP was replaced with BPW as the enrichment broth for the BAX system. However, the use of BPW for a one-step enrichment was not effective for removal of PCR inhibitors in egg yolk, and unstable detection results were obtained. To improve detection accuracy, a second step of enrichment with brain heart infusion was added. This two-step enrichment process shortened the enrichment time to 14 h and greatly increased the number of samples in which the pathogen was detected during the same enrichment time, especially in the liquid egg yolk samples. The validation study revealed 100% diagnostic accuracy of the two-step enrichment process plus the BAX system. These results indicate that a two-step enrichment process added to the BAX system can improve the detection of pathogenic Salmonella in liquid egg products. HIGHLIGHTS
Collapse
Affiliation(s)
- Shishi Huang
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, People's Republic of China
| | - Tay Boon Hui
- Hygiena Singapore Pte Ltd., 80 Robinson Road #02-00, Singapore 068898
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-gun, Chungbuk 27909, Republic of Korea
| | - Qianwang Zheng
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
11
|
Rapid detection of trace Salmonella in milk and chicken by immunomagnetic separation in combination with a chemiluminescence microparticle immunoassay. Anal Bioanal Chem 2019; 411:6067-6080. [DOI: 10.1007/s00216-019-01991-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
|
12
|
Ren J, Liang G, Man Y, Li A, Jin X, Liu Q, Pan L. Aptamer-based fluorometric determination of Salmonella Typhimurium using Fe3O4 magnetic separation and CdTe quantum dots. PLoS One 2019; 14:e0218325. [PMID: 31216306 PMCID: PMC6584018 DOI: 10.1371/journal.pone.0218325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/30/2019] [Indexed: 01/15/2023] Open
Abstract
Based on the high sensitivity and stable fluorescence of CdTe quantum dots (QDs) in conjunction with a specific DNA aptamer, the authors describe an aptamer-based fluorescence assay for the determination of Salmonella Typhimurium. The fluorescence detection and quantification of S. Typhimurium is based on a magnetic separation system, a combination of aptamer-coated Fe3O4 magnetic particles (Apt-MNPs) and QD-labeled ssDNA2 (complementary strand of the aptamer). Apt-MNPs are employed for the specific capture of S. Typhimurium. CdTe QD-labeled ssDNA2 was used as a signaling probe. Simply, the as-prepared CdTe QD-labeled ssDNA2 was first incubated with the Apt-MNPs to form the aptamer-ssDNA2 duplex. After the addition of S. Typhimurium, they could specifically bind the DNA aptamer, leading to cleavage of the aptamer-ssDNA2 duplex, accompanied by the release of CdTe QD-labeled DNA. Thus, an increased fluorescence signal can be achieved after magnetic removal of the Apt-MNPs. The fluorescence of CdTe QDs (λexc/em = 327/612 nm) increases linearly in the concentration range of 10 to 1010 cfu•mL-1, and the limit of detection is determined to be 1 cfu•mL-1. The detection process can be performed within 2 h and is successfully applied to the analysis of spiked food samples with good recoveries from 90% to 105%.
Collapse
Affiliation(s)
- Junan Ren
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Gang Liang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - An Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Xinxin Jin
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Qingju Liu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
- * E-mail:
| |
Collapse
|
13
|
Raman Spectroscopy and Aptamers for a Label-Free Approach: Diagnostic and Application Tools. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:2815789. [PMID: 31183028 PMCID: PMC6512054 DOI: 10.1155/2019/2815789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 01/04/2023]
Abstract
Raman spectroscopy is a powerful optical technique based on the inelastic scattering of incident light to assess the chemical composition of a sample, including biological ones. Medical diagnostic applications of Raman spectroscopy are constantly increasing to provide biochemical and structural information on several specimens, being not affected by water interference, and potentially avoiding the constraint of additional labelling procedures. New strategies have been recently developed to overcome some Raman limitations related, for instance, to the need to deal with an adequate quantity of the sample to perform a reliable analysis. In this regard, the use of metallic nanoparticles, the optimization of fiber optic probes, and other approaches can actually enhance the signal intensity compared to spontaneous Raman scattering. Moreover, to further increase the potential of this investigation technique, aptamers can be considered as a valuable means, being synthetic, short, single, or double-stranded oligonucleotides (RNAs or DNAs) that fold up into unique 3D structures to specifically bind to selected molecules, even at very low concentrations, and thus allowing an early diagnosis of a possible disease. Due to the paramount relevance of the topic, this review focuses on the main Raman spectroscopy techniques combined with aptamer arrays in the label-free mode, providing an overview on different applications to support healthcare management.
Collapse
|
14
|
Vinayaka AC, Ngo TA, Kant K, Engelsmann P, Dave VP, Shahbazi MA, Wolff A, Bang DD. Rapid detection of Salmonella enterica in food samples by a novel approach with combination of sample concentration and direct PCR. Biosens Bioelectron 2019; 129:224-230. [DOI: 10.1016/j.bios.2018.09.078] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/11/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
|
15
|
Kim TH, Hwang HJ, Kim JH. Ultra-Fast On-Site Molecular Detection of Foodborne Pathogens Using a Combination of Convection Polymerase Chain Reaction and Nucleic Acid Lateral Flow Immunoassay. Foodborne Pathog Dis 2019; 16:144-151. [DOI: 10.1089/fpd.2018.2500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tae-Hoon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Korea
| | | | - Jeong Hee Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
16
|
Wei S, Park BJ, Kim SH, Seo KH, Jin YG, Oh DH. Detection of Listeria monocytogenes using Dynabeads® anti-Listeria combined with real-time PCR in soybean sprouts. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Cai G, Wang S, Zheng L, Lin J. A Fluidic Device for Immunomagnetic Separation of Foodborne Bacteria Using Self-Assembled Magnetic Nanoparticle Chains. MICROMACHINES 2018; 9:mi9120624. [PMID: 30486364 PMCID: PMC6315333 DOI: 10.3390/mi9120624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022]
Abstract
Immunomagnetic separation has been widely used for the separation and concentration of foodborne pathogens from complex food samples, however it can only handle a small volume of samples. In this paper, we presented a novel fluidic device for the specific and efficient separation and concentration of salmonellatyphimurium using self-assembled magnetic nanoparticle chains. The laminated sawtooth-shaped iron foils were first mounted in the 3D-printed matrix and magnetized by a strong magnet to generate dot-array high gradient magnetic fields in the fluidic channel, which was simulated using COMSOL (5.3a, Burlington, MA, USA). Then, magnetic nanoparticles with a diameter of 150 nm, which were modified with the anti-salmonella polyclonal antibodies, were injected into the channel, and the magnetic nanoparticle chains were vertically formed at the dots and verified using a fluorescence inverted microscope. Finally, the bacterial sample was continuous-flow injected, and the target bacteria could be captured by the antibodies on the chains, followed by gold standard culture plating to determine the amount of the target bacteria. Under the optimal conditions, the target bacteria could be separated with a separation efficiency of 80% in 45 min. This fluidic device could be further improved using thinner sawtooth-shaped iron foils and stronger magnets to obtain a better dot-array magnetic field with larger magnetic intensity and denser dot distribution, and has the potential to be integrated with the existing biological assays for rapid and sensitive detection of foodborne bacteria.
Collapse
Affiliation(s)
- Gaozhe Cai
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China.
| | - Siyuan Wang
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Lingyan Zheng
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
18
|
Du M, Li J, Zhao R, Yang Y, Wang Y, Ma K, Cheng X, Wan Y, Wu X. Effective pre-treatment technique based on immune-magnetic separation for rapid detection of trace levels of Salmonella in milk. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Zwe YH, Tang VCY, Aung KT, Gutiérrez RA, Ng LC, Yuk HG. Prevalence, sequence types, antibiotic resistance and, gyrA mutations of Salmonella isolated from retail fresh chicken meat in Singapore. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Xu X, Ma X, Wang H, Wang Z. Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers. Mikrochim Acta 2018; 185:325. [PMID: 29896641 DOI: 10.1007/s00604-018-2852-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/25/2018] [Indexed: 11/26/2022]
Abstract
The authors describe a surface-enhanced Raman scattering (SERS) based aptasensor for Salmonella typhimurium (S. typhimurium). Gold nanoparticles (AuNPs; 35 nm i.d.) were functionalized with the aptamer (ssDNA 1) and used as the capture probe, while smaller (15 nm) AuNPs were modified with a Cy3-labeled complementary sequence (ssDNA 2) and used as the signalling probe. The asymmetric gold nanodimers (AuNDs) were assemblied with the Raman signal probe and the capture probe via hybridization of the complementary ssDNAs. The gap between two nanoparticles is a "hot spot" in which the Raman reporter Cy3 is localized. It experiences a strong enhancement of the electromagnetic field around the particle. After addition of S. typhimurium, it will be bound by the aptamer which therefore is partially dehybridized from its complementary sequence. Hence, Raman intensity drops. Under the optimal experimental conditions, the SERS signal at 1203 cm-1 increases linearly with the logarithm of the number of colonies in the 102 to 107 cfu·mL-1 concentration range, and the limit of detection is 35 cfu·mL-1. The method can be performed within 1 h and was successfully applied to the analysis of spiked milk samples and performed very well and with high specificity. Graphical abstract DNA-assembled asymmetric gold nanodimers (AuNDs) were synthesized and appllied in a SERS-based aptasensor for S. typhimurium. Capture probe was preferentially combined with S. typhimurium and the structure of the AuNDs was destroyed. The "hot spot" vanished partly, this resulting in the decreased Raman intensity of Cy3.
Collapse
Affiliation(s)
- Xumin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Haitao Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116000, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116000, China.
| |
Collapse
|
21
|
Wang M, Yang J, Gai Z, Huo S, Zhu J, Li J, Wang R, Xing S, Shi G, Shi F, Zhang L. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk. Int J Food Microbiol 2018; 266:251-256. [DOI: 10.1016/j.ijfoodmicro.2017.12.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
|
22
|
Bu T, Huang Q, Yan L, Huang L, Zhang M, Yang Q, Yang B, Wang J, Zhang D. Ultra technically-simple and sensitive detection for Salmonella Enteritidis by immunochromatographic assay based on gold growth. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
|
24
|
Siala M, Barbana A, Smaoui S, Hachicha S, Marouane C, Kammoun S, Gdoura R, Messadi-Akrout F. Screening and Detecting Salmonella in Different Food Matrices in Southern Tunisia Using a Combined Enrichment/Real-Time PCR Method: Correlation with Conventional Culture Method. Front Microbiol 2017; 8:2416. [PMID: 29270157 PMCID: PMC5725475 DOI: 10.3389/fmicb.2017.02416] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/22/2017] [Indexed: 11/13/2022] Open
Abstract
A combined enrichment/ newly developed invA TaqMan® real-time PCR (qPCR) method as a screening assay to detect Salmonella spp. in 500 naturally food matrices is evaluated. DNA template for qPCR was extracted from an overnight pre-enriched sample in buffered peptone water using lysis–guanidine isothiocyanate method. Heterologous internal amplification control (IAC) was incorporated during qPCR assays and co-amplified with the invA gene of the target pathogen. InvA qPCR exhibited 100% specificity when testing 94 Salmonella strains (inclusivity) and 32 non-Salmonella strains (exclusivity). The qPCR showed a consistent detection of two copies of the invA gene/PCR reaction, a good intra- and inter-run reproducibility with a good PCR efficiency (89.6%). QPCR was sensitive and showed Salmonella detection at 8.5 × 100 CFU mL-1 of artificially spiked poultry meat -BWP solution in less than 40 cycles. When analyzing 500 different food matrices and comparing the results with the ISO 6579:2002 conventional culture method, the sensitivity and specificity were 100 and 76.6%, respectively. QPCR showed Salmonella spp. DNA in raw poultry meat 27/45 (60%), milk 31/93 (33.3%), raw red meat 5/13 (38.5%), and fish 11/46 (23.9%) samples. The prevalence of Salmonella spp. in cakes, dairy, cooked meals, charcuterie products using qPCR was 11/14 (26.8%), 5/22 (22.7%), 32/150 (21.3%), and 5/20 (25%), respectively, compared to 0% as demonstrated by culture. S. Anatum was the most common serovar found associated with red meat compared to S. kentucky isolated from fish and poultry meat. In conclusion, our study is the first to use a combined enrichment/invA qPCR method as a screening assay to detect Salmonella DNA in different types of commercialized food in Southern Tunisia. QPCR results indicate that Salmonella contamination is common in milk and in other types of food samples.
Collapse
Affiliation(s)
- Mariam Siala
- Department of Biology, Preparatory Institute for Engineering Studies of Sfax, University of Sfax, Sfax, Tunisia.,Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Amina Barbana
- Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Salma Smaoui
- Regional Hygiene Care Laboratory, Department of Microbiology, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology B, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Salma Hachicha
- Regional Hygiene Care Laboratory, Department of Microbiology, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology B, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Chema Marouane
- Regional Hygiene Care Laboratory, Department of Microbiology, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology B, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Sana Kammoun
- Regional Hygiene Care Laboratory, Department of Microbiology, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology B, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Radhouane Gdoura
- Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Férièle Messadi-Akrout
- Regional Hygiene Care Laboratory, Department of Microbiology, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology B, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
25
|
Srbova J, Krulisova P, Holubova L, Pereiro I, Bendali A, Hamiot A, Podzemna V, Macak J, Dupuy B, Descroix S, Viovy JL, Bilkova Z. Advanced immunocapture of milk-borne Salmonella
by microfluidic magnetically stabilized fluidized bed. Electrophoresis 2017; 39:526-533. [DOI: 10.1002/elps.201700257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jana Srbova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Pavla Krulisova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Lucie Holubova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Iago Pereiro
- Macromolecules and Microsystems in Biology and Medicine; Institute Curie; Paris France
- Sorbonne Universités; UPMC Univ Paris 06; Paris France
- Institut Pierre-Gilles de Gennes; Paris France
| | - Amel Bendali
- Macromolecules and Microsystems in Biology and Medicine; Institute Curie; Paris France
- Sorbonne Universités; UPMC Univ Paris 06; Paris France
- Institut Pierre-Gilles de Gennes; Paris France
| | - Audrey Hamiot
- Laboratory of Pathogenesis of Bacterial Anaerobes, Department of Microbiology; Institut Pasteur; Paris France
| | - Veronika Podzemna
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Jan Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Bruno Dupuy
- Laboratory of Pathogenesis of Bacterial Anaerobes, Department of Microbiology; Institut Pasteur; Paris France
- University Paris Diderot; Paris France
| | - Stephanie Descroix
- Macromolecules and Microsystems in Biology and Medicine; Institute Curie; Paris France
- Sorbonne Universités; UPMC Univ Paris 06; Paris France
- Institut Pierre-Gilles de Gennes; Paris France
| | - Jean-Louis Viovy
- Macromolecules and Microsystems in Biology and Medicine; Institute Curie; Paris France
- Sorbonne Universités; UPMC Univ Paris 06; Paris France
- Institut Pierre-Gilles de Gennes; Paris France
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|
26
|
Dmitric M, Vidanovic D, Matovic K, Sekler M, Saric L, Arsic M, Karabasil N. In‐house validation of real‐time PCR methods for detecting the
INV A
and
TTR
genes of
Salmonella
spp. in food. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marko Dmitric
- Department for Testing Raw Materials of Animal Origin, Food and Water, Veterinary Specialized Institute Kraljevo, Zicka 34 36000 Kraljevo Serbia
| | - Dejan Vidanovic
- Department for Laboratory DiagnosticVeterinary Specialized Institute Kraljevo Zicka 34, 36000 Kraljevo Serbia
| | - Kazimir Matovic
- Department for Laboratory DiagnosticVeterinary Specialized Institute Kraljevo Zicka 34, 36000 Kraljevo Serbia
| | - Milanko Sekler
- Department for Laboratory DiagnosticVeterinary Specialized Institute Kraljevo Zicka 34, 36000 Kraljevo Serbia
| | - Ljubisa Saric
- Institute of Food Technology, University of Novi SadBulevar cara Lazara 1 21000 Novi Sad Serbia
| | - Milos Arsic
- Service for Laboratory Testing of FoodVeterinary Specialized Institute Nis, Naselje Milka Protic 18106 Nis Serbia
| | - Nedjeljko Karabasil
- Department of Food Hygiene and TechnologyFaculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18 11000 Belgrade Serbia
| |
Collapse
|
27
|
An aptamer-based PCR method coupled with magnetic immunoseparation for sensitive detection of Salmonella Typhimurium in ground turkey. Anal Biochem 2017. [PMID: 28645756 DOI: 10.1016/j.ab.2017.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aptamers are single-stranded oligonucleotide ligands that can bind to targets with high affinity and specificity. They have been widely studied in the field of diagnostics as alternatives to antibodies due to their favorable features such as easy labeling, temperature tolerance, lower cost and recognition of a wide variety of targets. In this study, an aptamer-based PCR method coupled with magnetic immunoseparation was developed to detect S. Typhimurium from ground turkey. Firstly, biotinylated polyclonal anti-S. Typhimurium antibody was immobilized on streptavidin-coated magnetic nanobeads to capture S. Typhimurium. Secondly, the aptamers were added and bound to the surface of S. Typhimurium after blocking the magnetic nanobeads with short ssDNA. Finally, the aptamers were released by heating and amplified by PCR. After optimization, this assay was able to detect 102 CFU/mL of S. Typhimurium in pure culture, and 103 CFU/mL of S. Typhimurium in ground turkey. This study demonstrated the feasibility and application of an aptamer-based PCR method coupled with magnetic immunoseparation for sensitive detection of S. Typhimurium in ground turkey.
Collapse
|
28
|
Ansari N, Yazdian-Robati R, Shahdordizadeh M, Wang Z, Ghazvini K. Aptasensors for quantitative detection of Salmonella Typhimurium. Anal Biochem 2017. [PMID: 28624297 DOI: 10.1016/j.ab.2017.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Salmonella is one of the most frequent causes of food borne infectious disease. Among nearly 2500 documented serotypes are reported, Salmonella Typhimurium is the number one serotype associated with salmonellosis worldwide. Many different methods have been developed for the detection and quantification of S. typhimurium. Most of these assays are usually expensive, time consuming and require difficult sample preparation steps. Therefore, it is necessary to develop rapid, robust, cost-effective and sensitive alternative detection methods. In the last years, aptasensors, used for detection of S. typhimurium in different samples. In this review, recent advances and applications of aptasensors for the detection and quantification of S. typhimurium in details have been summarized.
Collapse
Affiliation(s)
- Najmeh Ansari
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Shahdordizadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Buali Research Institute, Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Zwe YH, Yuk HG. Food quality and safety in Singapore: microbiology aspects. FOOD QUALITY AND SAFETY 2017. [DOI: 10.1093/fqsafe/fyx016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
BACKGROUND
Singapore’s status as a first world island city-state which relies chiefly on food imports to meet the demand for consumption presents unique challenges in terms of microbial food safety and quality. Despite the efforts of the Ministry of Health in Singapore, in conjunction with the Agri-Food & Veterinary Authority of Singapore and the National Environment Agency actively collaborate together to promote safety in Singapore, foodborne diseases are still a major public health issue.
OBJECTIVE
The aim of the review was to summarize the various foodborne diseases reported in Singapore in the past few years as well as to give an account of all the currently available microbiological findings indicating safety and quality of poultry, vegetables, fruits, and seafood sold in Singapore.
Collapse
Affiliation(s)
- Ye Htut Zwe
- Food Science & Technology Programme, Department of Chemistry, National University of Singapore, Singapore
| | - Hyun Gyun Yuk
- Food Science & Technology Programme, Department of Chemistry, National University of Singapore, Singapore
- Department of Food Science and Technology, Korea National University of Transportation, Daehak-ro, Jeungpyeong-gun, Chungbuk, Republic of Korea
| |
Collapse
|
30
|
Hyeon JY, Deng X. Rapid detection of Salmonella in raw chicken breast using real-time PCR combined with immunomagnetic separation and whole genome amplification. Food Microbiol 2017; 63:111-116. [DOI: 10.1016/j.fm.2016.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 01/30/2023]
|
31
|
Sextuplex PCR combined with immunomagnetic separation and PMA treatment for rapid detection and specific identification of viable Salmonella spp., Salmonella enterica serovars Paratyphi B, Salmonella Typhimurium, and Salmonella Enteritidis in raw meat. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Chen Q, Li Y, Tao T, Bie X, Lu F, Lu Z. Development and application of a sensitive, rapid, and reliable immunomagnetic separation-PCR detection method for Cronobacter spp. J Dairy Sci 2017; 100:961-969. [DOI: 10.3168/jds.2016-11087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 10/25/2016] [Indexed: 01/28/2023]
|
33
|
Zwietering MH, den Besten HMW. Microbial testing in food safety: effect of specificity and sensitivity on sampling plans—how does the OC curve move. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Wang D, Wang Z, Chen J, Kinchla AJ, Nugen SR. Rapid detection of Salmonella using a redox cycling-based electrochemical method. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Zheng Q, Mikš-Krajnik M, Yang Y, Lee SM, Lee SC, Yuk HG. Evaluation of real-time PCR coupled with immunomagnetic separation or centrifugation for the detection of healthy and sanitizer-injured Salmonella spp. on mung bean sprouts. Int J Food Microbiol 2016; 222:48-55. [DOI: 10.1016/j.ijfoodmicro.2016.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/08/2016] [Accepted: 01/22/2016] [Indexed: 01/12/2023]
|
36
|
Visual detection technique for efficient screening and isolation of Salmonella based on a novel enrichment assay using chromatography membrane. Eur J Clin Microbiol Infect Dis 2016; 35:353-61. [PMID: 26796551 DOI: 10.1007/s10096-015-2543-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/29/2015] [Indexed: 10/22/2022]
Abstract
To detect Salmonella more efficiently and isolate strains more easily, a novel and simple detection method that uses an enrichment assay and two chromogenic reactions on a chromatography membrane was developed. Grade 3 chromatography paper is used as functionalized solid phase support (SPS), which contains specially optimized medium. One reaction for screening is based on the sulfate-reducing capacity of Salmonella. Hydrogen sulfide (H2S) generated by Salmonella reacts with ammonium ferric citrate to produce black colored ferrous sulfide. Another reaction is based on Salmonella C8 esterase that is unique for Enterobacteriaceae except Serratia and interacts with 4-methylumbelliferyl caprylate (MUCAP) to produce fluorescent umbelliferone, which is visible under ultraviolet light. A very low detection limit (10(1) CFU ml(-1)) for Salmonella was achieved on the background of 10(5) CFU ml(-1) Escherichia coli. More importantly, testing with more than 1,000 anal samples indicated that our method has a high positive detection rate and is relatively low cost, compared with the traditional culture-based method. It took only 1 day for the preliminary screening and 2 days to efficiently isolate the Salmonella cells, indicating that the new assay is specific, rapid, and simple for Salmonella detection. In contrast to the traditional culture-based method, this method can be easily used to screen and isolate targeted strains with the naked eye. The results of quantitative and comparative experiments showed that the visual detection technique is an efficient alternative method for the screening of Salmonella spp. in many applications of large-sized samples related to public health surveillance.
Collapse
|
37
|
Duan N, Chang B, Zhang H, Wang Z, Wu S. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int J Food Microbiol 2015; 218:38-43. [PMID: 26599860 DOI: 10.1016/j.ijfoodmicro.2015.11.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/19/2015] [Accepted: 11/14/2015] [Indexed: 12/21/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based aptasensor approach for quantitative detection of pathogenic bacteria. A SERS substrate bearing Au@Ag core/shell nanoparticles (NPs) is functionalized with aptamer 1 (apt 1) for the capture of target molecules. X-rhodamine (ROX)-modified aptamer 2 (apt 2) is used as recognition element and Raman reporter. Salmonella typhimurium specifically interacted with the aptamers to form Au@Ag-apt 1-target-apt 2-ROX sandwich-like complexes. As a result, the concentration of S. typhimurium was determined using this developed aptasensor structure, and a calibration curve is obtained in the range of 15 to 1.5 × 10(6) cfu/mL with a limit of detection of 15 cfu/mL. Our method was successfully applied to real food samples, and the results are consistent with the results obtained using plate counting methods. We believe that the developed method shows potential for the rapid and sensitive detection of pathogenic bacteria in food safety assurance.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Boya Chang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- China Rural Technology Development Center, Beijing 100045, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
38
|
Dimethyl adipimidate/Thin film Sample processing (DTS); A simple, low-cost, and versatile nucleic acid extraction assay for downstream analysis. Sci Rep 2015; 5:14127. [PMID: 26370251 PMCID: PMC4569962 DOI: 10.1038/srep14127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/18/2015] [Indexed: 11/30/2022] Open
Abstract
Sample processing, especially that involving nucleic acid extraction, is a prerequisite step for the isolation of high quantities of relatively pure DNA for downstream analyses in many life science and biomedical engineering studies. However, existing methods still have major problems, including labor-intensive time-consuming methods and high costs, as well as requirements for a centrifuge and the complex fabrication of filters and membranes. Here, we first report a versatile Dimethyl adipimidate/Thin film based Sample processing (DTS) procedure without the limitations of existing methods. This procedure is useful for the extraction of DNA from a variety of sources, including 6 eukaryotic cells, 6 bacteria cells, and 2 body fluids in a single step. Specifically, the DTS procedure does not require a centrifuge and has improved time efficiency (30 min), affordability, and sensitivity in downstream analysis. We validated the DTS procedure for the extraction of DNA from human body fluids, as well as confirmed that the quality and quantity of the extracted DNA were sufficient to allow robust detection of genetic and epigenetic biomarkers in downstream analysis.
Collapse
|
39
|
Zheng Q, Mikš-Krajnik M, D'Souza C, Yang Y, Heo DJ, Kim SK, Lee SC, Yuk HG. Growth of healthy and sanitizer-injured Salmonella cells on mung bean sprouts in different commercial enrichment broths. Food Microbiol 2015; 52:159-68. [PMID: 26338131 DOI: 10.1016/j.fm.2015.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/01/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
The ability of nine commercial broths to enrich healthy and 90% sanitizer-injured Salmonella Typhimurium and Salmonella cocktail on mung bean sprouts was evaluated to select an optimum broth for detection. Results showed that S. Typhimurium multiplied faster and reached a higher population in buffered peptone water (BPW), Salmonella AD media (AD) and ONE broth-Salmonella (OB), compared with other broths. Healthy and 90% sanitizer-injured Salmonella at low concentrations increased by 4.0 log CFU/ml in these three broths. However, no Salmonella growth was observed in lactose broth (LB). Further investigation showed that during incubation, pH of LB dropped from 6.7 to 4.2, due to production of lactic (66 mM) and acetic acids (62 mM) by lactic acid bacteria that were identified as dominant microbiota in bean sprouts. Though no cell membrane damage was detected by propidium monoazide combined with real-time PCR, it was found that LB inhibited Salmonella growth, especially from low inoculum levels. This study suggests that in consideration of effectiveness and cost, BPW would be a suitable enrichment broth to use for isolating and detecting Salmonella on mung bean sprouts, while using LB might cause false negative results in Salmonella detection by either PCR or standard cultural method.
Collapse
Affiliation(s)
- Qianwang Zheng
- Food Science & Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 4, 117543, Singapore
| | - Marta Mikš-Krajnik
- Food Science & Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 4, 117543, Singapore; Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726, Olsztyn, Poland
| | - Craig D'Souza
- Food Science & Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 4, 117543, Singapore
| | - Yishan Yang
- Food Science & Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 4, 117543, Singapore
| | - Da-Jeong Heo
- Department of Food Science and Biotechnology, Kyungnam University, Changwon, 631-701, South Korea
| | - Si-Kyung Kim
- Department of Food Science and Biotechnology, Kyungnam University, Changwon, 631-701, South Korea
| | - Seung-Cheol Lee
- Department of Food Science and Biotechnology, Kyungnam University, Changwon, 631-701, South Korea
| | - Hyun-Gyun Yuk
- Food Science & Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 4, 117543, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|