1
|
Arthur M, Afari EL, Alexa EA, Zhu MJ, Gaffney MT, Celayeta JMF, Burgess CM. Recent advances in examining the factors influencing the efficacy of biocides against Listeria monocytogenes biofilms in the food industry: A systematic review. Compr Rev Food Sci Food Saf 2025; 24:e70083. [PMID: 39736097 DOI: 10.1111/1541-4337.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025]
Abstract
Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L. monocytogenes biofilm, as laboratory-based and commercial studies have reported the persistence of this bacterium after cleaning and disinfection. This review systematically examined scientific studies, sourced from the Web of Science, Scopus, and PubMed databases between January 2010 and May 2024, that investigated the effectiveness of the most commonly used biocides in the food industry against L. monocytogenes biofilms. A total of 92 articles which met the screening criteria, were included, with studies utilizing biocides containing sodium hypochlorite, quaternary ammonium compounds, and peroxyacetic acid being predominant. Studies indicated that several key factors may potentially influence biocides' efficacy against L. monocytogenes biofilms. These factors included strain type (persistent, sporadic), serotype, strain origin (clinical, environmental, or food), surface type (biotic or abiotic), surface material (stainless steel, polystyrene, etc.), incubation time (biofilm age) and temperature, presence of organic matter, biocide's active agent, and the co-culture of L. monocytogenes with other bacteria. The induction of the viable but nonculturable (VBNC) state following disinfection is also a critical concern. This review aims to provide a global understanding of how L. monocytogenes biofilms respond to biocides under different treatment conditions, facilitating the development of effective cleaning and disinfection strategies in the food industry.
Collapse
Affiliation(s)
- Michael Arthur
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Edmund Larbi Afari
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Elena-Alexandra Alexa
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Michael T Gaffney
- Horticulture Development Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | | | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
2
|
Lima LS, Müller TN, Ansiliero R, Schuster MB, Silva BL, Jaskulski IB, da Silva WP, Moroni LS. Biofilm formation by Listeria monocytogenes from the meat processing industry environment and the use of different combinations of detergents, sanitizers, and UV-A radiation to control this microorganism in planktonic and sessile forms. Braz J Microbiol 2024; 55:2483-2499. [PMID: 38767749 PMCID: PMC11405597 DOI: 10.1007/s42770-024-01361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
This study aimed to evaluate the ability of biofilm formation by L. monocytogenes from the meat processing industry environment, as well as the use of different combinations of detergents, sanitizers, and UV-A radiation in the control of this microorganism in the planktonic and sessile forms. Four L. monocytogenes isolates were evaluated and showed moderate ability to form biofilm, as well as carried genes related to biofilm production (agrB, agrD, prfA, actA, cheA, cheY, flaA, sigB), and genes related to tolerance to sanitizers (lde and qacH). The biofilm-forming isolates of L. monocytogenes were susceptible to quaternary ammonium compound (QAC) and peracetic acid (PA) in planktonic form, with minimum inhibitory concentrations of 125 and 75 ppm, respectively, for contact times of 10 and 5 min. These concentrations are lower than those recommended by the manufacturers, which are at least 200 and 300 ppm for QAC and PA, respectively. Biofilms of L. monocytogenes formed from a pool of isolates on stainless steel and polyurethane coupons were subjected to 14 treatments involving acid and enzymatic detergents, QAC and PA sanitizers, and UV-A radiation at varying concentrations and contact times. All treatments reduced L. monocytogenes counts in the biofilm, indicating that the tested detergents, sanitizers, and UV-A radiation exhibited antimicrobial activity against biofilms on both surface types. Notably, the biofilm formed on polyurethane showed greater tolerance to the evaluated compounds than the biofilm on stainless steel, likely due to the material's surface facilitating faster microbial colonization and the development of a more complex structure, as observed by scanning electron microscopy. Listeria monocytogenes isolates from the meat processing industry carry genes associated with biofilm production and can form biofilms on both stainless steel and polyurethane surfaces, which may contribute to their persistence within meat processing lines. Despite carrying sanitizer tolerance genes, QAC and PA effectively controlled these microorganisms in their planktonic form. However, combinations of detergent (AC and ENZ) with sanitizers (QAC and PA) at minimum concentrations of 125 ppm and 300 ppm, respectively, were the most effective.
Collapse
Affiliation(s)
- Larissa Siqueira Lima
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Taís Nunzio Müller
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Rafaela Ansiliero
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Marcia Bär Schuster
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Bruna Louise Silva
- Centro Multiusuário, Centro de Ciências Tecnológicas, Universidade do Estado de Santa Catarina, Joinville, SC, 89219-710, Brazil
| | - Itiane Barcellos Jaskulski
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Capão do Leão, RS, 96001-970, Brazil
- Centro de Desenvolvimento Tecnológico, Departamento de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 960110-610, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Capão do Leão, RS, 96001-970, Brazil
- Centro de Desenvolvimento Tecnológico, Departamento de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 960110-610, Brazil
| | - Liziane Schittler Moroni
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil.
| |
Collapse
|
3
|
Wang C, Ma Q, Zhang J, Meng N, Xu D. Co-culture of benzalkonium chloride promotes the biofilm formation and decreases the antibiotic susceptibility of a Pseudomonas aeruginosa strain. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:858-869. [PMID: 38687259 DOI: 10.1039/d4em00035h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Benzalkonium chloride (BAC) is a disinfectant with broad-spectrum antibacterial properties, yet despite its widespread use and detection in the environment, the effects of BAC exposure on microorganisms remain poorly documented. Herein, the impacts of BAC on a Pseudomonas aeruginosa strain Jade-X were systematically investigated. The results demonstrated that the minimum inhibitory concentration (MIC) of BAC against strain Jade-X was 64 mg L-1. Exposure to BAC concentrations of 8, 16, 32, and 64 mg L-1 significantly augmented biofilm formation by 2.03-, 2.43-, 2.96-, and 2.56-fold respectively. The swimming and twitching abilities, along with the virulence factor production, were inhibited. Consistently, quantitative reverse transcription PCR assays revealed significant downregulation of genes related to flagellate- and pili-mediated motilities (flgD, flgE, pilB, pilQ, and motB), as well as phzA and phzB genes involved in pyocyanin production. The results of disk diffusion and MIC assays demonstrated that BAC decreased the antibiotic susceptibility of ciprofloxacin, levofloxacin, norfloxacin, and tetracycline. Conversely, an opposite trend was observed for polymyxin B and ceftriaxone. Genomic analysis revealed that strain Jade-X harbored eleven resistance-nodulation-cell division efflux pumps, with mexCD-oprJ exhibiting significant upregulation while mexEF-oprN and mexGHI-opmD were downregulated. In addition, the quorum sensing-related regulators LasR and RhlR were also suppressed, implying that BAC might modulate the physiological and biochemical behaviors of strain Jade-X by attenuating the quorum sensing system. This study enhances our understanding of interactions between BAC and P. aeruginosa, providing valuable insights to guide the regulation and rational use of BAC.
Collapse
Affiliation(s)
- Caihong Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Jiaxin Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Nan Meng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
4
|
Ban GH, Kim SH, Kang DH, Park SH. Comparison of the efficacy of physical and chemical strategies for the inactivation of biofilm cells of foodborne pathogens. Food Sci Biotechnol 2023; 32:1679-1702. [PMID: 37780592 PMCID: PMC10533464 DOI: 10.1007/s10068-023-01312-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilm formation is a strategy in which microorganisms generate a matrix of extracellular polymeric substances to increase survival under harsh conditions. The efficacy of sanitization processes is lowered when biofilms form, in particular on industrial devices. While various traditional and emerging technologies have been explored for the eradication of biofilms, cell resistance under a range of environmental conditions renders evaluation of the efficacy of control challenging. This review aimed to: (1) classify biofilm control measures into chemical, physical, and combination methods, (2) discuss mechanisms underlying inactivation by each method, and (3) summarize the reduction of biofilm cells after each treatment. The review is expected to be useful for future experimental studies and help to guide the establishment of biofilm control strategies in the food industry.
Collapse
Affiliation(s)
- Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439 Republic of Korea
| |
Collapse
|
5
|
de Sousa FFO, Pinazo A, Hafidi Z, García MT, Bautista E, Moran MDC, Pérez L. Arginine Gemini-Based Surfactants for Antimicrobial and Antibiofilm Applications: Molecular Interactions, Skin-Related Anti-Enzymatic Activity and Cytotoxicity. Molecules 2023; 28:6570. [PMID: 37764346 PMCID: PMC10536132 DOI: 10.3390/molecules28186570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The antimicrobial and antibiofilm properties of arginine-based surfactants have been evaluated. These two biological properties depend on both the alkyl chain length and the spacer chain nature. These gemini surfactants exhibit good activity against a wide range of bacteria, including some problematic resistant microorganisms such us methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Moreover, surfactants with a C10 alkyl chain and C3 spacer inhibit the (MRSA) and Pseudomonas aeruginosa biofilm formation at concentrations as low as 8 µg/mL and are able to eradicate established biofilms of these two bacteria at 32 µg/mL. The inhibitory activities of the surfactants over key enzymes enrolled in the skin repairing processes (collagenase, elastase and hyaluronidase) were evaluated. They exhibited moderate anti-collagenase activity while the activity of hyaluronidase was boosted by the presence of these surfactants. These biological properties render these gemini arginine-based surfactants as perfect promising candidates for pharmaceutical and biological properties.
Collapse
Affiliation(s)
- Francisco Fábio Oliveira de Sousa
- Laboratory of Quality Control, Bromatology & Microbiology, Department of Biological & Health Sciences, School of Pharmacy, Federal University of Amapá, Rodovia Juscelino Kubitscheck, km 02, Macapá 68903-419, Brazil
| | - Aurora Pinazo
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (A.P.); (Z.H.); (M.T.G.); (E.B.)
| | - Zakaria Hafidi
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (A.P.); (Z.H.); (M.T.G.); (E.B.)
| | - María Teresa García
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (A.P.); (Z.H.); (M.T.G.); (E.B.)
| | - Elena Bautista
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (A.P.); (Z.H.); (M.T.G.); (E.B.)
| | - Maria del Carmen Moran
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain;
- Institut de Nanociència i Nanotecnologia—IN2UB, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | - Lourdes Pérez
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (A.P.); (Z.H.); (M.T.G.); (E.B.)
| |
Collapse
|
6
|
Cross-contamination of mature Listeria monocytogenes biofilms from stainless steel surfaces to chicken broth before and after the application of chlorinated alkaline and enzymatic detergents. Food Microbiol 2023; 112:104236. [PMID: 36906320 DOI: 10.1016/j.fm.2023.104236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
The objectives of this study were, firstly, to compare a conventional (i.e., chlorinated alkaline) versus an alternative (chlorinated alkaline plus enzymatic) treatment effectivity for the elimination of biofilms from different L. monocytogenes strains (CECT 5672, CECT 935, S2-bac and EDG-e). Secondly, to evaluate the cross-contamination to chicken broth from non-treated and treated biofilms formed on stainless steel surfaces. Results showed that all L. monocytogenes strains were able to adhere and develop biofilms at approximately the same growth levels (≈5.82 log CFU/cm2). When non-treated biofilms were put into contact with the model food, obtained an average transference rate of potential global cross-contamination of 20.4%. Biofilms treated with the chlorinated alkaline detergent obtained transference rates similar to non-treated biofilms as a high number of residual cells (i.e., around 4 to 5 Log CFU/cm2) were present on the surface, except for EDG-e strain on which transference rate diminished to 0.45%, which was related to the protective matrix. Contrarily, the alternative treatment was shown to not produce cross-contamination to the chicken broth due to its high effectivity for biofilm control (<0.50% of transference) except for CECT 935 strain that had a different behavior. Therefore, changing to more intense cleaning treatments in the processing environments can reduce risk of cross-contamination.
Collapse
|
7
|
Kula N, Lamch Ł, Futoma-Kołoch B, Wilk KA, Obłąk E. The effectiveness of newly synthesized quaternary ammonium salts differing in chain length and type of counterion against priority human pathogens. Sci Rep 2022; 12:21799. [PMID: 36526659 PMCID: PMC9757636 DOI: 10.1038/s41598-022-24760-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Quaternary ammonium salts (QAS) commonly occur as active substances in disinfectants. QAS have the important property of coating abiotic surfaces, which prevents adhesion of microorganisms, thus inhibiting biofilm formation. In this study, a group of nine monomeric QAS, differing in the structure and length of the aliphatic chain (C12, C14, C16) and the counterion (methylcarbonate, acetate, bromide), were investigated. The study included an analysis of their action against planktonic forms as well as bacterial biofilms. The compounds were tested for their anti-adhesion properties on stainless steel, polystyrene, silicone and glass surfaces. Moreover, mutagenicity analysis and evaluation of hemolytic properties were performed. It was found that compounds with 16-carbon hydrophobic chains were the most promising against both planktonic forms and biofilms. Tested surfactants (C12, C14, C16) showed anti-adhesion activity but it was dependent on the type of the surface and strain used. The tested compounds at MIC concentrations did not cause hemolysis of sheep blood cells. The type of counterion was not as significant for the activity of the compound as the length of the hydrophobic aliphatic chain.
Collapse
Affiliation(s)
- Natalia Kula
- Department of Physico-Chemistry of Microorganisms, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Bożena Futoma-Kołoch
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Ewa Obłąk
- Department of Physico-Chemistry of Microorganisms, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| |
Collapse
|
8
|
Maillard J. Impact of benzalkonium chloride, benzethonium chloride and chloroxylenol on bacterial antimicrobial resistance. J Appl Microbiol 2022; 133:3322-3346. [PMID: 35882500 PMCID: PMC9826383 DOI: 10.1111/jam.15739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/11/2023]
Abstract
This review examined 3655 articles on benzalkonium chloride (BKC), benzethonium chloride (BZT) and chloroxylenol (CHO) aiming to understand their impact on antimicrobial resistance. Following the application of inclusion/exclusion criteria, only 230 articles were retained for analysis; 212 concerned BKC, with only 18 for CHO and BZT. Seventy-eight percent of studies used MIC to measure BKC efficacy. Very few studies defined the term 'resistance' and 85% of studies defined 'resistance' as <10-fold increase (40% as low as 2-fold) in MIC. Only a few in vitro studies reported on formulated products and when they did, products performed better. In vitro studies looking at the impact of BKC exposure on bacterial resistance used either a stepwise training protocol or exposure to constant BKC concentrations. In these, BKC exposure resulted in elevated MIC or/and MBC, often associated with efflux, and at time, a change in antibiotic susceptibility profile. The clinical relevance of these findings was, however, neither reported nor addressed. Of note, several studies reported that bacterial strains with an elevated MIC or MBC remained susceptible to the in-use BKC concentration. BKC exposure was shown to reduce bacterial diversity in complex microbial microcosms, although the clinical significance of such a change has not been established. The impact of BKC exposure on the dissemination of resistant genes (notably efflux) remains speculative, although it manifests that clinical, veterinary and food isolates with elevated BKC MIC carried multiple efflux pump genes. The correlation between BKC usage and gene carriage, maintenance and dissemination has also not been established. The lack of clinical interpretation and significance in these studies does not allow to establish with certainty the role of BKC on AMR in practice. The limited literature and BZT and CHO do not allow to conclude that these will impact negatively on emerging bacterial resistance in practice.
Collapse
Affiliation(s)
- Jean‐Yves Maillard
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
| |
Collapse
|
9
|
Mazaheri T, Ripolles-Avila C, Rodríguez-Jerez J. Elimination of mature Listeria monocytogenes biofilms formed on preconditioned and non-preconditioned surfaces after the application of cleaning treatments and their cell regeneration. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Mazaheri T, Cervantes-Huamán B, Turitich L, Ripolles-Avila C, Rodríguez-Jerez J. Removal of Listeria monocytogenes biofilms on stainless steel surfaces through conventional and alternative cleaning solutions. Int J Food Microbiol 2022; 381:109888. [DOI: 10.1016/j.ijfoodmicro.2022.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
|
11
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyse the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance was not clearly defined. Further, viable but non-culturable form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat to the food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
12
|
Rahman MA, Sahoo N, Yemmireddy V. Analysis of Sanitizer Rotation on the Susceptibility, Biofilm Forming Ability and Caco-2 Cell Adhesion and Invasion of Listeria. Pathogens 2022; 11:961. [PMID: 36145393 PMCID: PMC9502273 DOI: 10.3390/pathogens11090961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to determine the effect of sanitizer use conditions on the susceptibility, biofilm forming ability and pathogenicity of Listeria monocytogenes. Two different strains of L. monocytogenes and a non-pathogenic L. innocua were exposed to sodium hypochlorite, benzalkonium chloride and peroxyacetic acid at different concentrations (4 to 512 ppm) and treatment times (30 s to 5 min), respectively. Under the tested conditions, no significant difference (p > 0.05) in reduction was observed among the three tested sanitizers. A reduction of 1 to 8 log CFU/mL was observed depending upon the sanitizer concentration and treatment times. The survived cells at the highest sublethal concentration and treatment time of a particular sanitizer upon re-exposure to the same or different sanitizer showed either no change or increased susceptibility when compared to parent strains. Upon repeated exposure to sanitizers at progressively increasing concentrations from 1 to 128 ppm, L. innocua was able to survive concentrations of up to 32 ppm benzalkonium chloride and 64 ppm peroxyacetic acid treatments, respectively. At the tested sub-lethal concentrations, no significant difference (p > 0.05) in biofilm formation was observed among the tested strains. Caco-2 interaction with L. innocua showed a reduction in invasion ability with sublethal concentrations of sanitizers.
Collapse
Affiliation(s)
- Md Asfakur Rahman
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Nirakar Sahoo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Veerachandra Yemmireddy
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
13
|
Alonso VPP, Furtado MM, Iwase CHT, Brondi-Mendes JZ, Nascimento MDS. Microbial resistance to sanitizers in the food industry: review. Crit Rev Food Sci Nutr 2022; 64:654-669. [PMID: 35950465 DOI: 10.1080/10408398.2022.2107996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hygiene programs which comprise the cleaning and sanitization steps are part of the Good Hygiene Practices (GHP) and are considered essential to ensure food safety and quality. Inadequate hygiene practices may contribute to the occurrence of foodborne diseases, development of microbial resistance to sanitizers, and economic losses. In general, the sanitizer resistance is classified as intrinsic or acquired. The former is an inherent characteristic, naturally present in some microorganisms, whereas the latter is linked to genetic modifications that can occur at random or after continuous exposure to a nonnormal condition. The resistance mechanisms can involve changes in membrane permeability or in the efflux pump, and enzymatic activity. The efflux pump mechanism is the most elucidated in relation to the resistance caused by the use of different types of sanitizers. In addition, microbial resistance to sanitizers can also be favored in the presence of biofilms due to the protection given by the glycocalyx matrix and genetic changes. Therefore, this review aimed to show the main microbial resistance mechanisms to sanitizers, including genetic modifications, biofilm formation, and permeability barrier.
Collapse
Affiliation(s)
| | - Marianna Miranda Furtado
- Department of Food Science and Nutrition, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
14
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes - How This Pathogen Survives in Food-Production Environments? Front Microbiol 2022; 13:866462. [PMID: 35558128 PMCID: PMC9087598 DOI: 10.3389/fmicb.2022.866462] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is the causative agent of human listeriosis, a severe disease, especially dangerous for the elderly, pregnant women, and newborns. Although this infection is comparatively rare, it is often associated with a significant mortality rate of 20-30% worldwide. Therefore, this microorganism has an important impact on food safety. L. monocytogenes can adapt, survive and even grow over a wide range of food production environmental stress conditions such as temperatures, low and high pH, high salt concentration, ultraviolet lights, presence of biocides and heavy metals. Furthermore, this bacterium is also able to form biofilm structures on a variety of surfaces in food production environments which makes it difficult to remove and allows it to persist for a long time. This increases the risk of contamination of food production facilities and finally foods. The present review focuses on the key issues related to the molecular mechanisms of the pathogen survival and adaptation to adverse environmental conditions. Knowledge and understanding of the L. monocytogenes adaptation approaches to environmental stress factors will have a significant influence on the development of new, efficient, and cost-effective methods of the pathogen control in the food industry, which is critical to ensure food production safety.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
| | | | | |
Collapse
|
15
|
Evaluation of the Persistence and Characterization of Listeria monocytogenes in Foodservice Operations. Foods 2022; 11:foods11060886. [PMID: 35327308 PMCID: PMC8955912 DOI: 10.3390/foods11060886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen that can contaminate food products and colonize food-producing facilities. Foodservice operations (FSOp) are frequently responsible for foodborne outbreaks due to food safety practices failures. We investigated the presence of and characterized L. monocytogenes from two FSOp (cafeterias) distributing ready-to-eat meals and verified FSOp’s compliance with good manufacturing practices (GMP). Two facilities (FSOp-A and FSOp-B) were visited three times each over 5 months. We sampled foods, ingredients, and surfaces for microbiological analysis, and L. monocytogenes isolates were characterized by phylogenetic analyses and phenotypic characteristics. GMP audits were performed in the first and third visits. A ready-to-eat salad (FSOp-A) and a frozen ingredient (FSOp-B) were contaminated with L. monocytogenes, which was also detected on Zone 3 surfaces (floor, drains, and a boot cover). The phylogenetic analysis demonstrated that FSOp-B had persistent L. monocytogenes strains, but environmental isolates were not closely related to food or ingredient isolates. GMP audits showed that both operations worked under “fair” conditions, and “facilities and equipment” was the section with the least compliances. The presence of L. monocytogenes in the environment and GMP failures could promote food contamination with this pathogen, presenting a risk to consumers.
Collapse
|
16
|
Jiang X, Jiang C, Yu T, Jiang X, Ren S, Kang R, Qiu S. Benzalkonium Chloride Adaptation Increases Expression of the Agr System, Biofilm Formation, and Virulence in Listeria monocytogenes. Front Microbiol 2022; 13:856274. [PMID: 35283841 PMCID: PMC8905296 DOI: 10.3389/fmicb.2022.856274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Benzalkonium chloride (BC) is widely used for disinfection in food industry. However, prolonged exposure to BC may lead to the emergence of BC adapted strains of Listeria monocytogenes, an important foodborne pathogen. Until now, two communication systems, the LuxS/AI-2 system and the Agr system, have been identified in L. monocytogenes. This study aimed to investigate the role of communication systems in BC adaptation and the effect of BC adaptation on two communication systems and the communication-controlled behaviors in L. monocytogenes. Results demonstrated that the Agr system rather than the LuxS system plays an important role in BC adaptation of L. monocytogenes. Neither luxS expression nor AI-2 production was affected by BC adaptation. On the other hand, the expression of the agr operon and the activity of the agr promoter were significantly increased after BC adaptation. BC adaptation enhanced biofilm formation of L. monocytogenes. However, swarming motility was reduced by BC adaptation. Data from qRT-PCR showed that flagella-mediated motility-related genes (flaA, motA, and motB) were downregulated in BC adapted strains. BC adaptation increased the ability of L. monocytogenes to adhere to and invade Caco-2 cells but did not affect the hemolytic activity. Compared with the wild-type strains, the expression levels of virulence genes prfA, plcA, mpl, actA, and plcB increased more than 2-fold in BC adapted strains; however, lower than 2-fold changes in the expression of hemolysis-associated gene hly were observed. Our study suggests that BC adaptation could increase the expression of the Agr system and enhance biofilm formation, invasion, and virulence of L. monocytogenes, which brings about threats to food safety and public health. Therefore, effective measures should be taken to avoid the emergence of BC adapted strains of L. monocytogenes.
Collapse
Affiliation(s)
- Xiaobing Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Congyi Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Tao Yu
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, China.,Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, China
| | - Xiaojie Jiang
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, China
| | - Siyu Ren
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Rui Kang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shuxing Qiu
- Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, China
| |
Collapse
|
17
|
Staphylococcus aureus from Minas Artisanal Cheeses: Biocide Tolerance, Antibiotic Resistance and Enterotoxin Genes. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Staphylococcus aureus is a common contaminant in artisanal raw-milk cheeses. Tolerance of S. aureus to biocides is a threat to disinfection in the cheese production environment, while antibiotic resistance and enterotoxin production are additional health concerns. This study aimed to evaluate the tolerance of S. aureus isolated from Minas artisanal cheeses to the biocides benzalkonium chloride, hexadecylpyridinium chloride, cetrimide, triclosan, hexachlorophene, and chlorhexidine, and the simultaneous occurrence of genes coding for antibiotic resistance (mecA, aacA-aphD, and tetK), efflux pumps [qacA/B and smr (qacC/D)], and enterotoxins (sea, seb, sec, sed, see, seg, seh, sei, and sej). Among the tested isolates, 38.2% were resistant to at least one biocide, and 73.1% were positive for one or more antibiotic resistance gene. Most of the biocide-tolerant and antibiotic-resistant isolates harbored efflux pump genes, and were positive for at least one staphylococcal enterotoxin gene. The study highlights the need for correct hygiene monitoring programs to ensure the safety of these products.
Collapse
|
18
|
Bland RN, Johnson JD, Waite-Cusic JG, Weisberg AJ, Riutta ER, Chang JH, Kovacevic J. Application of Whole Genome Sequencing to Understand Diversity and Presence of Genes Associated with Sanitizer Tolerance in Listeria monocytogenes from Produce Handling Sources. Foods 2021; 10:2454. [PMID: 34681501 PMCID: PMC8536156 DOI: 10.3390/foods10102454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Recent listeriosis outbreaks linked to fresh produce suggest the need to better understand and mitigate L. monocytogenes contamination in packing and processing environments. Using whole genome sequencing (WGS) and phenotype screening assays for sanitizer tolerance, we characterized 48 L. monocytogenes isolates previously recovered from environmental samples in five produce handling facilities. Within the studied population there were 10 sequence types (STs) and 16 cgMLST types (CTs). Pairwise single nucleotide polymorphisms (SNPs) ranged from 0 to 3047 SNPs within a CT, revealing closely and distantly related isolates indicative of both sporadic and continuous contamination events within the facility. Within Facility 1, we identified a closely related cluster (0-2 SNPs) of isolates belonging to clonal complex 37 (CC37; CT9492), with isolates recovered during sampling events 1-year apart and in various locations inside and outside the facility. The accessory genome of these CC37 isolates varied from 94 to 210 genes. Notable genetic elements and mutations amongst the isolates included the bcrABC cassette (2/48), associated with QAC tolerance; mutations in the actA gene on the Listeria pathogenicity island (LIPI) 1 (20/48); presence of LIPI-3 (21/48) and LIPI-4 (23/48). This work highlights the potential use of WGS in tracing the pathogen within a facility and understanding properties of L. monocytogenes in produce settings.
Collapse
Affiliation(s)
- Rebecca N. Bland
- Food Innovation Center, Oregon State University, Portland, OR 97209, USA;
| | - Jared D. Johnson
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA; (J.D.J.); (J.G.W.-C.)
| | - Joy G. Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA; (J.D.J.); (J.G.W.-C.)
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Elizabeth R. Riutta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, OR 97209, USA;
| |
Collapse
|
19
|
Schwan CL, Lomonaco S, Bastos LM, Cook PW, Maher J, Trinetta V, Bhullar M, Phebus RK, Gragg S, Kastner J, Vipham JL. Genotypic and Phenotypic Characterization of Antimicrobial Resistance Profiles in Non-typhoidal Salmonella enterica Strains Isolated From Cambodian Informal Markets. Front Microbiol 2021; 12:711472. [PMID: 34603240 PMCID: PMC8481621 DOI: 10.3389/fmicb.2021.711472] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
Non-typhoidal Salmonella enterica is a pathogen of global importance, particularly in low and middle-income countries (LMICs). The presence of antimicrobial resistant (AMR) strains in market environments poses a serious health threat to consumers. In this study we identified and characterized the genotypic and phenotypic AMR profiles of 81 environmental S. enterica strains isolated from samples from informal markets in Cambodia in 2018–2019. AMR genotypes were retrieved from the NCBI Pathogen Detection website (https://www.ncbi.nlm.nih.gov/pathogens/) and using ResFinder (https://cge.cbs.dtu.dk/services/) Salmonella pathogenicity islands (SPIs) were identified with SPIFinder (https://cge.cbs.dtu.dk/services/). Susceptibility testing was performed by broth microdilution according to the Clinical and Laboratory Standards Institute (CLSI) standard guidelines M100-S22 using the National Antimicrobial Resistance Monitoring System (NARMS) Sensititre Gram Negative plate. A total of 17 unique AMR genes were detected in 53% (43/81) of the isolates, including those encoding tetracycline, beta-lactam, sulfonamide, quinolone, aminoglycoside, phenicol, and trimethoprim resistance. A total of 10 SPIs (SPI-1, 3–5, 8, 9, 12–14, and centisome 63 [C63PI]) were detected in 59 isolates. C63PI, an iron transport system in SPI-1, was observed in 56% of the isolates (n = 46). SPI-1, SPI-4, and SPI-9 were present in 13, 2, and 5% of the isolates, respectively. The most common phenotypic resistances were observed to tetracycline (47%; n = 38), ampicillin (37%; n = 30), streptomycin (20%; n = 16), chloramphenicol (17%; n = 14), and trimethoprim-sulfamethoxazole (16%; n = 13). This study contributes to understanding the AMR genes present in S. enterica isolates from informal markets in Cambodia, as well as support domestic epidemiological investigations of multidrug resistance (MDR) profiles.
Collapse
Affiliation(s)
- Carla L Schwan
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Sara Lomonaco
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Leonardo M Bastos
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Peter W Cook
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joshua Maher
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Valentina Trinetta
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Manreet Bhullar
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, KS, United States
| | - Randall K Phebus
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Sara Gragg
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Justin Kastner
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jessie L Vipham
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
20
|
Unrath N, McCabe E, Macori G, Fanning S. Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms 2021; 9:1856. [PMID: 34576750 PMCID: PMC8464834 DOI: 10.3390/microorganisms9091856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.
Collapse
Affiliation(s)
- Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
- Department of Microbiology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| |
Collapse
|
21
|
Bonneville L, Maia V, Barroso I, Martínez-Suárez JV, Brito L. Lactobacillus plantarum in Dual-Species Biofilms With Listeria monocytogenes Enhanced the Anti- Listeria Activity of a Commercial Disinfectant Based on Hydrogen Peroxide and Peracetic Acid. Front Microbiol 2021; 12:631627. [PMID: 34394015 PMCID: PMC8363201 DOI: 10.3389/fmicb.2021.631627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/06/2021] [Indexed: 12/01/2022] Open
Abstract
The aim of this work was to investigate the effect of dual-species biofilms of Listeria monocytogenes with Lactobacillus plantarum on the anti-Listeria activity of a hydrogen peroxide/peracetic acid based commercial disinfectant (P3, Oxonia) when using conditions approaching the food industry environment. Nine strains of L. monocytogenes, including eight persistent strains collected from the meat industry and one laboratory control strain, were used in mono and in dual-species biofilms with a strain of L. plantarum. Biofilms were produced on stainless steel coupons (SSCs), at 11°C (low temperature) or at 25°C (control temperature), in TSB-YE (control rich medium) or in 1/10 diluted TSB-YE (mimicking the situation of biofilm formation after a deficient industrial cleaning procedure). The biofilm forming ability of the strains was evaluated by enumeration of viable cells, and the antibiofilm activity of P3 was assessed by the log reduction of viable cells on SSC. In both nutrient conditions and at low temperature, there was no significant difference (p > 0.05) between L. monocytogenes biofilm forming ability in mono- and in dual-species biofilms. In dual-species biofilms, L. monocytogenes was the dominant species. However, it was generally more susceptible to the lower concentration of P3 0.5% (v/v) than in pure culture biofilms. The presence of L. plantarum, although without significant interference in the number of viable cells of L. monocytogenes, enhanced the efficacy of the anti-Listeria activity of P3, since dual-species biofilms were easier to control. The results presented here reinforce the importance of the investigation into co-culture biofilms produced in food industry conditions, namely at low temperatures, when susceptibility to sanitizers is being assessed.
Collapse
Affiliation(s)
- Lourenço Bonneville
- Linking Landscape, Environment, Agriculture and Food (LEAF), Departamento dos Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Vera Maia
- Linking Landscape, Environment, Agriculture and Food (LEAF), Departamento dos Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Inês Barroso
- Linking Landscape, Environment, Agriculture and Food (LEAF), Departamento dos Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Joaquín V Martínez-Suárez
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Luisa Brito
- Linking Landscape, Environment, Agriculture and Food (LEAF), Departamento dos Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
22
|
El-Zamkan MA, Hendy BA, Diab HM, Marraiki N, Batiha GES, Saber H, Younis W, Thangamani S, Alzahrani KJ, Ahmed AS. Control of Virulent Listeria monocytogenes Originating from Dairy Products and Cattle Environment Using Marine Algal Extracts, Silver Nanoparticles Thereof, and Quaternary Disinfectants. Infect Drug Resist 2021; 14:2721-2739. [PMID: 34290510 PMCID: PMC8289371 DOI: 10.2147/idr.s300593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/30/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Listeria monocytogenes is an important foodborne pathogen of public- and animal-health concern globally. The persistence of L. monocytogenes in the dairy-processing environment has multifactorial causes, including lack of hygiene, inefficient cleaning, and improper disinfection practices. Materials and Methods A total of 300 dairy-product and environmental samples were collected from dairy-cattle facilities and local dairy shops and vendors in Qena, Egypt. Samples were screened for the incidence of Listeria spp. and to detect virulence determinants and disinfectant-resistance genes. Three marine algal species - Caulerpa racemosa, Jania rubens, and Padina pavonica - were collected from Hurghada on the Red Sea coast. Algal extracts were screened using gas chromatography-mass spectrometry. The antimicrobial activity of some marine algal extracts, nanoparticles derived therefrom, and some disinfectants against L. monocytogenes strains were assessed in vitro using agar-well diffusion and liquid-broth methods. The impact of P. pavonica extract on the growth and survival of virulent L. monocytogenes in cheese and whey were clarified. Results and Discussion The incidence of L. monocytogenes in dairy products and environmental samples was 15.5% and 19%, respectively. The most common toxigenic gene profile found among the isolates was hlyA +-inlA +-prfA +. The sensitivity pattern of L. monocytogenes strains to disinfectant containing alkyl (C12-16) dimethyl BAC was high compared to other tested quaternary ammonium compounds (QAC) disinfectants tested, which showed lower log reductions against resistant strains. The QAC disinfectant-resistance gene qacH was detected in 40% of the isolates. Potent bactericidal activity of a petroleum ether extract of P. pavonica and silver nanoparticles of P. pavonica were obtained against the virulent L. monocytogenes strain. The population of L. monocytogenes in cheese curd and whey after 14 days was reduced at a rate of 9 log CFU/g and 8 log CFU/mL, respectively due to the effect of P. pavonica extract. After 28 days of storage, L. monocytogenes was completely inactivated in those dairy products. Conclusion P. pavonica extract showed promising antimicrobial properties, calling for further comprehensive studies prior to it being applied in the food industry to enhance the safety, quality, and shelf life of products and protect public health.
Collapse
Affiliation(s)
- Mona A El-Zamkan
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Bassma A Hendy
- Reference Lab for Food Safety, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, 12622, Egypt
| | - Hassan Mahmoud Diab
- Department of Animal and Poultry Health and Environment, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al-Beheira 22511, Egypt
| | - Hani Saber
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Waleed Younis
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Ahmed Shaban Ahmed
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
23
|
Characterisation of Listeria monocytogenes food-associated isolates to assess environmental fitness and virulence potential. Int J Food Microbiol 2021; 350:109247. [PMID: 34023680 DOI: 10.1016/j.ijfoodmicro.2021.109247] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
The ability of Listeria monocytogenes isolates to survive within the food production environment (FPE), as well as virulence, varies greatly between strains. There are specific genetic determinants that have been identified which can strongly influence a strains ability to survive in the FPE and/or within human hosts. In this study, we assessed the FPE fitness and virulence potential, including efficacy of selected hygiene or treatment intervention, against 52 L. monocytogenes strains isolated from various food and food environment sources. Phenotypic tests were performed to determine the minimum inhibitory concentration of cadmium chloride and benzalkonium chloride and the sensitivities to five clinically relevant antibiotics. A genomic analysis was also performed to identify resistance genes correlating to the observed phenotypic resistance profiles, along with genetic determinants of interest which may elude to the FPE fitness and virulence potential. A transposon element containing a novel cadmium resistance gene, cadA7, a Tn916 variant insert in the hypervariable Listeria genomic island 1 region and an LGI2 variant were identified. Resistance to cadmium and disinfectants was prevalent among isolates in this study, although no resistance to clinically important antimicrobials was observed. Potential hypervirulent strains containing full length inlA, LIPI-1 and LIPI-3 were also identified in this study. Cumulatively, the results of this study show a vast array of FPE survival and pathogenicity potential among food production-associated isolates, which may be of concern for food processing operators and clinicians regarding L. monocytogenes strains colonising and persisting within the FPE, and subsequently contaminating food products then causing disease in at risk population groups.
Collapse
|
24
|
Hascoët AS, Ripolles-Avila C, Cervantes-Huamán BRH, Rodríguez-Jerez JJ. In Vitro Preformed Biofilms of Bacillus safensis Inhibit the Adhesion and Subsequent Development of Listeria monocytogenes on Stainless-Steel Surfaces. Biomolecules 2021; 11:475. [PMID: 33810177 PMCID: PMC8004596 DOI: 10.3390/biom11030475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/27/2023] Open
Abstract
Listeria monocytogenes continues to be one of the most important public health challenges for the meat sector. Many attempts have been made to establish the most efficient cleaning and disinfection protocols, but there is still the need for the sector to develop plans with different lines of action. In this regard, an interesting strategy could be based on the control of this type of foodborne pathogen through the resident microbiota naturally established on the surfaces. A potential inhibitor, Bacillus safensis, was found in a previous study that screened the interaction between the resident microbiota and L. monocytogenes in an Iberian pig processing plant. The aim of the present study was to evaluate the effect of preformed biofilms of Bacillus safensis on the adhesion and implantation of 22 strains of L. monocytogenes. Mature preformed B. safensis biofilms can inhibit adhesion and the biofilm formation of multiple L. monocytogenes strains, eliminating the pathogen by a currently unidentified mechanism. Due to the non-enterotoxigenic properties of B. safensis, its presence on certain meat industry surfaces should be favored and it could represent a new way to fight against the persistence of L. monocytogenes in accordance with other bacterial inhibitors and hygiene operations.
Collapse
Affiliation(s)
| | | | | | - José Juan Rodríguez-Jerez
- Human Nutrition and Food Science Area, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Edifici V-Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain; (A.-S.H.); (C.R.-A.); (B.R.H.C.-H.)
| |
Collapse
|
25
|
Duze ST, Marimani M, Patel M. Tolerance of Listeria monocytogenes to biocides used in food processing environments. Food Microbiol 2021; 97:103758. [PMID: 33653529 DOI: 10.1016/j.fm.2021.103758] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that causes a life-threatening disease in humans known as listeriosis. Contamination of food during processing is the main route of transmission of Listeria monocytogenes. Therefore, biocides play a crucial role in food processing environments as they act as the first line of defense in the prevention and control of L. monocytogenes. Residues of biocides may be present at sublethal concentrations after disinfection. This, unfortunately, subjects L. monocytogenes to selection pressure, giving rise to tolerant strains, which pose a threat to food safety and public health. This review will give a brief description of L. monocytogenes, the clinical manifestation, treatment of listeriosis as well as recently recorded outbreaks. The article will then discuss the current literature on the ability of L. monocytogenes strains to tolerate biocides especially quaternary ammonium compounds as well as the mechanisms of tolerance towards biocides including the activation of efflux pump systems.
Collapse
Affiliation(s)
- Sanelisiwe Thinasonke Duze
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Musa Marimani
- Department of Anatomical Pathology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mrudula Patel
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa; National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
26
|
Bansal M, Dhowlaghar N, Nannapaneni R, Kode D, Chang S, Sharma CS, McDaniel C, Kiess A. Decreased biofilm formation by planktonic cells of Listeria monocytogenes in the presence of sodium hypochlorite. Food Microbiol 2020; 96:103714. [PMID: 33494900 DOI: 10.1016/j.fm.2020.103714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/30/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
The objective of this study was to determine if the adaptation at planktonic stage to subinhibitory concentrations (SIC) of sodium hypochlorite (NaOCl) could modulate the biofilm forming ability of five Listeria monocytogenes strains V7, Scott A, FSL-N1-227, FSL F6-154 and ATCC 19116 representing serotypes 1/2a, 4b and 4c. Biofilm formation by NaOCl nonadapted and adapted L. monocytogenes planktonic cells was measured in the presence or absence of SIC of NaOCl. The biofilm formation ability of NaOCl nonadapted and adapted L. monocyotgenes planktonic cells was reduced only in the presence of NaOCl (P < 0.05). Scanning electron microscopy revealed that the continuous exposure of NaOCl induced morphological changes in the L. monocytogenes biofilm structure and reduced its attachment to polystyrene surface. The qRT-PCR results also showed that the subinhibitory NaOCl reduced biofilm formation related gene expression such as motility and quorum sensing signals (P < 0.05). These findings indicate that subinhibitory NaOCl can reduce the ability of L. monocytogenes planktonic cells to form biofilms on polystyrene surface.
Collapse
Affiliation(s)
- Mohit Bansal
- Department of Poultry Science, Mississippi State University, MS, 39762, USA
| | - Nitin Dhowlaghar
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS, 39762, USA
| | - Ramakrishna Nannapaneni
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS, 39762, USA.
| | - Divya Kode
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS, 39762, USA
| | - Sam Chang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS, 39762, USA
| | - Chander S Sharma
- Department of Poultry Science, Mississippi State University, MS, 39762, USA
| | | | - Aaron Kiess
- Department of Poultry Science, Mississippi State University, MS, 39762, USA
| |
Collapse
|
27
|
Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Fish and Fish Production Environments in Poland. Int J Mol Sci 2020; 21:ijms21249419. [PMID: 33321935 PMCID: PMC7764581 DOI: 10.3390/ijms21249419] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes, an important foodborne pathogen, may be present in different kinds of food and in food processing environments where it can persist for a long time. In this study, 28 L. monocytogenes isolates from fish and fish manufactures were characterized by whole genome sequencing (WGS). Core genome multilocus sequence typing (cgMLST) analysis was applied to compare the present isolates with publicly available genomes of L. monocytogenes strains recovered worldwide from food and from humans with listeriosis. All but one (96.4%) of the examined isolates belonged to molecular serogroup IIa, and one isolate (3.6%) was classified to serogroup IVb. The isolates of group IIa were mainly of MLST sequence types ST121 (13 strains) and ST8 (four strains) whereas the isolate of serogroup IVb was classified to ST1. Strains of serogroup IIa were further subtyped into eight different sublineages with the most numerous being SL121 (13; 48.1% strains) which belonged to six cgMLST types. The majority of strains, irrespective of the genotypic subtype, had the same antimicrobial resistance profile. The cluster analysis identified several molecular clones typical for L. monocytogenes isolated from similar sources in other countries; however, novel molecular cgMLST types not present in the Listeria database were also identified.
Collapse
|
28
|
Stincone P, Miyamoto KN, Timbe PPR, Lieske I, Brandelli A. Nisin influence on the expression of Listeria monocytogenes surface proteins. J Proteomics 2020; 226:103906. [DOI: 10.1016/j.jprot.2020.103906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
|
29
|
Ripolles-Avila C, Ramos-Rubio M, Hascoët AS, Castillo M, Rodríguez-Jerez JJ. New approach for the removal of mature biofilms formed by wild strains of Listeria monocytogenes isolated from food contact surfaces in an Iberian pig processing plant. Int J Food Microbiol 2020; 323:108595. [PMID: 32224347 DOI: 10.1016/j.ijfoodmicro.2020.108595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/20/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
One of the main objectives of the food industry is to guarantee food safety by providing innocuous food products. Therefore, this sector must consider all the possible biotic or abiotic contamination routes from the entry of raw materials to the release of the final product. Currently, one important problem in this regard is the presence of biofilms on food contact surfaces which can transmit pathogens such as L. monocytogenes. In industrial conditions biofilms are found in a mature state, so it is essential that when carrying out removal effectiveness studies in vitro the tests are realized with models that produce these structures in a similarly mature state. The main objective of this study was to evaluate the effectiveness of an alternative treatment (i.e. enzymatic detergent that include natural antimicrobial agents) and a conventional treatment (i.e. chlorinated alkaline) for the elimination of mature L. monocytogenes biofilms. The results showed a cell detachment from the formed mature biofilms with an effectivity of between 74.75%-97.73% and 53.94%-94.02% for the enzymatic treatment and the chlorinated alkaline detergent, respectively. On a qualitative level, it was observed that the dispersion in the structure was much higher for the enzymatic treatment than for the chlorinated alkaline, which continued to show obvious structure integrity. All this leads to the conclusion that treatments with an enzymatic detergent have a significantly greater impact on the removal of mature L. monocytogenes biofilms, although a further disinfection process would be needed, enhancing even more the treatment effectivity. This may imply that the industrial approach to addressing this problem should be modified to include new perspectives that are more effective than traditional ones.
Collapse
Affiliation(s)
- C Ripolles-Avila
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain
| | - M Ramos-Rubio
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain
| | - A S Hascoët
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain
| | - M Castillo
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain
| | - J J Rodríguez-Jerez
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain.
| |
Collapse
|
30
|
López-Alonso V, Ortiz S, Corujo A, Martínez-Suárez JV. Analysis of Benzalkonium Chloride Resistance and Potential Virulence of Listeria monocytogenes Isolates Obtained from Different Stages of a Poultry Production Chain in Spain. J Food Prot 2020; 83:443-451. [PMID: 32053831 DOI: 10.4315/0362-028x.jfp-19-289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/12/2019] [Indexed: 01/30/2023]
Abstract
ABSTRACT Listeria monocytogenes can survive in food production facilities and can be transmitted via contamination of food during the various stages of food production. This study was conducted to compile the results of three independent previous studies on the genetic diversity of L. monocytogenes in a poultry production company in Spain and to determine the potential virulence and sanitizer resistance of the strains by using both genotype and phenotype analyses. L. monocytogenes was detected at three production stages: a broiler abattoir, a processing plant, and retail stores marketing fresh poultry products from the same company. These three stages spanned three locations in three provinces of Spain. A set of 347 L. monocytogenes isolates representing 39 subtypes was obtained using pulsed-field gel electrophoresis (PFGE). A total of 28 subtypes (68%) had a full-length internalin A gene, and two subtypes had a phenotype with low potential for virulence because of a mutation in the prfA gene. A total of 32 subtypes (82%) were classified as benzalkonium chloride resistant (BAC-R) and contained the resistance determinant bcrABC (21 subtypes, 54%) or the resistance gene qacH (11 subtypes, 28%). A total of 13 persistent BAC-R subtypes (minimum of 3 months between the first and last sample from with the isolate was recovered) were identified at the abattoir and processing plant. The three production stages shared a unique subtype (PFGE type 1), which had the mutation in the prfA gene and the bcrABC resistance determinant. Whole genome sequencing revealed this subtype to be sequence type 31. Limited genetic diversity was noted in the isolates studied, including some subtypes that were persistent in the environment of the investigated facilities. Given the high prevalence of BAC-R subtypes, these results support the association between resistance to biocides and persistence of L. monocytogenes. HIGHLIGHTS
Collapse
Affiliation(s)
- Victoria López-Alonso
- Unidad de Biología Computacional, UFIEC, Instituto de Salud Carlos III, Carretera de Majadahonda a Pozuelo km 2, 28220 Majadahonda, Madrid, Spain
| | - Sagrario Ortiz
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Autovía A-6 km 7.5, 28040 Madrid, Spain
| | - Alfredo Corujo
- Nutreco Food Research Center, Ctra. CM 4004 km 10.5, 45950 Casarrubios del Monte, Toledo, Spain
| | - Joaquín V Martínez-Suárez
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Autovía A-6 km 7.5, 28040 Madrid, Spain.,(ORCID: https://orcid.org/0000-0003-4306-3223 [J.V.M.-S.])
| |
Collapse
|
31
|
Barroso I, Maia V, Cabrita P, Martínez-Suárez JV, Brito L. The benzalkonium chloride resistant or sensitive phenotype of Listeria monocytogenes planktonic cells did not dictate the susceptibility of its biofilm counterparts. Food Res Int 2019; 123:373-382. [PMID: 31284989 DOI: 10.1016/j.foodres.2019.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022]
Abstract
The main goal of this work was to approach food industry conditions in the comparison of the susceptibility of biofilms of Listeria monocytogenes to the biocides benzalkonium chloride (BAC) and peracetic acid (PAA). Twelve isolates of L. monocytogenes, including nine well characterized BAC resistant strains were used. Biofilms were produced on stainless steel coupons (SSC), at 11 °C (refrigeration temperature) or at 25 °C (room temperature), in culture media simulating clean (nutrient limiting) or soiled (nutrient rich) growth conditions. Neither different nutrient availability nor growth temperature showed significant effect (p > .05) on biofilm formation. PAA confirmed to be more effective than BAC in biofilm elimination. Biofilms formed under nutritional stress tended to differentiate more the response to BAC of the resistant or sensitive strains, but the resistant or sensitive phenotype of the planktonic cells did not dictate biofilm susceptibility.
Collapse
Affiliation(s)
- I Barroso
- LEAF - Linking Landscape, Environment, Agriculture and Food, DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - V Maia
- LEAF - Linking Landscape, Environment, Agriculture and Food, DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - P Cabrita
- LEAF - Linking Landscape, Environment, Agriculture and Food, DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal; Instituto Nacional de Investigação Agrária e Veterinária, IP, Av. República, Quinta do Marquês, Nova Oeiras, 2784-505 Oeiras, Portugal
| | - J V Martínez-Suárez
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - L Brito
- LEAF - Linking Landscape, Environment, Agriculture and Food, DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal.
| |
Collapse
|
32
|
Rodríguez-Melcón C, Capita R, Rodríguez-Jerez JJ, Martínez-Suárez JV, Alonso-Calleja C. Effect of Low Doses of Disinfectants on the Biofilm-Forming Ability of Listeria monocytogenes. Foodborne Pathog Dis 2019; 16:262-268. [DOI: 10.1089/fpd.2018.2472] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Cristina Rodríguez-Melcón
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
- Institute of Food Science and Technology, University of León, León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
- Institute of Food Science and Technology, University of León, León, Spain
| | - José Juan Rodríguez-Jerez
- Department of Food and Animal Science, Veterinary Faculty, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
- Institute of Food Science and Technology, University of León, León, Spain
| |
Collapse
|
33
|
Rodríguez-Melcón C, Riesco-Peláez F, García-Fernández C, Alonso-Calleja C, Capita R. Susceptibility of Listeria monocytogenes planktonic cultures and biofilms to sodium hypochlorite and benzalkonium chloride. Food Microbiol 2019; 82:533-540. [PMID: 31027816 DOI: 10.1016/j.fm.2019.03.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 01/07/2019] [Accepted: 03/17/2019] [Indexed: 12/27/2022]
Abstract
The susceptibility of four L. monocytogenes isolates from pork to sodium hypochlorite (SHY) and benzalkonium chloride (BZK) was tested. Minimum inhibitory concentration (MIC) values of 3500 ppm (SHY), or between 3 ppm and 13 ppm (BZK), were found. Minimum bactericidal concentration (MBC) values ranged from 3500 ppm to 4500 ppm (SHY), and from 3 ppm to 14 ppm (BZK). The effect of SHY and BZK on the architecture and cellular viability of 24-h-old biofilms formed by such strains on polystyrene was determined through confocal laser scanning microscopy (CLSM) in conjunction with fluorescent dyes for live cells (SYTO 9) and dead cells (propidium iodide). Strains were able to form biofilm (biovolume values in the observation field of 14,161 μm2 ranged between 103,928.3 ± 6730.2 μm3 and 276,030.9 ± 42,291.9 μm3). Treatment of biofilms for 10 min with SHY (1MIC or 1.5MIC) or BZK (0.5MIC, 1MIC or 1.5MIC) decreased the biovolume of live (potentially dangerous) cells. SHY reduced the cellular viability of biofilms by more than 90%. On the other hand, BZK was able to remove most biofilm mass (live and dead cells), but decreased cellular viability only to a lesser extent, this suggesting strong biofilm detachment and dissemination of live cells.
Collapse
Affiliation(s)
- Cristina Rodríguez-Melcón
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Félix Riesco-Peláez
- Department of Electrical Engineering and Systems Engineering and Automatic Control, University of León, E-24071, León, Spain
| | - Camino García-Fernández
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain.
| |
Collapse
|
34
|
Alvarez-Ordóñez A, Coughlan LM, Briandet R, Cotter PD. Biofilms in Food Processing Environments: Challenges and Opportunities. Annu Rev Food Sci Technol 2019; 10:173-195. [PMID: 30653351 DOI: 10.1146/annurev-food-032818-121805] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review examines the impact of microbial communities colonizing food processing environments in the form of biofilms on food safety and food quality. The focus is both on biofilms formed by pathogenic and spoilage microorganisms and on those formed by harmless or beneficial microbes, which are of particular relevance in the processing of fermented foods. Information is presented on intraspecies variability in biofilm formation, interspecies relationships of cooperativism or competition within biofilms, the factors influencing biofilm ecology and architecture, and how these factors may influence removal. The effect on the biofilm formation ability of particular food components and different environmental conditions that commonly prevail during food processing is discussed. Available tools for the in situ monitoring and characterization of wild microbial biofilms in food processing facilities are explored. Finally, research on novel agents or strategies for the control of biofilm formation or removal is summarized.
Collapse
Affiliation(s)
- Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain;
| | - Laura M Coughlan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.,School of Microbiology, University College Cork, County Cork, Ireland
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350 France
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.,APC Microbiome Ireland, Cork, County Cork, Ireland
| |
Collapse
|
35
|
Ripolles-Avila C, Cervantes-Huaman B, Hascoët A, Yuste J, Rodríguez-Jerez J. Quantification of mature Listeria monocytogenes biofilm cells formed by an in vitro model: A comparison of different methods. Int J Food Microbiol 2019; 289:209-214. [DOI: 10.1016/j.ijfoodmicro.2018.10.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/04/2018] [Accepted: 10/23/2018] [Indexed: 01/04/2023]
|
36
|
Cherifi T, Carrillo C, Lambert D, Miniaï I, Quessy S, Larivière-Gauthier G, Blais B, Fravalo P. Genomic characterization of Listeria monocytogenes isolates reveals that their persistence in a pig slaughterhouse is linked to the presence of benzalkonium chloride resistance genes. BMC Microbiol 2018; 18:220. [PMID: 30572836 PMCID: PMC6302515 DOI: 10.1186/s12866-018-1363-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/02/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The aim of this study was to characterize the genomes of 30 Listeria monocytogenes isolates collected at a pig slaughterhouse to determine the molecular basis for their persistence. RESULTS Comparison of the 30 L. monocytogenes genomes showed that successive isolates (i.e., persistent types) recovered from thew sampling site could be linked on the basis of single nucleotide variants confined to prophage regions. In addition, our study revealed the presence among these strains of the bcrABC cassette which is known to produce efflux pump-mediated benzalkonium chloride resistance, and which may account for the persistence of these isolates in the slaughterhouse environment. The presence of the bcrABC cassette was confirmed by WGS and PCR and the resistance phenotype was determined by measuring minimum inhibitory concentrations. Furthermore, the BC-resistant strains were found to produce lower amounts of biofilm in the presence of sublethal concentrations of BC. CONCLUSIONS High resolution SNP-based typing and determination of the bcrABC cassette may provide a means of distinguishing between resident and sporadic L. monocytogenes isolates, and this in turn will support better management of this pathogen in the food industry.
Collapse
Affiliation(s)
- Tamazight Cherifi
- Chaire de Recherche en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Centre de Recherche sur les Maladies Infectieuses Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Groupe de Recherche et D’enseignement En Salubrité Des Aliments, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
| | - Catherine Carrillo
- Food Microbiology Research Team, Canadian Food Inspection Agency, Ottawa, ON Canada
| | - Dominic Lambert
- Food Microbiology Research Team, Canadian Food Inspection Agency, Ottawa, ON Canada
| | - Ilhem Miniaï
- Chaire de Recherche en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Centre de Recherche sur les Maladies Infectieuses Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Groupe de Recherche et D’enseignement En Salubrité Des Aliments, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
| | - Sylvain Quessy
- Chaire de Recherche en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Centre de Recherche sur les Maladies Infectieuses Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Groupe de Recherche et D’enseignement En Salubrité Des Aliments, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
| | - Guillaume Larivière-Gauthier
- Chaire de Recherche en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Centre de Recherche sur les Maladies Infectieuses Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Groupe de Recherche et D’enseignement En Salubrité Des Aliments, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
| | - Burton Blais
- Food Microbiology Research Team, Canadian Food Inspection Agency, Ottawa, ON Canada
| | - Philippe Fravalo
- Chaire de Recherche en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Centre de Recherche sur les Maladies Infectieuses Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Groupe de Recherche et D’enseignement En Salubrité Des Aliments, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
| |
Collapse
|
37
|
MdrL, a major facilitator superfamily efflux pump of
Listeria monocytogenes
involved in tolerance to benzalkonium chloride. Appl Microbiol Biotechnol 2018; 103:1339-1350. [DOI: 10.1007/s00253-018-9551-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022]
|
38
|
Ranieri MR, Whitchurch CB, Burrows LL. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials. Curr Opin Microbiol 2018; 45:164-169. [PMID: 30053750 DOI: 10.1016/j.mib.2018.07.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
Biofilms are a typical mode of growth for most microorganisms and provide them with a variety of survival benefits. Biofilms can pose medical and industrial challenges due to their increased tolerance of antimicrobials and disinfectants. Exposure of bacteria to subinhibitory concentrations of those compounds can further exacerbate the problem, as they provoke physiological changes that lead to increased biofilm production and potential therapeutic failure. The protected niche of a biofilm provides conditions that promote selection for persisters and resistant mutants. In this review we discuss our current understanding of the mechanisms underlying biofilm stimulation in response to subinhibitory antimicrobials, and how we might exploit this 'anti-antibiotic' phenotype to treat biofilm-related infections and discover new compounds.
Collapse
Affiliation(s)
- Michael Rm Ranieri
- Dept. of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Canada
| | | | - Lori L Burrows
- Dept. of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Canada.
| |
Collapse
|
39
|
Paluch E, Piecuch A, Obłąk E, Lamch Ł, Wilk KA. Antifungal activity of newly synthesized chemodegradable dicephalic-type cationic surfactants. Colloids Surf B Biointerfaces 2018; 164:34-41. [PMID: 29413614 DOI: 10.1016/j.colsurfb.2018.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/18/2017] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
The studies were aimed to contribute to the elucidation of the relationships between structure of the double-headed cationic surfactants - N,N-bis[3,3'-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9H19, n-C11H23, n-C13H27, n-C15H31), which are of particular interest, as they contain a labile amide group in the molecule and their antifungal activity. Therefore, the minimal inhibitory and fungicidal concentrations (MIC and MFC) of dicephalic surfactants against various fungi were tested using standardized methods. Most of the tested fungi were resistant to the Cn(TAPABr)2 compounds. The strongest growth inhibition was caused by Cn(DAPACl)2 series, which MICs ranged from 6.5 to 16 μM. The influence of dicephalic surfactants on Candida albicans biofilm and adhesion to the various surfaces was investigated with crystal violet staining or colony counting. The reduction of fungal adhesion was also observed, especially to the glass surface. One of the compounds (C14(DAPACl)2) caused DNA leakage from C. albicans cells. Further studies showed the impact of dicephalic surfactants on ROS production, accumulation of lipid droplets and filament formation. This study points to the possibility of application of dicephalic surfactants as the surface-coating agents to prevent biofilm formation or as disinfectants. The results give an insight into the possible mechanism of action of newly synthesized dicephalic surfactants in yeast cells.
Collapse
Affiliation(s)
- E Paluch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - A Piecuch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - E Obłąk
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland.
| | - Ł Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - K A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
40
|
Koziróg A, Kręgiel D, Brycki B. Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis. Molecules 2017; 22:molecules22112036. [PMID: 29165338 PMCID: PMC6150408 DOI: 10.3390/molecules22112036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) (C6), synthesized by the reaction of N,N-dimethyl-N-dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis, a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.
Collapse
Affiliation(s)
- Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Bogumił Brycki
- Laboratory of Microbiocides Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614 Poznań, Poland.
| |
Collapse
|
41
|
Liu J, Yu S, Han B, Chen J. Effects of benzalkonium chloride and ethanol on dual-species biofilms of Serratia liquefaciens S1 and Shewanella putrefaciens S4. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Buzón-Durán L, Alonso-Calleja C, Riesco-Peláez F, Capita R. Effect of sub-inhibitory concentrations of biocides on the architecture and viability of MRSA biofilms. Food Microbiol 2017; 65:294-301. [DOI: 10.1016/j.fm.2017.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 12/08/2016] [Accepted: 01/07/2017] [Indexed: 02/08/2023]
|
43
|
Wickham G. An investigation into the relative resistances of common bacterial pathogens to quaternary ammonium cation disinfectants. ACTA ACUST UNITED AC 2017. [DOI: 10.1093/biohorizons/hzx008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Gregory Wickham
- Department of Biological Science, University of Chester, Parkgate Road, Chester CH1 4BJ, United Kingdom
| |
Collapse
|
44
|
Capita R, Buzón-Durán L, Riesco-Peláez F, Alonso-Calleja C. Effect of Sub-Lethal Concentrations of Biocides on the Structural Parameters and Viability of the Biofilms Formed by Salmonella Typhimurium. Foodborne Pathog Dis 2017; 14:350-356. [DOI: 10.1089/fpd.2016.2241] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Rosa Capita
- Department of Food Hygiene and Technology, University of León, León, Spain
- Institute of Food Science and Technology, University of León, León, Spain
| | - Laura Buzón-Durán
- Department of Food Hygiene and Technology, University of León, León, Spain
- Institute of Food Science and Technology, University of León, León, Spain
| | - Félix Riesco-Peláez
- Department of Electrical Engineering and Systems Engineering and Automatic Control, University of León, León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, University of León, León, Spain
- Institute of Food Science and Technology, University of León, León, Spain
| |
Collapse
|
45
|
Kremer PHC, Lees JA, Koopmans MM, Ferwerda B, Arends AWM, Feller MM, Schipper K, Valls Seron M, van der Ende A, Brouwer MC, van de Beek D, Bentley SD. Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis. Clin Microbiol Infect 2017; 23:265.e1-265.e7. [PMID: 27998823 PMCID: PMC5392494 DOI: 10.1016/j.cmi.2016.12.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/07/2016] [Accepted: 12/10/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Listeria monocytogenes is a food-borne pathogen that can cause meningitis. The listerial genotype ST6 has been linked to increasing rates of unfavourable outcome over time. We investigated listerial genetic variation and the relation with clinical outcome in meningitis. METHODS We sequenced 96 isolates from adults with listerial meningitis included in two prospective nationwide cohort studies by whole genome sequencing, and evaluated associations between bacterial genetic variation and clinical outcome. We validated these results by screening listerial genotypes of 445 cerebrospinal fluid and blood isolates from patients over a 30-year period from the Dutch national surveillance cohort. RESULTS We identified a bacteriophage, phiLMST6 co-occurring with a novel plasmid, pLMST6, in ST6 isolates to be associated with unfavourable outcome in patients (p 2.83e-05). The plasmid carries a benzalkonium chloride tolerance gene, emrC, conferring decreased susceptibility to disinfectants used in the food-processing industry. Isolates harbouring emrC were growth inhibited at higher levels of benzalkonium chloride (median 60 mg/L versus 15 mg/L; p <0.001), and had higher MICs for amoxicillin and gentamicin compared with isolates without emrC (both p <0.001). Transformation of pLMST6 into naive strains led to benzalkonium chloride tolerance and higher MICs for gentamicin. CONCLUSIONS These results show that a novel plasmid, carrying the efflux transporter emrC, is associated with increased incidence of ST6 listerial meningitis in the Netherlands. Suggesting increased disease severity, our findings warrant consideration of disinfectants used in the food-processing industry that select for resistance mechanisms and may, inadvertently, lead to increased risk of poor disease outcome.
Collapse
Affiliation(s)
- P H C Kremer
- Department of Neurology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - J A Lees
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - M M Koopmans
- Department of Neurology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - B Ferwerda
- Department of Neurology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - A W M Arends
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Centre/RIVM, University of Amsterdam, Amsterdam, The Netherlands
| | - M M Feller
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Centre/RIVM, University of Amsterdam, Amsterdam, The Netherlands
| | - K Schipper
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Centre/RIVM, University of Amsterdam, Amsterdam, The Netherlands
| | - M Valls Seron
- Department of Neurology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - A van der Ende
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Centre/RIVM, University of Amsterdam, Amsterdam, The Netherlands
| | - M C Brouwer
- Department of Neurology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - D van de Beek
- Department of Neurology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - S D Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
| |
Collapse
|
46
|
Poimenidou SV, Chrysadakou M, Tzakoniati A, Bikouli VC, Nychas GJ, Skandamis PN. Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds. Int J Food Microbiol 2016; 237:164-171. [PMID: 27585076 DOI: 10.1016/j.ijfoodmicro.2016.08.029] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/11/2016] [Accepted: 08/21/2016] [Indexed: 11/15/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen able to tolerate adverse conditions by forming biofilms or by deploying stress resistant mechanisms, and thus manages to survive for long periods in food processing plants. This study sought to investigate the correlation between biofilm forming ability, tolerance to disinfectants and cell surface characteristics of twelve L. monocytogenes strains. The following attributes were evaluated: (i) biofilm formation by crystal violet staining method on polystyrene, and by standard cell enumeration on stainless steel and polystyrene; (ii) hydrophobicity assay using solvents; (iii) minimum inhibitory concentration (MIC) and biofilm eradication concentration (BEC) of peracetic acid (PAA) and quaternary ammonium compounds (QACs), and (iv) resistance to sanitizers (PAA 2000ppm; QACs 500ppm) of biofilms on polystyrene and stainless steel. After 72h of incubation, higher biofilm levels were formed in TSB at 20°C, followed by TSB at 37°C (P=0.087) and diluted TSB 1/10 at both 20 (P=0.005) and 37°C (P=0.004). Cells grown at 30°C to the stationary phase had significant electron donating nature and a low hydrophobicity, while no significant correlation of cell surface properties to biofilm formation was observed. Strains differed in MICPAA and BECPAA by 24- and 15-fold, respectively, while a positive correlation between MICPAA and BECPAA was observed (P=0.02). The MICQACs was positively correlated with the biofilm-forming ability on stainless steel (P=0.03). Regarding the impact of surface type, higher biofilm populations were enumerated on polystyrene than on stainless steel, which were also more tolerant to disinfectants. Among all strains, the greatest biofilm producer was a persistent strain with significant tolerance to QACs. These results may contribute to better understanding of L. monocytogenes behavior and survival on food processing surfaces.
Collapse
Affiliation(s)
- Sofia V Poimenidou
- Laboratory of Food Quality and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Marilena Chrysadakou
- Laboratory of Food Quality and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Aikaterini Tzakoniati
- Laboratory of Food Quality and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Vasiliki C Bikouli
- Laboratory of Food Quality and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - George-John Nychas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
47
|
Martínez-Suárez JV, Ortiz S, López-Alonso V. Potential Impact of the Resistance to Quaternary Ammonium Disinfectants on the Persistence of Listeria monocytogenes in Food Processing Environments. Front Microbiol 2016; 7:638. [PMID: 27199964 PMCID: PMC4852299 DOI: 10.3389/fmicb.2016.00638] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
The persistence of certain strains of Listeria monocytogenes, even after the food processing environment has been cleaned and disinfected, suggests that this may be related to phenomena that reduce the concentration of the disinfectants to subinhibitory levels. This includes (i) the existence of environmental niches or reservoirs that are difficult for disinfectants to reach, (ii) microorganisms that form biofilms and create microenvironments in which adequate concentrations of disinfectants cannot be attained, and (iii) the acquisition of resistance mechanisms in L. monocytogenes, including those that lead to a reduction in the intracellular concentration of the disinfectants. The only available data with regard to the resistance of L. monocytogenes to disinfectants applied in food production environments refer to genotypic resistance to quaternary ammonium compounds (QACs). Although there are several well-characterized efflux pumps that confer resistance to QACs, it is a low-level resistance that does not generate resistance to QACs at the concentrations applied in the food industry. However, dilution in the environment and biodegradation result in QAC concentration gradients. As a result, the microorganisms are frequently exposed to subinhibitory concentrations of QACs. Therefore, the low-level resistance to QACs in L. monocytogenes may contribute to its environmental adaptation and persistence. In fact, in certain cases, the relationship between low-level resistance and the environmental persistence of L. monocytogenes in different food production chains has been previously established. The resistant strains would have survival advantages in these environments over sensitive strains, such as the ability to form biofilms in the presence of increased biocide concentrations.
Collapse
Affiliation(s)
- Joaquín V. Martínez-Suárez
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Sagrario Ortiz
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
48
|
Buffet-Bataillon S, Tattevin P, Maillard JY, Bonnaure-Mallet M, Jolivet-Gougeon A. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria. Future Microbiol 2016; 11:81-92. [DOI: 10.2217/fmb.15.131] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biocides, primarily those containing quaternary ammonium compounds (QAC), are heavily used in hospital environments and various industries (e.g., food, water, cosmetic). To date, little attention has been paid to potential implications of QAC use in the emergence of antibiotic resistance, especially fluoroquinolone-resistant bacteria in patients and in the environment. QAC-induced overexpression of efflux pumps can lead to: cross resistance with fluoroquinolones mediated by multidrug efflux pumps; stress response facilitating mutation in the Quinolone Resistance Determining Region; and biofilm formation increasing the risk of transfer of mobile genetic elements carrying fluoroquinolone or QAC resistance determinants. By following the European Biocidal Product Regulation, manufacturers of QAC are required to ensure that their QAC-based biocidal products are safe and will not contribute to emerging bacterial resistance.
Collapse
Affiliation(s)
| | - Pierre Tattevin
- Service des Maladies Infectieuses, Pontchaillou, 35043 Rennes, France
- INSERM U835, Université de Rennes 1, 35000 Rennes, France
| | - Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Martine Bonnaure-Mallet
- EA 1254 Microbiologie, Université de Rennes 1, 35000 Rennes, France
- Pôle Odontologie, Teaching Hospital, 35043 Rennes, France
| | - Anne Jolivet-Gougeon
- Pôle Biologie, Teaching Hospital Pontchaillou, 35043 Rennes, France
- EA 1254 Microbiologie, Université de Rennes 1, 35000 Rennes, France
| |
Collapse
|
49
|
Lou Y, Liu H, Zhang Z, Pan Y, Zhao Y. Mismatch between antimicrobial resistance phenotype and genotype of pathogenic Vibrio parahaemolyticus isolated from seafood. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.04.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Phenotypic and genotypic characteristics of Listeria monocytogenes strains isolated during 2011–2014 from different food matrices in Switzerland. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.04.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|