1
|
Jeong E, Lim JY, Seo JA. Mycological and Genomic Characterization of Fusarium vorosii, a Potentially Pathogenic Fungus, Isolated from Field Crops and Weeds in Korea. THE PLANT PATHOLOGY JOURNAL 2024; 40:656-670. [PMID: 39639669 PMCID: PMC11626032 DOI: 10.5423/ppj.oa.08.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024]
Abstract
Fusarium vorosii (Fv) is one of the least studied species of the Fusarium graminearum species complex, a major plant pathogen causing Fusarium head blight (FHB) in a variety of crops. In this study, we isolated 12 strains of Fv from cereal samples with FHB symptoms and gramineous weeds. Trichothecene genotyping of Fv strains showed that 10 strains were nivalenol (NIV) type and 2 strains were 15-acetyldeoxynivalenol (15ADON) type. Fv strains have similar mycological characteristics to Fusarium asiaticum, a major FHB pathogen of rice in Asia, however, asexual sporulation was at least 100 to 1,000 times higher in Fv. In comparison of pathogenicity, the Fv-15ADON type was more pathogenic than the NIV type in both rice and wheat, and had a similar level of pathogenicity as the F. asiaticum-NIV type. Among the 12 Fv strains, two representative ones, Fv-NIV type RN1 and Fv-15ADON type W15A1, were selected and their whole genomes were sequenced and analyzed. Complete genome sequences of two Fv strains, RN1 and W15A1, were assembled at the chromosome level with high quality compared to known Fv genomes. The genome data of the two Fv strains were compared with the reference strains already known. As a result of comparative genome analysis, it was found that they are phylogenetically related according to the trichothecene biosynthetic gene cluster, that is, toxin chemotype. Through this study, we provided important information about Fv species that can be potential pathogens in domestic crops about biological and genomic characteristics.
Collapse
Affiliation(s)
- Eunji Jeong
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
2
|
Kulik T, Molcan T, Fiedorowicz G, van Diepeningen A, Stakheev A, Treder K, Olszewski J, Bilska K, Beyer M, Pasquali M, Stenglein S. Whole-genome single nucleotide polymorphism analysis for typing the pandemic pathogen Fusarium graminearum sensu stricto. Front Microbiol 2022; 13:885978. [PMID: 35923405 PMCID: PMC9339996 DOI: 10.3389/fmicb.2022.885978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recent improvements in microbiology and molecular epidemiology were largely stimulated by whole- genome sequencing (WGS), which provides an unprecedented resolution in discriminating highly related genetic backgrounds. WGS is becoming the method of choice in epidemiology of fungal diseases, but its application is still in a pioneer stage, mainly due to the limited number of available genomes. Fungal pathogens often belong to complexes composed of numerous cryptic species. Detecting cryptic diversity is fundamental to understand the dynamics and the evolutionary relationships underlying disease outbreaks. In this study, we explore the value of whole-genome SNP analyses in identification of the pandemic pathogen Fusarium graminearum sensu stricto (F.g.). This species is responsible for cereal diseases and negatively impacts grain production worldwide. The fungus belongs to the monophyletic fungal complex referred to as F. graminearum species complex including at least sixteen cryptic species, a few among them may be involved in cereal diseases in certain agricultural areas. We analyzed WGS data from a collection of 99 F.g. strains and 33 strains representing all known cryptic species belonging to the FGSC complex. As a first step, we performed a phylogenomic analysis to reveal species-specific clustering. A RAxML maximum likelihood tree grouped all analyzed strains of F.g. into a single clade, supporting the clustering-based identification approach. Although, phylogenetic reconstructions are essential in detecting cryptic species, a phylogenomic tree does not fulfill the criteria for rapid and cost-effective approach for identification of fungi, due to the time-consuming nature of the analysis. As an alternative, analysis of WGS information by mapping sequence data from individual strains against reference genomes may provide useful markers for the rapid identification of fungi. We provide a robust framework for typing F.g. through the web-based PhaME workflow available at EDGE bioinformatics. The method was validated through multiple comparisons of assembly genomes to F.g. reference strain PH-1. We showed that the difference between intra- and interspecies variability was at least two times higher than intraspecific variation facilitating successful typing of F.g. This is the first study which employs WGS data for typing plant pathogenic fusaria.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- *Correspondence: Tomasz Kulik,,
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAN), Warsaw, Poland
| | - Grzegorz Fiedorowicz
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anne van Diepeningen
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Alexander Stakheev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kinga Treder
- Department of Agriculture Systems, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marco Beyer
- Agro-Environmental Systems, Environmental Monitoring and Sensing Unit, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sebastian Stenglein
- National Scientific and Technical Research Council, Godoy Cruz, Argentina
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| |
Collapse
|
3
|
Fonseca PLC, De-Paula RB, Araújo DS, Tomé LMR, Mendes-Pereira T, Rodrigues WFC, Del-Bem LE, Aguiar ERGR, Góes-Neto A. Global Characterization of Fungal Mitogenomes: New Insights on Genomic Diversity and Dynamism of Coding Genes and Accessory Elements. Front Microbiol 2021; 12:787283. [PMID: 34925295 PMCID: PMC8672057 DOI: 10.3389/fmicb.2021.787283] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023] Open
Abstract
Fungi comprise a great diversity of species with distinct ecological functions and lifestyles. Similar to other eukaryotes, fungi rely on interactions with prokaryotes and one of the most important symbiotic events was the acquisition of mitochondria. Mitochondria are organelles found in eukaryotic cells whose main function is to generate energy through aerobic respiration. Mitogenomes (mtDNAs) are double-stranded circular or linear DNA from mitochondria that may contain core genes and accessory elements that can be replicated, transcribed, and independently translated from the nuclear genome. Despite their importance, investigative studies on the diversity of fungal mitogenomes are scarce. Herein, we have evaluated 788 curated fungal mitogenomes available at NCBI database to assess discrepancies and similarities among them and to better understand the mechanisms involved in fungal mtDNAs variability. From a total of 12 fungal phyla, four do not have any representative with available mitogenomes, which highlights the underrepresentation of some groups in the current available data. We selected representative and non-redundant mitogenomes based on the threshold of 90% similarity, eliminating 81 mtDNAs. Comparative analyses revealed considerable size variability of mtDNAs with a difference of up to 260 kb in length. Furthermore, variation in mitogenome length and genomic composition are generally related to the number and length of accessory elements (introns, HEGs, and uORFs). We identified an overall average of 8.0 (0–39) introns, 8.0 (0–100) HEGs, and 8.2 (0–102) uORFs per genome, with high variation among phyla. Even though the length of the core protein-coding genes is considerably conserved, approximately 36.3% of the mitogenomes evaluated have at least one of the 14 core coding genes absent. Also, our results revealed that there is not even a single gene shared among all mitogenomes. Other unusual genes in mitogenomes were also detected in many mitogenomes, such as dpo and rpo, and displayed diverse evolutionary histories. Altogether, the results presented in this study suggest that fungal mitogenomes are diverse, contain accessory elements and are absent of a conserved gene that can be used for the taxonomic classification of the Kingdom Fungi.
Collapse
Affiliation(s)
- Paula L C Fonseca
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Ruth B De-Paula
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Daniel S Araújo
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, United States
| | - Luiz Marcelo Ribeiro Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thairine Mendes-Pereira
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Luiz-Eduardo Del-Bem
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Botany, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eric R G R Aguiar
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Żelechowski M, Molcan T, Bilska K, Myszczyński K, Olszewski J, Karpiesiuk K, Wyrębek J, Kulik T. Patterns of Diversity of Fusarium Fungi Contaminating Soybean Grains. Toxins (Basel) 2021; 13:884. [PMID: 34941721 PMCID: PMC8706617 DOI: 10.3390/toxins13120884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Soybean is an important, high protein source of food and feed. However, like other agricultural grains, soybean may pose a risk to human and animal health due to contamination of the grains with toxigenic Fusaria and associated mycotoxins. In this study, we investigated the diversity of Fusaria on a panel of 104 field isolates obtained from soybean grains during the growing seasons in 2017-2020. The results of species-specific PCR analyses showed that Fusarium avenaceum was the most common (n = 40) species associated with soybean grains in Poland, followed by F. equiseti (n = 22) and F. sporotrichioides (11 isolates). A set of isolates, which was not determined based on PCR analyses, was whole genome sequenced. Multiple sequence analyses using tef-1α, top1, rpb1, rpb2, tub2, pgk, cam and lsu genes showed that most of them belonged to Equiseti clade. Three cryptic species from this clade: F. clavum, F. flagelliforme and FIESC 31 (lacking Latin binomial) were found on soybean for the first time. This is the first report demonstrating the prevalence of Fusaria on soybean grains in Poland.
Collapse
Affiliation(s)
- Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106 Warsaw, Poland;
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Jacek Olszewski
- Experimental Education Unit, Oczapowskiego 8, 10-719 Olsztyn, Poland;
| | - Krzysztof Karpiesiuk
- Department of Pig Breeding, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Joanna Wyrębek
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| |
Collapse
|
5
|
Wyrębek J, Molcan T, Myszczyński K, van Diepeningen AD, Stakheev AA, Żelechowski M, Bilska K, Kulik T. Uncovering Diagnostic Value of Mitogenome for Identification of Cryptic Species Fusarium graminearum Sensu Stricto. Front Microbiol 2021; 12:714651. [PMID: 34531839 PMCID: PMC8439580 DOI: 10.3389/fmicb.2021.714651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Fungal complexes are often composed of morphologically nearly indistinguishable species with high genetic similarity. However, despite their close relationship, they can exhibit distinct phenotypic differences in pathogenicity and production of mycotoxins. Many plant pathogenic and toxigenic fungi have been shown to consist of such cryptic species. Identification of cryptic species in economically important pathogens has added value in epidemiologic studies and provides opportunities for better control. Analysis of mitochondrial genomes or mitogenomics opens up dimensions for improved diagnostics of fungi, especially when efficient recovery of DNA is problematic. In comparison to nuclear DNA, mitochondrial DNA (mtDNA) can be amplified with improved efficacy due to its multi-copy nature. However, to date, only a few studies have demonstrated the usefulness of mtDNA for identification of cryptic species within fungal complexes. In this study, we explored the value of mtDNA for identification of one of the most important cereal pathogens Fusarium graminearum sensu stricto (F.g.). We found that homing endonucleases (HEGs), which are widely distributed in mitogenomes of fungi, display small indel polymorphism, proven to be potentially species specific. The resulting small differences in their lengths may facilitate further differentiation of F.g. from the other cryptic species belonging to F. graminearum species complex. We also explored the value of SNP analysis of the mitogenome for typing F.g. The success in identifying F.g. strains was estimated at 96%, making this tool an attractive complement to other techniques for identification of F.g.
Collapse
Affiliation(s)
- Joanna Wyrębek
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Alexander A Stakheev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
6
|
Kulik T, Brankovics B, van Diepeningen AD, Bilska K, Żelechowski M, Myszczyński K, Molcan T, Stakheev A, Stenglein S, Beyer M, Pasquali M, Sawicki J, Wyrȩbek J, Baturo-Cieśniewska A. Diversity of Mobile Genetic Elements in the Mitogenomes of Closely Related Fusarium culmorum and F. graminearum sensu stricto Strains and Its Implication for Diagnostic Purposes. Front Microbiol 2020; 11:1002. [PMID: 32528440 PMCID: PMC7263005 DOI: 10.3389/fmicb.2020.01002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Much of the mitogenome variation observed in fungal lineages seems driven by mobile genetic elements (MGEs), which have invaded their genomes throughout evolution. The variation in the distribution and nucleotide diversity of these elements appears to be the main distinction between different fungal taxa, making them promising candidates for diagnostic purposes. Fungi of the genus Fusarium display a high variation in MGE content, from MGE-poor (Fusarium oxysporum and Fusarium fujikuroi species complex) to MGE-rich mitogenomes found in the important cereal pathogens F. culmorum and F. graminearum sensu stricto. In this study, we investigated the MGE variation in these latter two species by mitogenome analysis of geographically diverse strains. In addition, a smaller set of F. cerealis and F. pseudograminearum strains was included for comparison. Forty-seven introns harboring from 0 to 3 endonucleases (HEGs) were identified in the standard set of mitochondrial protein-coding genes. Most of them belonged to the group I intron family and harbored either LAGLIDADG or GIY-YIG HEGs. Among a total of 53 HEGs, 27 were shared by all fungal strains. Most of the optional HEGs were irregularly distributed among fungal strains/species indicating ancestral mosaicism in MGEs. However, among optional MGEs, one exhibited species-specific conservation in F. culmorum. While in F. graminearum s.s. MGE patterns in cox3 and in the intergenic spacer between cox2 and nad4L may facilitate the identification of this species. Thus, our results demonstrate distinctive traits of mitogenomes for diagnostic purposes of Fusaria.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Balazs Brankovics
- Biointeractions & Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | | | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Myszczyński
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.,Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Alexander Stakheev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sebastian Stenglein
- National Scientific and Technical Research Council, Godoy Cruz, Argentina.,Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Marco Beyer
- Department of Environmental Research and Innovation, Agro-Environmental Systems, Luxembourg Institute of Science and Technology, Belval, Luxembourg
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Jakub Sawicki
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Wyrȩbek
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Baturo-Cieśniewska
- Laboratory of Phytopathology and Molecular Mycology, Department of Biology and Plant Protection, UTP University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
7
|
Monteiro J, Videira A, Pereira F. Quantification of Neurospora crassa mitochondrial DNA using quantitative real-time PCR. Lett Appl Microbiol 2020; 71:171-178. [PMID: 32270506 DOI: 10.1111/lam.13294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/26/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
The filamentous fungus Neurospora crassa is a popular model organism used in a wide range of biochemical and genetic studies and vastly used in mitochondrial research. Despite the relevance of mitochondria in N. crassa biology, no method for quantification of mitochondrial DNA (mtDNA) is currently available. Quantitative real-time PCR (qPCR) is a powerful tool, with a wide range of applications, and has been used for the quantification of nucleic acids in humans and a few other species. Here we present a new qPCR assay for relative quantification of N. crassa mtDNA. Three sets of qPCR primers targeting different regions of the mitochondrial genome were tested for mtDNA quantification. The qPCR was successfully validated in N. crassa strains from different geographical locations, representing the vast genetic diversity of this species, and knockout mutant strains. Moreover the assay proved to be efficient in templates with varied amounts of mitochondria, obtained through different DNA extraction methods. The qPCR performed well in all tested samples revealing a higher amount of mtDNA than nuclear DNA in all cases. This technique will facilitate the characterization of mtDNA of N. crassa in future studies and can be used as a tool to validate methods of mitochondria isolation. SIGNIFICANCE AND IMPACT OF THE STUDY: The standardization of quantitative real-time PCR (qPCR) techniques is essential to enable and facilitate future comparisons. Neurospora crassa is a model organism with a lot of potential in different fields of study. Here we use N. crassa to develop and establish an assay to quantify mitochondrial DNA using qPCR. We tested strains with different geographical background and our data demonstrated the usefulness of this assay to quantify mitochondrial DNA in N. crassa. This technique can be useful in a wide variety of applications and in different types of studies.
Collapse
Affiliation(s)
- J Monteiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - A Videira
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - F Pereira
- IDENTIFICA, Science and Technology Park of the University of Porto - UPTEC, Porto, Portugal
| |
Collapse
|
8
|
Kulik T, Bilska K, Żelechowski M. Promising Perspectives for Detection, Identification, and Quantification of Plant Pathogenic Fungi and Oomycetes through Targeting Mitochondrial DNA. Int J Mol Sci 2020; 21:E2645. [PMID: 32290169 PMCID: PMC7177237 DOI: 10.3390/ijms21072645] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Fungi and oomycetes encompass many pathogens affecting crops worldwide. Their effective control requires screening pathogens across the local and international trade networks along with the monitoring of pathogen inocula in the field. Fundamentals to all of these concerns are their efficient detection, identification, and quantification. The use of molecular markers showed the best promise in the field of plant pathogen diagnostics. However, despite the unquestionable benefits of DNA-based methods, two significant limitations are associated with their use. The first limitation concerns the insufficient level of sensitivity due to the very low and uneven distribution of pathogens in plant material. The second limitation pertains to the inability of widely used diagnostic assays to detect cryptic species. Targeting mtDNA appears to provide a solution to these challenges. Its high copy number in microbial cells makes mtDNA an attractive target for developing highly sensitive assays. In addition, previous studies on different pathogen taxa indicated that mitogenome sequence variation could improve cryptic species delimitation accuracy. This review sheds light on the potential application of mtDNA for pathogen diagnostics. This paper covers a brief description of qPCR and DNA barcoding as two major strategies enabling the diagnostics of plant pathogenic fungi and oomycetes. Both strategies are discussed along with the potential use of mtDNA, including their strengths and weaknesses.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| |
Collapse
|
9
|
A Preliminary Survey of Cultured Fusaria from Symptomatic Legume Grains in North-Eastern Poland. Toxins (Basel) 2019; 11:toxins11100569. [PMID: 31569459 PMCID: PMC6832508 DOI: 10.3390/toxins11100569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 11/30/2022] Open
Abstract
Legumes are amongst the most promising crops to satisfy the increasing demand for protein-rich food and feed. Today, however, their cultivation in Europe is low, while European agriculture faces a deficit of protein-rich feed, of which the largest part is met by imported soybean. It has been suggested that some legumes can at least partially substitute for soybean in different types of feed. Despite their benefits, legumes may also remain a significant concern to human and animal health, especially regarding grain contamination with Fusaria and their mycotoxins. In this study, we determined the species composition of Fusarium field isolates recovered from diseased grains of various legumes. Our results showed that Fusarium avenaceum was mainly responsible for grain deterioration of common vetch, faba bean, and blue lupine. Besides, we found that F. equiseti also appeared to be a major pathogen of common vetch. This study is the first ever to report common vetch as a host for F. tricinctum, F. equiseti, and F. graminearum sensu stricto. Our results indicate that the composition of toxigenic Fusaria associated with grains of legumes is different than that previously observed in cereal grains.
Collapse
|
10
|
Correlations between the textural features of wheat kernels and the quantity of DNA of Fusarium fungi. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03240-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Bilska K, Jurczak S, Kulik T, Ropelewska E, Olszewski J, Żelechowski M, Zapotoczny P. Species Composition and Trichothecene Genotype Profiling of Fusarium Field Isolates Recovered from Wheat in Poland. Toxins (Basel) 2018; 10:E325. [PMID: 30103473 PMCID: PMC6115980 DOI: 10.3390/toxins10080325] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022] Open
Abstract
Fusarium head blight (FHB) of cereals is the major head disease negatively affecting grain production worldwide. In 2016 and 2017, serious outbreaks of FHB occurred in wheat crops in Poland. In this study, we characterized the diversity of Fusaria responsible for these epidemics using TaqMan assays. From a panel of 463 field isolates collected from wheat, four Fusarium species were identified. The predominant species were F. graminearum s.s. (81%) and, to a lesser extent, F. avenaceum (15%). The emergence of the 15ADON genotype was found ranging from 83% to 87% of the total trichothecene genotypes isolated in 2016 and 2017, respectively. Our results indicate two dramatic shifts within fungal field populations in Poland. The first shift is associated with the displacement of F. culmorum by F. graminearum s.s. The second shift resulted from a loss of nivalenol genotypes. We suggest that an emerging prevalence of F. graminearum s.s. may be linked to boosted maize production, which has increased substantially over the last decade in Poland. To detect variation within Tri core clusters, we compared sequence data from randomly selected field isolates with a panel of strains from geographically diverse origins. We found that the newly emerged 15ADON genotypes do not exhibit a specific pattern of polymorphism enabling their clear differentiation from the other European strains.
Collapse
Affiliation(s)
- Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland.
| | - Sebastian Jurczak
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland.
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland.
| | - Ewa Ropelewska
- Department of Systems Engineering, Faculty of Engineering, University of Warmia and Mazury in Olsztyn, Heweliusza 14, 10-718 Olsztyn, Poland.
| | - Jacek Olszewski
- Experimental Education Unit, Oczapowskiego 8, 10-719 Olsztyn, Poland.
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland.
| | - Piotr Zapotoczny
- Department of Systems Engineering, Faculty of Engineering, University of Warmia and Mazury in Olsztyn, Heweliusza 14, 10-718 Olsztyn, Poland.
| |
Collapse
|
12
|
Bilska K, Kulik T, Ostrowska-Kołodziejczak A, Buśko M, Pasquali M, Beyer M, Baturo-Cieśniewska A, Juda M, Załuski D, Treder K, Denekas J, Perkowski J. Development of a Highly Sensitive FcMito qPCR Assay for the Quantification of the Toxigenic Fungal Plant Pathogen Fusarium culmorum. Toxins (Basel) 2018; 10:E211. [PMID: 29883395 PMCID: PMC5983267 DOI: 10.3390/toxins10050211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/03/2023] Open
Abstract
Fusarium culmorum is a ubiquitous, soil-borne fungus (ascomycete) causing foot and root rot and Fusarium head blight on cereals. It is responsible for yield and quality losses as well as grain contamination with mycotoxins, which are a potential health hazard. An extremely sensitive mitochondrial-based qPCR assay (FcMito qPCR) for quantification of F. culmorum was developed in this study. To provide specificity, the FcMito assay was successfully validated against 85 F. culmorum strains and 53 isolates of 30 other fungal species. The assay efficiency and sensitivity were evaluated against different F. culmorum strains with various amounts of pure fungal DNA and in the presence of background wheat DNA. The results demonstrated the high efficiency of the assay (97.2⁻106.0%, R²-values > 0.99). It was also shown that, in the presence of background DNA, 0.01 pg of fungal template could be reliably quantified. The FcMito assay was used to quantify F. culmorum DNA using 108 grain samples with different trichothecene levels. A significant positive correlation was found between fungal DNA quantity and the total trichothecene content. The obtained results showed that the sensitivity of the FcMito assay was much higher than the nuclear-based qPCR assay for F. culmorum.
Collapse
Affiliation(s)
- Katarzyna Bilska
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Tomasz Kulik
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | | | - Maciej Buśko
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland.
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, via Celoria 2, 20133 Milano, Italy.
| | - Marco Beyer
- Department Environmental Research and Innovation, Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Anna Baturo-Cieśniewska
- Faculty of Agriculture and Biotechnology, Department of Phytopathology and Molecular Mycology, University of Technology and Life Sciences, Kordeckiego St. 20, 85-225 Bydgoszcz, Poland.
| | - Marcin Juda
- Faculty of Agriculture and Biotechnology, Department of Phytopathology and Molecular Mycology, University of Technology and Life Sciences, Kordeckiego St. 20, 85-225 Bydgoszcz, Poland.
| | - Dariusz Załuski
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| | - Kinga Treder
- Department of Agroecosystems, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| | - Joerg Denekas
- Agravis Technik Heide-Altmark GmbH, Hansestrasse 30, 29525 Uelzen, Germany.
| | - Juliusz Perkowski
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland.
| |
Collapse
|