1
|
Heckler C, Vale MG, Canales HDS, Stradiotto GC, Giordano ALPL, Schreiber AZ, Sant'Ana AS. Spore-forming bacteria in gelatin: Characterization, identification by 16S rRNA and MALDI-TOF mass spectrometry (MS), and presence of heat resistance and virulence genes. Int J Food Microbiol 2024; 422:110813. [PMID: 38970997 DOI: 10.1016/j.ijfoodmicro.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Gelatin, a versatile protein derived from collagen, is widely used in the food, pharmaceutical and medical sectors. However, bacterial contamination by spore-forming bacteria during gelatin processing represents a significant concern for product safety and quality. In this study, an investigation was carried out to explore the heat and chemical resistance, as well as the identification and characterization of spore-forming bacteria isolated from gelatin processing. The methodologies involved chemical resistance tests with drastic pH in microplates and thermal resistance tests in capillary tubes of various isolates obtained at different processing stages. In addition, phenotypic and genotypic analyses were carried out to characterize the most resistant isolates of spore-forming bacteria. The findings of this study revealed the presence of several species, including Bacillus cereus, Bacillus licheniformis, Bacillus sonorensis, Bacillus subtilis, Geobacillus stearothermophilus, and Clostridium sporogenes, with some isolates exhibiting remarkable chemical and heat resistances. In addition, a significant proportion of the most resistant isolates showed gelatinase activity (n = 19/21; 90.5 %) and the presence of heat resistance (n = 5/21; 23.8 %), and virulence genes (n = 11/21; 52.4 %). The results of this study suggest that interventions should be done in quality control practices and that process parameter adjustments and effective contamination reduction strategies should be implemented through gelatin processing.
Collapse
Affiliation(s)
- Caroline Heckler
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Matheus G Vale
- Department of Integrated Systems, Faculty of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Héctor D S Canales
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Graziele C Stradiotto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Luisa P L Giordano
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Angelica Z Schreiber
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Delaunay L, Postollec F, Leguérinel I, Mathot AG. Detection of risk areas in dairy powder processes: The development of thermophilic spore forming bacteria taking into account their growth limits. Int J Food Microbiol 2024; 418:110716. [PMID: 38669747 DOI: 10.1016/j.ijfoodmicro.2024.110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anoxybacillus flavithermus, Geobacillus stearothermophilus and Bacillus licheniformis are the main contaminants found in dairy powders. These spore-forming thermophilic bacteria, rarely detected in raw milk, persist, and grow during the milk powder manufacturing process. Moreover, in the form of spores, these species resist and concentrate in the powders during the processes. The aim of this study was to determine the stages of the dairy powder manufacturing processes that are favorable to the growth of such contaminants. A total of 5 strains were selected for each species as a natural contaminant of dairy pipelines in order to determine the minimum and maximum growth enabling values for temperature, pH, and aw and their optimum growth rates in milk. These growth limits were combined with the environmental conditions of temperature, pH and aw encountered at each step of the manufacture of whole milk, skim milk and milk protein concentrate powders to estimate growth capacities using cardinal models and the Gamma concept. These simulations were used to theoretically calculate the population sizes reached for the different strains studied at each stage in between two successive cleaning in place procedures. This approach highlights the stages at which risk occurs for the development of spore-forming thermophilic bacterial species. During the first stages of production, i.e. pre-treatment, pasteurization, standardization and pre-heating before concentration, physico-chemical conditions encountered are suitable for the development and growth of A. flavithermus, G. stearothermophilus and B. licheniformis. During the pre-heating stage and during the first effects in the evaporators, the temperature conditions appear to be the most favorable for the growth of G. stearothermophilus. The temperatures in the evaporator during the last evaporator effects are favorable for the growth of B. licheniformis. In the evaporation stage, low water activity severely limits the development of A. flavithermus.
Collapse
Affiliation(s)
- Louis Delaunay
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29000 Quimper, France
| | - Florence Postollec
- ADRIA Food Technology Institute, UMT ACTIA 19.03 ALTER'iX, Z.A. de Creac'h Gwen, 29196, Quimper, Cedex, France
| | - Ivan Leguérinel
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29000 Quimper, France.
| | - Anne-Gabrielle Mathot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29000 Quimper, France
| |
Collapse
|
3
|
Hongchao D, Ma L, Xu Z, Soteyome T, Yuan L, Yang Z, Jiao XA. Invited review: Role of Bacillus licheniformis in the dairy industry- friends or foes? J Dairy Sci 2024:S0022-0302(24)00904-4. [PMID: 38851582 DOI: 10.3168/jds.2024-24826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Bacillus licheniformis is one of the major spore-forming bacteria with great genotypic diversity in raw milk, dairy ingredients, final dairy products, and is found throughout the dairy processing continuum. Though being widely used as a probiotic strain, this species also serves as a potential risk in the dairy industry based on its roles in foodborne illness and dairy spoilage. Biofilm formation of B. licheniformis in combined with the heat resistance of its spores, make it impossible to prevent the presence of B. licheniformis in final dairy products by traditional cleaning and disinfection procedures. Despite the extensive efforts on the identification of B. licheniformis from various dairy samples, no reviews have been reported on both hazard and benefits of this spore-former. This review discusses the prevalence of B. licheniformis from raw milk to commercial dairy products, biofilm formation and spoilage potential of B. licheniformis, and its potential prevention methods. In addition, the potential benefits of B. licheniformis in the dairy industry were also summarized.
Collapse
Affiliation(s)
- Dai Hongchao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China
| | - Lili Ma
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China.
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China
| |
Collapse
|
4
|
Misiou O, Ellouze M, Koutsoumanis K. Cardinal models to describe the effect of temperature and pH on the growth of Anoxybacillus flavithermus & Bacillus licheniformis. Food Microbiol 2023; 112:104230. [PMID: 36906302 DOI: 10.1016/j.fm.2023.104230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Anoxybacillus flavithermus and Bacillus licheniformis are among the predominant spore-formers of heat-processed foods. To our knowledge, no systematic analysis of growth kinetic data of A. flavithermus or B. licheniformis is currently available. In the present study, the growth kinetics of A. flavithermus and B. licheniformis in broth at various temperature and pH conditions were studied. Cardinal models were used to model the effect of the above-mentioned factors on the growth rates. The estimated values for the cardinal parameters Tmin,Topt,Tmax,pHmin and pH1/2 for A. flavithermus were 28.70 ± 0.26, 61.23 ± 0.16 and 71.52 ± 0.32 °C, 5.52 ± 0.01 and 5.73 ± 0.01, respectively, while for B. licheniformis they were 11.68 ± 0.03, 48.05 ± 0.15, 57.14 ± 0.01 °C, 4.71 ± 0.01 and 5.670 ± 0.08, respectively. The growth behaviour of these spoilers was also investigated in a pea beverage at 62 and 49 °C, respectively, to adjust the models to this product. The adjusted models were further validated at static and dynamic conditions and demonstrated good performance with 85.7 and 97.4% of predicted populations for A. flavithermus and B. licheniformis, respectively, being within the -10%-10% relative error (RE) zone. The developed models can be useful tools in assessing the potential of spoilage of heat-processed foods including plant-based milk alternatives.
Collapse
Affiliation(s)
- Ourania Misiou
- Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Mariem Ellouze
- Food Safety Research Department, Nestlé Research, PO BOX44, CH-1000 Lausanne 26, Switzerland
| | - Konstantinos Koutsoumanis
- Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
5
|
Sadiq FA, De Reu K, Burmølle M, Maes S, Heyndrickx M. Synergistic interactions in multispecies biofilm combinations of bacterial isolates recovered from diverse food processing industries. Front Microbiol 2023; 14:1159434. [PMID: 37125177 PMCID: PMC10133454 DOI: 10.3389/fmicb.2023.1159434] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Most biofilms within the food industry are formed by multiple bacterial species which co-exist on surfaces as a result of interspecies interactions. These ecological interactions often make these communities tolerant against antimicrobials. Our previous work led to the identification of a large number (327) of highly diverse bacterial species on food contact surfaces of the dairy, meat, and egg industries after routine cleaning and disinfection (C&D) regimes. In the current study, biofilm-forming ability of 92 bacterial strains belonging to 26 genera and 42 species was assessed and synergistic interactions in biofilm formation were investigated by coculturing species in all possible four-species combinations. Out of the total 455 four-species biofilm combinations, greater biofilm mass production, compared to the sum of biofilm masses of individual species in monoculture, was observed in 34 combinations. Around half of the combinations showed synergy in biofilm mass > 1.5-fold and most of the combinations belonged to dairy strains. The highest synergy (3.13-fold) was shown by a combination of dairy strains comprising Stenotrophomonas rhizophila, Bacillus licheniformis, Microbacterium lacticum, and Calidifontibacter indicus. The observed synergy in mixed biofilms turned out to be strain-specific rather than species-dependent. All biofilm combinations showing remarkable synergy appeared to have certain common species in all combinations which shows there are keystone industry-specific bacterial species which stimulate synergy or antagonism and this may have implication for biofilm control in the concerned food industries.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Faizan Ahmed Sadiq,
| | - Koen De Reu
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sharon Maes
- The Department of Ecotechnology and Sustainable Building Engineering, Mid Sweden University, Östersund, Sweden
| | - Marc Heyndrickx
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- *Correspondence: Marc Heyndrickx,
| |
Collapse
|
6
|
Radwan AA, Darwesh OM, Emam MT, Mohamed KA, Shady HMA. A combined treatment of Proteinase K and biosynthesized ZnO-NPs for eradication of dairy biofilm of sporeformers. AIMS Microbiol 2022; 8:507-527. [PMID: 36694584 PMCID: PMC9834087 DOI: 10.3934/microbiol.2022033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Biofilms of sporeformers found in the dairy industry are the major contaminants during processing, as they withstand heat and chemical treatment that are used to control microbes. The present work is aimed to remove these resistant forms of bacterial community (biofilm) present in dairy production lines using ecofriendly agents based on proteinase K (Prot-K) coupled with Zinc oxide nanoparticles (ZnO-NPs). Some metal/metal oxide (Ag, CuO and ZnO) NPs were prepared microbially, and ZnO-NPs were characterized as the most effective ones among them. The produced ZnO-NPs were 15-25 nm in size with spherical shape, and FTIR analysis confirmed the presence of proteins and alkanes surrounding particles as capping agents. Application of Prot-K for eradication (removal) of a model biofilm of mixed sporeformers on food-grade stainless steel resulted in an 83% reduction in the absorbance of crystal violet-stained biofilm. When Prot-K was mixed with the biosynthesized NPs ZnO_G240, the reduction increased to 99.19%. This finding could contribute to an efficient cleaning approach combined with CIP to remove the recalcitrant biofilms in dairy production lines.
Collapse
Affiliation(s)
- Ahmed A. Radwan
- Genetics and Cytology Dept., National Research Centre (NRC), Cairo, 12622, Egypt
| | - Osama M. Darwesh
- Agricultural Microbiology Dept., National Research Centre (NRC), Cairo, 12622, Egypt,* Correspondence: , ; Tel: +201155265558
| | - Maha T. Emam
- Genetics and Cytology Dept., National Research Centre (NRC), Cairo, 12622, Egypt
| | - Karima A. Mohamed
- Genetics and Cytology Dept., National Research Centre (NRC), Cairo, 12622, Egypt
| | - Hala M. Abu Shady
- Microbiology Dept., Faculty of Science, Ain-Shams University Cairo, Egypt
| |
Collapse
|
7
|
Yuan L, Fan L, Liu S, Sant'Ana AS, Zhang Y, Zhou W, Zheng X, He G, Yang Z, Jiao X. Bacterial community analysis of infant foods obtained from Chinese markets by combining culture-dependent and high-throughput sequence methods. Food Res Int 2022; 162:112060. [DOI: 10.1016/j.foodres.2022.112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022]
|
8
|
Pramularsih I, Kyere EO, Md Zain SN, Flint S. Testing for total bacteria in dairy powder - Comparison of test incubation temperatures (a case study). Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Farag MA, Khalifa I, Gamal M, Bakry IA. The chemical composition, production technology, authentication, and QC analysis of dried milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Mezian L, Chincha AI, Vecchione A, Ghelardi E, Bonatto JMC, Marsaioli AJ, Campelo PH, Benamar I, Allah MA, Sant'Ana AS, Boumediene MB. Aerobic spore-forming bacteria in powdered infant formula: Enumeration, identification by MALDI-TOF mass spectrometry (MS), presence of toxin genes and rpoB gene typing. Int J Food Microbiol 2022; 368:109613. [DOI: 10.1016/j.ijfoodmicro.2022.109613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
|
11
|
Wedel C, Atamer Z, Dettling A, Wenning M, Scherer S, Hinrichs J. Towards low-spore milk powders: A review on microbiological challenges of dairy powder production with focus on aerobic mesophilic and thermophilic spores. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Dynamic tracing of bacterial community distribution and biofilm control of dominant species in milk powder processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Wang N, Jin Y, He G, Yuan L. Development of multi-species biofilm formed by thermophilic bacteria on stainless steel immerged in skimmed milk. Food Res Int 2021; 150:110754. [PMID: 34865772 DOI: 10.1016/j.foodres.2021.110754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 11/26/2022]
Abstract
Thermophilic bacteria, such as Bacillus licheniformis, Geobacillus stearothermophilus, Bacillus Subtilis and Anoxybacillus flavithermus, are detected frequently in milk powder products. Biofilms of those strains act as a major contamination to milk powder manufactures and pose potential risks in food safety. In this study, we explored the developing process of multi-species biofilm formed by the four thermophilic bacteria on stainless steel immerged in skimmed milk. The results showed that the thermophilic strains possessed strong capacities to decompose proteins and lactose in skimmed milk, and the spoilage effects were superimposed from multiple strains. B. licheniformis was the most predominant species in the mixed-species biofilm after 12-h incubation. From 24 h to 48 h, G. stearothermophilus occupied the highest proportion. Within the multi-species biofilm, competitive relation existed between B. licheniformis and G. stearothermophilus, while synergistic impacts were observed between B. licheniformis and A. flavithermus. The interspecies mutual influences on biofilm development provided important evidences for understanding colonization of the predominant thermophilic bacteria during milk powder processing.
Collapse
Affiliation(s)
- Ni Wang
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yujie Jin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
14
|
Wang N, Jin Y, He G, Yuan L. Intraspecific and interspecific extracellular metabolites remodel biofilms formed by thermophilic spoilage bacteria. J Appl Microbiol 2021; 133:2096-2106. [PMID: 34689405 DOI: 10.1111/jam.15338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022]
Abstract
AIMS Thermophilic spoilage bacteria and their biofilms formed during milk powder processing posed threats to safety and quality of dairy products. This research aims to understand more about the bacterial behaviours and their social models in biofilms. METHODS AND RESULTS Interactional effects from both extracellular metabolites and co-culture on biofilms formation of the contaminating thermophilic bacteria were determined. The results showed that strong biofilm formers always had high AI-2 activities, including Geobacillus stearothermophilus gs1, Bacillus licheniformis bl1 and Thermoactinomyces vulgaris tv1. Metabolites from themself or other species altered their biofilm biomass detected by crystal violet staining. Dual-species cultures observed by confocal laser scanning microscope indicated either synergistic or inhibitory effects between B. circulans bc1 and G. stearothermophilus gs1, as well as B. licheniformis bl1 and G. stearothermophilus gs1. Fourier transform infrared spectrometry results revealed the significant diversities in polysaccharides of the biofilm matrix. CONCLUSIONS Cell communication played an important role on biofilm formation in the complex microbial community. Intraspecific and interspecific extracellular metabolites influenced collective bacterial behaviours under mixed circumstances. SIGNIFICANCE AND IMPACT OF STUDY This research provided evidences on cell communication and biofilm formation of thermophilic bacteria in dairy industry.
Collapse
Affiliation(s)
- Ni Wang
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yujie Jin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Sadiq FA, Flint S. Dairy strains of Anoxybacillus flavithermus inhibit lipase production by Geobacillus stearothermophilus. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.104996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Delaunay L, Cozien E, Gehannin P, Mouhali N, Mace S, Postollec F, Leguerinel I, Mathot AG. Occurrence and diversity of thermophilic sporeformers in French dairy powders. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Graf B, Hehnke S, Neuwirth M, Hinrichs J. Continuous microwave heating to inactivate thermophilic spores in heating-sensitive skim milk concentrate. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Egan M, Dempsey E, Ryan CA, Ross RP, Stanton C. The Sporobiota of the Human Gut. Gut Microbes 2021; 13:1-17. [PMID: 33406976 PMCID: PMC7801112 DOI: 10.1080/19490976.2020.1863134] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 02/04/2023] Open
Abstract
The human gut microbiome is a diverse and complex ecosystem that plays a critical role in health and disease. The composition of the gut microbiome has been well studied across all stages of life. In recent years, studies have investigated the production of endospores by specific members of the gut microbiome. An endospore is a tough, dormant structure formed by members of the Firmicutes phylum, which allows for greater resistance to otherwise inhospitable conditions. This innate resistance has consequences for human health and disease, as well as in biotechnology. In particular, the formation of endospores is strongly linked to antibiotic resistance and the spread of antibiotic resistance genes, also known as the resistome. The term sporobiota has been used to define the spore-forming cohort of a microbial community. In this review, we present an overview of the current knowledge of the sporobiota in the human gut. We discuss the development of the sporobiota in the infant gut and the perinatal factors that may have an effect on vertical transmission from mother to infant. Finally, we examine the sporobiota of critically important food sources for the developing infant, breast milk and powdered infant formula.
Collapse
Affiliation(s)
- Muireann Egan
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - C. Anthony Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
19
|
Dettling A, Wedel C, Huptas C, Hinrichs J, Scherer S, Wenning M. High counts of thermophilic spore formers in dairy powders originate from persisting strains in processing lines. Int J Food Microbiol 2020; 335:108888. [DOI: 10.1016/j.ijfoodmicro.2020.108888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/03/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
|
20
|
Wang N, Gao J, Yuan L, Jin Y, He G. Metabolomics profiling during biofilm development of Bacillus licheniformis isolated from milk powder. Int J Food Microbiol 2020; 337:108939. [PMID: 33160113 DOI: 10.1016/j.ijfoodmicro.2020.108939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Bacillus licheniformis is a major source of microbial contamination to dairy industry, and biofilm formation by this spoilage bacterium aggravates the safety issues. Especially for milk powder manufactures, the evaporation process at temperatures between 50 °C and 70 °C before spray drying, is a critical control point against thermophilic bacteria multiplication. In our study, metabolomics analysis was performed to investigate dynamic changes of the metabolites and their roles during process of biofilm development of B. licheniformis at 55 °C for 24 h. Amino acid metabolism was quite active, with cooperation from lipid metabolism, carbohydrate metabolism and nucleotide metabolism. Amino acid biosynthesis provided significant contributions especially during early biofilm development from 8 to 12 h. Metabolites involved in specific pathways of arginine biosynthetic, galactose metabolism and sphingolipid metabolism played a crucial role in building biofilm. This work provided new insights into dynamic metabolic alternations and a comprehensive network during B. licheniformis biofilm development, which will extend the knowledge on the metabolic process of biofilm formation by B. licheniformis. The results are helpful in creating better environmental hygiene in dairy processing and new strategies for ensuring quality of dairy products.
Collapse
Affiliation(s)
- Ni Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Gao
- College of Food Science and Technology, Hebei Agriculture University, Baoding 071000, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yujie Jin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
New experimental set-up for testing microwave technology to continuously heat fouling-sensitive food products like milk concentrates. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Wang N, Sadiq FA, Li S, He G, Yuan L. Tandem mass tag-based quantitative proteomics reveals the regulators in biofilm formation and biofilm control of Bacillus licheniformis. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Thermally induced milk fouling: Survival of thermophilic spore formers and potential of contamination. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Inhibitory effect of Lactobacillus plantarum metabolites against biofilm formation by Bacillus licheniformis isolated from milk powder products. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106721] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Murphy SI, Kent D, Martin NH, Evanowski RL, Patel K, Godden SM, Wiedmann M. Bedding and bedding management practices are associated with mesophilic and thermophilic spore levels in bulk tank raw milk. J Dairy Sci 2019; 102:6885-6900. [PMID: 31202649 DOI: 10.3168/jds.2018-16022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/24/2019] [Indexed: 11/19/2022]
Abstract
Mesophilic and thermophilic spore-forming bacteria represent a challenge to the dairy industry, as these bacteria are capable of surviving adverse conditions associated with processing and sanitation and eventually spoil dairy products. The dairy farm environment, including soil, manure, silage, and bedding, has been implicated as a source for spores in raw milk. High levels of spores have previously been isolated from bedding, and different bedding materials have been associated with spore levels in bulk tank (BT) raw milk; however, the effect of different bedding types, bedding management practices, and bedding spore levels on the variance of spore levels in BT raw milk has not been investigated. To this end, farm and bedding management surveys were administered and unused bedding, used bedding, and BT raw milk samples were collected from dairy farms (1 or 2 times per farm) across the United States over 1 yr; the final data set included 182 dairy farms in 18 states. Bedding suspensions and BT raw milk were spore pasteurized (80°C for 12 min), and mesophilic and thermophilic spores were enumerated. Piecewise structural equation modeling analysis was used to determine direct and indirect pathways of association among farm and bedding practices, levels of spores in unused and used bedding, and levels of spores in BT raw milk. Separate models were constructed for mesophilic and thermophilic spore levels. The analyses showed that bedding material had a direct influence on levels of spores in unused and used bedding as well as an indirect association with spore levels in BT raw milk through used bedding spore levels. Specific bedding and farm management practices as well as cow hygiene in the housing area were associated with mesophilic and thermophilic spore levels in unused bedding, used bedding, and BT raw milk. Notably, levels of spores in used bedding were positively related to those in unused bedding, and used bedding spore levels were positively related to those in BT raw milk. The results of this study increase the understanding of the levels and ecology of mesophilic and thermophilic spores in raw milk, emphasize the possible role of bedding as a source of spores on-farm, and present opportunities for dairy producers to reduce spore levels in BT raw milk.
Collapse
Affiliation(s)
- S I Murphy
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - D Kent
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - N H Martin
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - R L Evanowski
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - K Patel
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul 55108
| | - S M Godden
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul 55108
| | - M Wiedmann
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
26
|
Sadiq FA, Flint S, Sakandar HA, He G. Molecular regulation of adhesion and biofilm formation in high and low biofilm producers of Bacillus licheniformis using RNA-Seq. BIOFOULING 2019; 35:143-158. [PMID: 30884970 DOI: 10.1080/08927014.2019.1575960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
RNA sequencing was used to reveal transcriptional changes during the motile-to-sessile switch in high and low biofilm-forming dairy strains of B. licheniformis isolated from Chinese milk powders. A significant part of the whole gene content was affected during this transition in both strains. In terms of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, seven metabolic pathways were significantly downregulated in the planktonic state compared to the biofilm state in both strains. Lipid and sugar metabolism seemed to play an important role in matrix production. Several genes involved in adhesion, matrix production and the matrix coating were either absent or less expressed in the biofilm state of the low biofilm producer compared to the high biofilm producer. Genes related to sporulation and the production of extracellular polymeric substances were concomitantly expressed in the biofilm state of both strains. These comprehensive insights will be helpful for future research into mechanisms and targets.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- a School of Food Science and Technology , Jiangnan University , Wuxi , PR China
- b College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | - Steve Flint
- c School of Food and Nutrition , Massey University , Private Bag 11 222 , Palmerston North , New Zealand
| | - Hafiz Arbab Sakandar
- a School of Food Science and Technology , Jiangnan University , Wuxi , PR China
- d Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - GuoQing He
- b College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| |
Collapse
|
27
|
Mesophilic Sporeformers Identified in Whey Powder by Using Shotgun Metagenomic Sequencing. Appl Environ Microbiol 2018; 84:AEM.01305-18. [PMID: 30076196 DOI: 10.1128/aem.01305-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 01/19/2023] Open
Abstract
Spoilage and pathogenic spore-forming bacteria are a major cause of concern for producers of dairy products. Traditional agar-based detection methods employed by the dairy industry have limitations with respect to their sensitivity and specificity. The aim of this study was to identify low-abundance sporeformers in samples of a powdered dairy product, whey powder, produced monthly over 1 year, using novel culture-independent shotgun metagenomics-based approaches. Although mesophilic sporeformers were the main target of this study, in one instance thermophilic sporeformers were also targeted using this culture-independent approach. For comparative purposes, mesophilic and thermophilic sporeformers were also tested for within the same sample using culture-based approaches. Ultimately, the approaches taken highlighted differences in the taxa identified due to treatment and isolation methods. Despite this, low levels of transient, mesophilic, and in some cases potentially pathogenic sporeformers were consistently detected in powder samples. Although the specific sporeformers changed from one month to the next, it was apparent that 3 groups of mesophilic sporeformers, namely, Bacillus cereus, Bacillus licheniformis/Bacillus paralicheniformis, and a third, more heterogeneous group containing Brevibacillus brevis, dominated across the 12 samples. Total thermophilic sporeformer taxonomy was considerably different from mesophilic taxonomy, as well as from the culturable thermophilic taxonomy, in the one sample analyzed by all four approaches. Ultimately, through the application of shotgun metagenomic sequencing to dairy powders, the potential for this technology to facilitate the detection of undesirable bacteria present in these food ingredients is highlighted.IMPORTANCE The ability of sporeformers to remain dormant in a desiccated state is of concern from a safety and spoilage perspective in dairy powder. Traditional culturing techniques are slow and provide little information without further investigation. We describe the identification of mesophilic sporeformers present in powders produced over 1 year, using novel shotgun metagenomic sequencing. This method allows detection and identification of possible pathogens and spoilage bacteria in parallel. Strain-level analysis and functional gene analysis, such as identification of toxin genes, were also performed. This approach has the potential to be of great value with respect to the detection of spore-forming bacteria and could allow a processor to make an informed decision surrounding process changes to reduce the risk of spore contamination.
Collapse
|
28
|
Microbiota of milk powders and the heat resistance and spoilage potential of aerobic spore-forming bacteria. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Liu Y, Ge W, Zhang J, Li X, Wu X, Li T, Zhang X, Wang X. Detection of Bacillus cereus sensu lato from environments associated with goat milk powdered infant formula production facilities. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Bradley AJ, Leach KA, Green MJ, Gibbons J, Ohnstad IC, Black DH, Payne B, Prout VE, Breen JE. The impact of dairy cows' bedding material and its microbial content on the quality and safety of milk - A cross sectional study of UK farms. Int J Food Microbiol 2017; 269:36-45. [PMID: 29421356 DOI: 10.1016/j.ijfoodmicro.2017.12.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/13/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
The introduction of bedding dairy cows on recycled manure solids (RMS) in the UK led to concern by competent authorities that there could be an increased, unacceptable risk to animal and human health. A cross-sectional study was designed to evaluate the microbial content of different bedding materials, when used by dairy cows, and its impact on the microbial content of milk. Data were collected from farms bedding lactating cows on sand (n=41), sawdust (n=44) and RMS (n=40). The mean duration of RMS use prior to sampling was 13months. Total bacterial count, and counts of Streptococcus/Enterococcus spp., Staphylococcus spp., Bacillus cereus, thermophilic, thermoduric and psychrotrophic bacteria were determined in used bedding and milk. Samples were evaluated for the presence/absence of Listeria monocytogenes, Salmonella spp. and Yersinia enterocolitica. Data on milking practices were collected to investigate their potential to reduce microbial transfer from bedding to milk. There were substantial differences in bacterial counts both within and between bedding materials. However, there were no significant differences between bedding groups in counts in milk for any of the organisms studied, and no significant correlations between bacterial load in used bedding and milk. Fore-milking was associated with a reduced total bacterial count in milk. Dipping teats with disinfectant and drying, prior to milking, was associated with lower numbers of Streptococcus/Enterococcus spp. in milk. Disinfecting clusters between milking different cows was associated with a reduction in thermophilic and psychrotrophic counts in milk. This study did not provide evidence that use of RMS bedding increased the risk of presence of Y. enterocolitica, Salmonella spp. or L. monocytogenes in milk. However, the strength of this conclusion should be tempered by the relatively small number of farms on which Y. enterocolitica and Salmonella spp. were isolated. It is concluded that, despite the higher bacterial load of RMS, its use as bedding for lactating dairy cows need not be associated with a higher bacterial load in milk than the use of sand or sawdust. However, this finding must be interpreted in the light of the relatively recent introduction of RMS as a bedding material on the farms studied. Teat preparation provides a control point for the potential transfer of microorganisms from bedding to milk. The detection of zoonotic pathogens in a small proportion of milk samples, independent of bedding type, indicates that pasteurisation of milk prior to human consumption remains an important control measure.
Collapse
Affiliation(s)
- Andrew J Bradley
- QMMS Ltd, Cedar Barn, Easton, Wells, Somerset BA5 1DU, UK; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK.
| | | | - Martin J Green
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK.
| | - Jenny Gibbons
- AHDB Dairy, Stoneleigh Park, Kenilworth, Warwickshire CV8 2TL, UK.
| | - Ian C Ohnstad
- The Dairy Group, New Agriculture House, Blackbrook Park Avenue, Taunton, Somerset TA1 2PX, UK.
| | - David H Black
- Paragon Veterinary Group, Carlisle House, Townhead Road, Dalston, Carlisle, Cumbria CA5 7JF, UK.
| | - Barbara Payne
- QMMS Ltd, Cedar Barn, Easton, Wells, Somerset BA5 1DU, UK
| | | | - James E Breen
- QMMS Ltd, Cedar Barn, Easton, Wells, Somerset BA5 1DU, UK; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| |
Collapse
|
31
|
Wang X, Esquerre C, Downey G, Henihan L, O’Callaghan D, O’Donnell C. Feasibility of Discriminating Dried Dairy Ingredients and Preheat Treatments Using Mid-Infrared and Raman Spectroscopy. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1114-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Propensity for biofilm formation by aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders. Int J Food Microbiol 2017; 262:89-98. [DOI: 10.1016/j.ijfoodmicro.2017.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/27/2017] [Accepted: 09/24/2017] [Indexed: 02/08/2023]
|
33
|
|
34
|
Liu T, Li Y, Sadiq FA, Yang H, Gu J, Yuan L, Lee YK, He G. Predominant yeasts in Chinese traditional sourdough and their influence on aroma formation in Chinese steamed bread. Food Chem 2017; 242:404-411. [PMID: 29037707 DOI: 10.1016/j.foodchem.2017.09.081] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 11/15/2022]
Abstract
A total of 105 yeast isolates was obtained from 15 sourdough samples collected from different regions in China and subjected to random amplified polymorphic DNA (RAPD) analysis. Six species were identified including Pichia membranifaciens, which has not previously been reported in Chinese sourdoughs. Different species of yeast were used in single-culture fermentation to make Chinese steamed bread (CSB). The volatiles of the CSB were captured by solid-phase microextraction method, separated and identified by gas chromatography-mass spectrometry. In total, 41 volatile compounds were found in all the steamed breads. All CSBs showed a similar volatile profile; however, significant differences in the quantity of some volatile compounds were seen among the CSB fermented by different yeast species. A partial least squares discriminant analysis showed that the CSBs could be separated by their characteristic volatile profiles. The study suggested that the aromatic properties of CSB are determined by the yeast used.
Collapse
Affiliation(s)
- Tongjie Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 311800, China; Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 311800, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 311800, China
| | - Faizan A Sadiq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 311800, China; Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 311800, China
| | - Huanyi Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 311800, China; Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 311800, China
| | - Jingsi Gu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 311800, China; Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 311800, China
| | - Lei Yuan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 311800, China; Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 311800, China
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 311800, China; Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 311800, China.
| |
Collapse
|
35
|
Yang Y, Yu X, Zhan L, Chen J, Zhang Y, Zhang J, Chen H, Zhang Z, Zhang Y, Lu Y, Mei L. Multilocus sequence type profiles of Bacillus cereus isolates from infant formula in China. Food Microbiol 2017; 62:46-50. [DOI: 10.1016/j.fm.2016.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 12/19/2022]
|
36
|
McHugh AJ, Feehily C, Hill C, Cotter PD. Detection and Enumeration of Spore-Forming Bacteria in Powdered Dairy Products. Front Microbiol 2017; 8:109. [PMID: 28197144 PMCID: PMC5281614 DOI: 10.3389/fmicb.2017.00109] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/16/2017] [Indexed: 01/28/2023] Open
Abstract
With the abolition of milk quotas in the European Union in 2015, several member states including Ireland, Luxembourg, and Belgium have seen year on year bi-monthly milk deliveries to dairies increase by up to 35%. Milk production has also increased outside of Europe in the past number of years. Unsurprisingly, there has been a corresponding increased focus on the production of dried milk products for improved shelf life. These powders are used in a wide variety of products, including confectionery, infant formula, sports dietary supplements and supplements for health recovery. To ensure quality and safety standards in the dairy sector, strict controls are in place with respect to the acceptable quantity and species of microorganisms present in these products. A particular emphasis on spore-forming bacteria is necessary due to their inherent ability to survive extreme processing conditions. Traditional microbiological detection methods used in industry have limitations in terms of time, efficiency, accuracy, and sensitivity. The following review will explore the common spore-forming bacterial contaminants of milk powders, will review the guidelines with respect to the acceptable limits of these microorganisms and will provide an insight into recent advances in methods for detecting these microbes. The various advantages and limitations with respect to the application of these diagnostics approaches for dairy food will be provided. It is anticipated that the optimization and application of these methods in appropriate ways can ensure that the enhanced pressures associated with increased production will not result in any lessening of safety and quality standards.
Collapse
Affiliation(s)
- Aoife J McHugh
- Food Bioscience Department, Teagasc Food Research CentreCork, Ireland; School of Microbiology, University College CorkCork, Ireland
| | - Conor Feehily
- Food Bioscience Department, Teagasc Food Research CentreCork, Ireland; APC Microbiome InstituteCork, Ireland
| | - Colin Hill
- School of Microbiology, University College CorkCork, Ireland; APC Microbiome InstituteCork, Ireland
| | - Paul D Cotter
- Food Bioscience Department, Teagasc Food Research CentreCork, Ireland; APC Microbiome InstituteCork, Ireland
| |
Collapse
|
37
|
Md Zain SN, Bennett R, Flint S. The Potential Source ofB. licheniformisContamination During Whey Protein Concentrate 80 Manufacture. J Food Sci 2017; 82:751-756. [DOI: 10.1111/1750-3841.13633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/28/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Siti Norbaizura Md Zain
- Massey Inst. of Food Science and Technology; Massey Univ.; Private Bag 11 222 Palmerston North New Zealand
- Applied Science Faculty; UiTM Negeri Sembilan; Kuala Pilah campus, 72000 Kuala pilah Negeri Sembilan Malaysia
| | - Rod Bennett
- Massey Inst. of Food Science and Technology; Massey Univ.; Private Bag 11 222 Palmerston North New Zealand
| | - Steve Flint
- Massey Inst. of Food Science and Technology; Massey Univ.; Private Bag 11 222 Palmerston North New Zealand
| |
Collapse
|
38
|
Sadiq FA, Li Y, Liu T, Flint S, Zhang G, Yuan L, Pei Z, He G. The heat resistance and spoilage potential of aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders. Int J Food Microbiol 2016; 238:193-201. [DOI: 10.1016/j.ijfoodmicro.2016.09.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/26/2016] [Accepted: 09/11/2016] [Indexed: 11/28/2022]
|