1
|
Guo Z, Zhang J, Wang H, Dong H, Li S, Shao X, Huang J, Yin X, Zhang Q, Guo Y, Sun X, Darwish I. Enhanced detection of Aspergillus flavus in peanut kernels using a multi-scale attention transformer (MSAT): Advancements in food safety and contamination analysis. Int J Food Microbiol 2024; 423:110831. [PMID: 39083880 DOI: 10.1016/j.ijfoodmicro.2024.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/18/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
In this study, a multi-scale attention transformer (MSAT) was coupled with hyperspectral imaging for classifying peanut kernels contaminated with diverse Aspergillus flavus fungi. The results underscored that the MSAT significantly outperformed classic deep learning models, due to its sophisticated multi-scale attention mechanism which enhanced its classification capabilities. The multi-scale attention mechanism was utilized by employing several multi-head attention layers to focus on both fine-scale and broad-scale features. It also integrated a series of scale processing layers to capture features at different resolutions and incorporated a self-attention mechanism to integrate information across different levels. The MSAT model achieved outstanding performance in different classification tasks, particularly in distinguishing healthy peanut kernels from those contaminated with aflatoxigenic fungi, with test accuracy achieving 98.42±0.22%. However, it faced challenges in differentiating peanut kernels contaminated with aflatoxigenic fungi from those with non-aflatoxigenic contamination. Visualization of attention weights explicitly revealed that the MSAT model's multi-scale attention mechanism progressively refined its focus from broad spatial-spectral features to more specialized signatures. Overall, the MSAT model's advanced processing capabilities marked a notable advancement in the field of food quality safety, offering a robust and reliable tool for the rapid and accurate detection of Aspergillus flavus contaminations in food.
Collapse
Affiliation(s)
- Zhen Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jing Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haowei Dong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Shiling Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xijun Shao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xiang Yin
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Ibrahim Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Zjalic S, Markov K, Loncar J, Jakopovic Z, Beccaccioli M, Reverberi M. Biocontrol of Occurrence Ochratoxin A in Wine: A Review. Toxins (Basel) 2024; 16:277. [PMID: 38922171 PMCID: PMC11209579 DOI: 10.3390/toxins16060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
Viticulture has been an important economic sector for centuries. In recent decades, global wine production has fluctuated between 250 and almost 300 million hectoliters, and in 2022, the value of wine exports reached EUR 37.6 billion. Climate change and the associated higher temperatures could favor the occurrence of ochratoxin A (OTA) in wine. OTA is a mycotoxin produced by some species of the genera Aspergillus and Penicillium and has nephrotoxic, immunotoxic, teratogenic, hepatotoxic, and carcinogenic effects on animals and humans. The presence of this toxin in wine is related to the type of wine-red wines are more frequently contaminated with OTA-and the geographical location of the vineyard. In Europe, the lower the latitude, the greater the risk of OTA contamination in wine. However, climate change could increase the risk of OTA contamination in wine in other regions. Due to their toxic effects, the development of effective and environmentally friendly methods to prevent, decontaminate, and degrade OTA is essential. This review summarises the available research on biological aspects of OTA prevention, removal, and degradation.
Collapse
Affiliation(s)
- Slaven Zjalic
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Viseslava 9, 23000 Zadar, Croatia;
| | - Ksenija Markov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.M.); (Z.J.)
| | - Jelena Loncar
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Viseslava 9, 23000 Zadar, Croatia;
| | - Zeljko Jakopovic
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.M.); (Z.J.)
| | - Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
3
|
Tan S, Ma F, Wu Y, Xu Y, Niu A, Chen Y, Wang G, Qiu W. The biodiversity of Aspergillus flavus in stored rice grain leads to a decrease in the overall aflatoxin B 1 production in these species. Int J Food Microbiol 2023; 406:110416. [PMID: 37769398 DOI: 10.1016/j.ijfoodmicro.2023.110416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Aspergillus flavus is a significant fungus that poses a threat to food safety by producing mycotoxins in various crops. In this study, A. flavus isolates were obtained from storage rice collected from seven provinces in southern China, and their AFB1 production, biosynthesis genes presence, and diversity were detected. Results showed that 56 out of the 81 A. flavus isolates produced detectable levels of AFB1, and 71 isolates (87.6 %) possessed aflR gene in their AF synthesis gene cluster, while only 41 isolates (50.6 %) had the ver-1 gene present. Genetic diversity analysis using inter-simple sequence repeats (ISSR) markers revealed seven main clusters among the isolates and the genetic similarity coefficients of 81 A. flavus isolates ranged from 0.53 to 1.00. Additionally, coculture assays were conducted using two toxigenic and two atoxigenic isolates from the same grain depot to investigate the effect of intraspecific inhibition on AFB1 production and to assess the AFB1 contamination risk of storage rice. The in situ results demonstrated that the atoxigenic isolates effectively inhibited the AFB1 contamination of toxigenic isolates. These findings provide insight into the genetic diversity of A. flavus isolates populations and highlight the potential food safety hazards of them in stored rice grain in China.
Collapse
Affiliation(s)
- Song Tan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yajie Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuancheng Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ajuan Niu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuping Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guangyu Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Weifen Qiu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
4
|
Hu YM, Wang YR, Zhao WB, Ding YY, Wu ZR, Wang GH, Deng P, Zhang SY, An JX, Zhang ZJ, Luo XF, Liu YQ. Efficacy of pterostilbene suppression on Aspergillus flavus growth, aflatoxin B 1 biosynthesis and potential mechanisms. Int J Food Microbiol 2023; 404:110318. [PMID: 37454507 DOI: 10.1016/j.ijfoodmicro.2023.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/15/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Aspergillus flavus, a widespread saprotrophic filamentous fungus, could colonize agricultural crops with aflatoxin contamination, which endangers food security and the agricultural economy. A safe, effective and environmentally friendly fungicide is urgently needed. Pterostilbene, a natural phytoalexin originated from Pterocarpus indicus Willd., Vaccinium spp. and Vitis vinifera L., has been reported to possess excellent antimicrobial activity. More importantly, it is quite safe and healthy. In our screening tests of plant polyphenols for the inhibition of A. flavus, we found that pterostilbene evidently inhibited mycelial growth of Aspergillus flavus (EC50 = 15.94 μg/mL) and the inhibitory effect was better than that of natamycin (EC50 = 22.01 μg/mL), which is a natural product widely used in food preservation. Therefore, we provided insights into the efficacy of pterostilbene suppression on A. flavus growth, aflatoxin B1 biosynthesis and its potential mechanisms against A. flavus in the present study. Here, pterostilbene at concentrations of 250 and 500 μg/mL could effectively inhibit the infection of A. flavus on peanuts. And the biosynthesis of the secondary metabolite aflatoxin B1 was also inhibited. The antifungal effects of pterostilbene are exerted by inducing a large amount of intracellular reactive oxygen species production to bring the cells into a state of oxidative stress, damaging cellular biomolecules such as DNA, proteins and lipids and destroying the integrity of the cell membrane. Taken together, our study strongly supported the fact that pterostilbene could be considered a safe and effective antifungal agent against A. flavus infection.
Collapse
Affiliation(s)
- Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Lavkor I, Ay T, Sobucovali S, Var I, Saghrouchni H, Salamatullah AM, Mekonnen AB. Non-Aflatoxigenic Aspergillus flavus: A Promising Biological Control Agent against Aflatoxin Contamination of Corn. ACS OMEGA 2023; 8:16779-16788. [PMID: 37214674 PMCID: PMC10193414 DOI: 10.1021/acsomega.3c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
Aflatoxins (AFs) are a family of mycotoxins produced by molds in agricultural products. To deal with this problem, one of the control methods is the biological solution using a non-pathogenic strain Aspergillus flavus NRRL 21882 (Afla-Guard). This study was conducted to evaluate the potential of A. flavus NRRL 21882 to control the AF contamination of corn in the field and during storage in 2018 and 2019. The experimental design consists of treatment at different vegetative stages of infested corn in the field trial. After the field has been harvested, half the corn kernels from both treated and control plots were treated with biopesticide; the other half of the kernels from each group were not treated and used as the control of the storage. Consequently, storage applications consisted of kernels: (1) not treated at all; (2) treated prior to storage; (3) field-treated; and (4) treated both in the field and prior to storage. After field trials, the AF content was very low in the treated plots, ranging from 0.50 to 1.04 μg/kg and from 0.50 to 0.73 μg/kg in 2018 and 2019, respectively, while the AF content in the control was 98.3 and 73.9 μg/kg in 2018 and 2019, respectively. After storage, corn kernels from field plots that were treated with the biopesticide (treated/control) showed low levels of AFs, even after they have been stored under conditions conducive to AF contamination. The biopesticide effect ranged from 98 to 99% and from 69 to 99% in the field and during storage, respectively. This paper has provided the first indications on AF biocontrol based on a competitive exclusion in the corn-growing region of Turkey. The data showed that spraying during the storage period did not provide any further prevention of AF contamination, and only treatment in the field had a significant effect on AFs that occurred in storage.
Collapse
Affiliation(s)
- Isilay Lavkor
- Biological
Control Research Institute, Kisla Cad., 01321 Yüregir, Adana, Türkiye
| | - Tahsin Ay
- Biological
Control Research Institute, Kisla Cad., 01321 Yüregir, Adana, Türkiye
| | - Suat Sobucovali
- Sunar
Mısır Entegre Tesisleri San. ve Tic. A.Ş, Turhan
Cemal Beriker Blv. Yolgeçen mh., Seyhan, 565 01355 Adana, Türkiye
| | - Isil Var
- Molecular
Biology Department, Sussex University, BN1 9RH Brighton, U.K.
| | - Hamza Saghrouchni
- Department
of Biotechnology, Graduate School of Natural and Applied Sciences, Çukurova University, Balcalı, 01250 Adana, Türkiye
| | - Ahmad Mohammad Salamatullah
- Department
of Food Science & Nutrition, College of Food and Agricultural
Sciences, King Saud University, 11 P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | | |
Collapse
|
6
|
Pre-harvest strategy for reducing aflatoxin accumulation during storage of maize in Argentina. Int J Food Microbiol 2022; 380:109887. [DOI: 10.1016/j.ijfoodmicro.2022.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
|
7
|
Ola OT, Ogedengbe OO, Raji TM, Eze B, Chama M, Ilori ON, Awofisayo MA, Kaptoge L, Bandyopadhyay R, Ortega-Beltran A, Ndarubu AA. Aflatoxin biocontrol effectiveness in the real world—Private sector-led efforts to manage aflatoxins in Nigeria through biocontrol-centered strategies. Front Microbiol 2022; 13:977789. [PMID: 36118233 PMCID: PMC9478371 DOI: 10.3389/fmicb.2022.977789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aflatoxins are toxic compounds produced by several Aspergillus species that contaminate various crops. The impact of aflatoxin on the health of humans and livestock is a concern across the globe. Income, trade, and development sectors are affected as well. There are several technologies to prevent aflatoxin contamination but there are difficulties in having farmers use them. In Nigeria, an aflatoxin biocontrol product containing atoxigenic isolates of A. flavus has been registered with regulatory authorities and is now being produced at scale by the private company Harvestfield Industries Limited (HIL). The current study reports results of biocontrol effectiveness trials in maize conducted by HIL during 2020 in several locations across Nigeria and compared to untreated maize from nearby locations. Also, maize was collected from open markets to assess levels of contamination. All treated maize met tolerance thresholds (i.e., <4 ppb total aflatoxin). In contrast, most maize from untreated fields had a higher risk of aflatoxin contamination, with some areas averaging 38.5 ppb total aflatoxin. Maize from open markets had aflatoxin above tolerance thresholds with even an average of up to 90.3 ppb. Results from the trials were presented in a National Workshop attended by key officers of Government agencies, farmer organizations, the private sector, NGOs, and donors. Overall, we report (i) efforts spearheaded by the private sector to have aflatoxin management strategies used at scale in Nigeria, and (ii) deliberations of key stakeholders to ensure the safety of crops produced in Nigeria for the benefit of farmers, consumers, and industries.
Collapse
Affiliation(s)
- O. T. Ola
- Harvestfield Industries Limited, Lagos, Nigeria
| | | | - T. M. Raji
- Harvestfield Industries Limited, Lagos, Nigeria
| | - B. Eze
- Harvestfield Industries Limited, Lagos, Nigeria
| | - M. Chama
- Harvestfield Industries Limited, Lagos, Nigeria
| | - O. N. Ilori
- Harvestfield Industries Limited, Lagos, Nigeria
| | | | - L. Kaptoge
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - R. Bandyopadhyay
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - A. A. Ndarubu
- Harvestfield Industries Limited, Lagos, Nigeria
- *Correspondence: A. A. Ndarubu,
| |
Collapse
|
8
|
Mahuku G, Mauro A, Pallangyo B, Nsami E, Boni S, Koyano E, Mponda O, Ortega-Beltran A, Atehnkeng J, Aquiline F, Samuel R, Njela J, Cotty P, Bandyopadhyay R. Atoxigenic-based technology for biocontrol of aflatoxin in maize and groundnuts for Tanzania. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Application of biocontrol products containing atoxigenic isolates of Aspergillus flavus to reduce aflatoxin content in crops is an effective strategy for managing aflatoxin in several regions throughout the world. We report the development and validation of two aflatoxin biocontrol products, Aflasafe TZ01 and Aflasafe TZ02, for use in maize and groundnut in Tanzania, a country frequently affected by aflatoxin contamination. Each product contains four atoxigenic A. flavus genotypes native and widely distributed in Tanzania. Efficacy tests on maize and groundnut were conducted over two years and in four regions of Tanzania where aflatoxin contamination is prevalent. Application of both products significantly (P<0.05) reduced aflatoxin levels in maize and groundnut in both years and in all districts. No differences were observed in total Aspergillus section Flavi population in treated and untreated fields, revealing that application of the biocontrol products do not alter overall Aspergillus populations in the environment. The results indicate that both products are effective tools for aflatoxin mitigation in groundnut and maize. The products were officially registered in 2018. Currently, there are scale-out and-up efforts of aflatoxin biocontrol products in Tanzania through a private sector company that is making the products available to farmers. Protecting maize and groundnut from aflatoxin contamination in Tanzania can result in health, income, and trade benefits.
Collapse
Affiliation(s)
- G. Mahuku
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - A. Mauro
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - B. Pallangyo
- Plant Health Services, Ministry of Agriculture, P.O. Box 2182, Dodoma, Tanzania
| | - E. Nsami
- National Biological Control Center, P.O. Box 30031, Kibaha, Tanzania
| | - S.B. Boni
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
- World Vegetable Center, Eastern and Southern Africa, P.O. Box 10, Duluti, Arusha, Tanzania
| | - E. Koyano
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - O. Mponda
- Department of Research, Ministry of Agriculture, Livestock and Fisheries, P.O. Box 9192, Dar es Salaam, Tanzania
| | - A. Ortega-Beltran
- IITA Headquarters, PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria
| | - J. Atehnkeng
- IITA Headquarters, PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria
| | - F. Aquiline
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - R. Samuel
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - J. Njela
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - P.J. Cotty
- USDA-ARS, 416 West Congress Street, Tucson, AZ 85701, USA
| | - R. Bandyopadhyay
- IITA Headquarters, PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria
| |
Collapse
|
9
|
Feng J, Dou J, Wu W. Development of biochar-impregnated alginate beads for the delivery of biocontrol agents for peanut aflatoxin. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1487-1500. [PMID: 35679201 DOI: 10.1080/19440049.2022.2085888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The competitive inhibition of aflatoxigenic fungi by non-aflatoxigenic Aspergillus flavus has proved to be an effective method to prevent and control peanut aflatoxin contamination, and most of the currently used inoculum carriers are grains. In this study, the reliability and efficiency of replacing grain kernels with novel chitosan-coated alginate-poly(N-isopropylacrylamide) (PNIPAAm) beads impregnated with biochar (CSACB) were evaluated. Characterisation of the beads was performed by SEM, thermogravimetry analysis (TGA), and swelling properties analyses. The optimised CSACB beads had good physical stability, shelf life, and entrapment efficiency. In addition, the water-holding capacity and porous structure were excellent, as the biochar provided a beneficial microenvironment for the attachment and microbial growth of the biocontrol fungus. The effect of reducing aflatoxin in peanuts was verified experimentally. Collectively, the novel CSACB beads are suitable carriers of non-aflatoxigenic A. flavus for the biocontrol of peanut aflatoxin.
Collapse
Affiliation(s)
- Jiachang Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jianpeng Dou
- Department of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Wenfu Wu
- Department of Biological and Agricultural Engineering, Jilin University, Changchun, China
| |
Collapse
|
10
|
Shabeer S, Asad S, Jamal A, Ali A. Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review. Toxins (Basel) 2022; 14:307. [PMID: 35622554 PMCID: PMC9147583 DOI: 10.3390/toxins14050307] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/10/2023] Open
Abstract
Aflatoxin, a type of mycotoxin, is mostly produced by Aspergillus flavus and Aspergillus parasiticus. It is responsible for the loss of billions of dollars to the world economy, by contaminating different crops such as cotton, groundnut, maize, and chilies, and causing immense effects on the health of humans and animals. More than eighteen different types of aflatoxins have been reported to date, and among them, aflatoxins B1, B2, G1, and G2 are the most prevalent and lethal. Early detection of fungal infection plays a key role in the control of aflatoxin contamination. Therefore, different methods, including culture, chromatographic techniques, and molecular assays, are used to determine aflatoxin contamination in crops and food products. Many countries have set a maximum limit of aflatoxin contamination (2-20 ppb) in their food and agriculture commodities for human or animal consumption, and the use of different methods to combat this menace is essential. Fungal infection mostly takes place during the pre- and post-harvest stage of crops, and most of the methods to control aflatoxin are employed for the latter phase. Studies have shown that if correct measures are adopted during the crop development phase, aflatoxin contamination can be reduced by a significant level. Currently, the use of bio-pesticides is the intervention employed in many countries, whereby atoxigenic strains competitively reduce the burden of toxigenic strains in the field, thereby helping to mitigate this problem. This updated review on aflatoxins sheds light on the sources of contamination, and the on occurrence, impact, detection techniques, and management strategies, with a special emphasis on bio-pesticides to control aflatoxins.
Collapse
Affiliation(s)
- Saba Shabeer
- Crop Diseases Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan; (S.S.); (S.A.)
| | - Shahzad Asad
- Crop Diseases Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan; (S.S.); (S.A.)
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan; (S.S.); (S.A.)
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
11
|
Mamo FT, Shang B, Selvaraj JN, Zheng Y, Liu Y. Biocontrol efficacy of atoxigenic Aspergillus flavus strains against aflatoxin contamination in peanut field in Guangdong province, South China. Mycology 2022; 13:143-152. [PMID: 35711325 PMCID: PMC9196723 DOI: 10.1080/21501203.2021.1978573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Application of atoxigenic strains of Aspergillus flavusto soils is the most successful aflatoxin biological control approach. The objective of this study was to evaluate the efficacies of native non-aflatoxin producing (atoxigenic) strains as a biocontrol agent in peanut field in China. The competitive atoxigenic A. flavus strains (JS4, SI1and SXN) isolated from different crops, in China were used for field evaluation. The strains applied during the growing season (June – October, 2016) in the field at rate of 25 kg inoculum/hectare. The colonization of these biocontrol agents has been investigated and the population of A. flavus communities in soil were determined. The incidences of toxin producing (toxigenic) A. flavus strains and aflatoxin contamination in peanuts were also determined. Treated plots produced significant reductions in the incidence of toxigenic isolates of A. flavus in soil. However, the total fungal densities were not significantly different (p > 0.05) after treatments. Large percentage of aflatoxin reductions, ranging from 82.8% (SXN) up to 87.2% (JS4) were recorded in treated plots. Generally, the results suggest that the strategy can be used to control aflatoxin contamination and continuous evaluation should be done.
Collapse
Affiliation(s)
- Firew Tafesse Mamo
- School of Food Science and Engineering, Foshan University/South China Food Safety Research Center, Foshan, Guangdong, P R. China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
| | - Bo Shang
- School of Food Science and Engineering, Foshan University/South China Food Safety Research Center, Foshan, Guangdong, P R. China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | | | - Yongquan Zheng
- State Key Laboratory for Biology Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/South China Food Safety Research Center, Foshan, Guangdong, P R. China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
12
|
Biocontrol Methods in Avoidance and Downsizing of Mycotoxin Contamination of Food Crops. Processes (Basel) 2022. [DOI: 10.3390/pr10040655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By increasing the resistance of seeds against abiotic and biotic stress, the possibility of cereal mold contamination and hence the occurrence of secondary mold metabolites mycotoxins decreases. The use of biological methods of seed treatment represents a complementary strategy, which can be implemented as an environmental-friendlier approach to increase the agricultural sustainability. Whereas the use of resistant cultivars helps to reduce mold growth and mycotoxin contamination at the very beginning of the production chain, biological detoxification of cereals provides additional weapons against fungal pathogens in the later stage. Most efficient techniques can be selected and combined on an industrial scale to reduce losses and boost crop yields and agriculture sustainability, increasing at the same time food and feed safety. This paper strives to emphasize the possibility of implementation of biocontrol methods in the production of resistant seeds and the prevention and reduction in cereal mycotoxin contamination.
Collapse
|
13
|
Sweany RR, Mack BM, Moore GG, Gilbert MK, Cary JW, Lebar MD, Rajasekaran K, Damann Jr. KE. Genetic Responses and Aflatoxin Inhibition during Co-Culture of Aflatoxigenic and Non-Aflatoxigenic Aspergillus flavus. Toxins (Basel) 2021; 13:794. [PMID: 34822579 PMCID: PMC8618995 DOI: 10.3390/toxins13110794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin is a carcinogenic mycotoxin produced by Aspergillus flavus. Non-aflatoxigenic (Non-tox) A. flavus isolates are deployed in corn fields as biocontrol because they substantially reduce aflatoxin contamination via direct replacement and additionally via direct contact or touch with toxigenic (Tox) isolates and secretion of inhibitory/degradative chemicals. To understand touch inhibition, HPLC analysis and RNA sequencing examined aflatoxin production and gene expression of Non-tox isolate 17 and Tox isolate 53 mono-cultures and during their interaction in co-culture. Aflatoxin production was reduced by 99.7% in 72 h co-cultures. Fewer than expected unique reads were assigned to Tox 53 during co-culture, indicating its growth and/or gene expression was inhibited in response to Non-tox 17. Predicted secreted proteins and genes involved in oxidation/reduction were enriched in Non-tox 17 and co-cultures compared to Tox 53. Five secondary metabolite (SM) gene clusters and kojic acid synthesis genes were upregulated in Non-tox 17 compared to Tox 53 and a few were further upregulated in co-cultures in response to touch. These results suggest Non-tox strains can inhibit growth and aflatoxin gene cluster expression in Tox strains through touch. Additionally, upregulation of other SM genes and redox genes during the biocontrol interaction demonstrates a potential role of inhibitory SMs and antioxidants as additional biocontrol mechanisms and deserves further exploration to improve biocontrol formulations.
Collapse
Affiliation(s)
- Rebecca R. Sweany
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Brian M. Mack
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Geromy G. Moore
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Matthew K. Gilbert
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Kenneth E. Damann Jr.
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| |
Collapse
|
14
|
Mamo FT, Abate BA, Zheng Y, Nie C, He M, Liu Y. Distribution of Aspergillus Fungi and Recent Aflatoxin Reports, Health Risks, and Advances in Developments of Biological Mitigation Strategies in China. Toxins (Basel) 2021; 13:678. [PMID: 34678973 PMCID: PMC8541519 DOI: 10.3390/toxins13100678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are secondary metabolites that represent serious threats to human and animal health. They are mainly produced by strains of the saprophytic fungus Aspergillus flavus, which are abundantly distributed across agricultural commodities. AF contamination is receiving increasing attention by researchers, food producers, and policy makers in China, and several interesting review papers have been published, that mainly focused on occurrences of AFs in agricultural commodities in China. The goal of this review is to provide a wider scale and up-to-date overview of AF occurrences in different agricultural products and of the distribution of A. flavus across different food and feed categories and in Chinese traditional herbal medicines in China, for the period 2000-2020. We also highlight the health impacts of chronic dietary AF exposure, the recent advances in biological AF mitigation strategies in China, and recent Chinese AF standards.
Collapse
Affiliation(s)
- Firew Tafesse Mamo
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
- Ethiopian Biotechnology Institute, Addis Ababa 5954, Ethiopia;
| | | | - Yougquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Chengrong Nie
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Mingjun He
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Yang Liu
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| |
Collapse
|
15
|
Mohammed A, Faustinelli PC, Chala A, Dejene M, Fininsa C, Ayalew A, Ojiewo CO, Hoisington DA, Sobolev VS, Martínez-Castillo J, Arias RS. Genetic fingerprinting and aflatoxin production of Aspergillus section Flavi associated with groundnut in eastern Ethiopia. BMC Microbiol 2021; 21:239. [PMID: 34454439 PMCID: PMC8403416 DOI: 10.1186/s12866-021-02290-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aspergillus species cause aflatoxin contamination in groundnut kernels, being a health threat in agricultural products and leading to commodity rejection by domestic and international markets. Presence of Aspergillus flavus and A. parasiticus colonizing groundnut in eastern Ethiopia, as well as presence of aflatoxins have been reported, though in this region, no genetic studies have been done of these species in relation to their aflatoxin production. RESULTS In this study, 145 Aspergillus isolates obtained from groundnut kernels in eastern Ethiopia were genetically fingerprinted using 23 Insertion/Deletion (InDel) markers within the aflatoxin-biosynthesis gene cluster (ABC), identifying 133 ABC genotypes. Eighty-four isolates were analyzed by Ultra-Performance Liquid Chromatography (UPLC) for in vitro aflatoxin production. Analysis of genetic distances based on the approximately 85 kb-ABC by Neighbor Joining (NJ), 3D-Principal Coordinate Analysis (3D-PCoA), and Structure software, clustered the isolates into three main groups as a gradient in their aflatoxin production. Group I, contained 98% A. flavus, including L- and non-producers of sclerotia (NPS), producers of B1 and B2 aflatoxins, and most of them collected from the lowland-dry Babile area. Group II was a genetic admixture population of A. flavus (NPS) and A. flavus S morphotype, both low producers of aflatoxins. Group III was primarily represented by A. parasiticus and A. flavus S morphotype isolates both producers of B1, B2 and G1, G2 aflatoxins, and originated from the regions of Darolabu and Gursum. The highest in vitro producer of aflatoxin B1 was A. flavus NPS N1436 (77.98 μg/mL), and the highest producer of aflatoxin G1 was A. parasiticus N1348 (50.33 μg/mL), these isolates were from Gursum and Darolabu, respectively. CONCLUSIONS To the best of our knowledge, this is the first study that combined the use of InDel fingerprinting of the ABC and corresponding aflatoxin production capability to describe the genetic diversity of Aspergillus isolates from groundnut in eastern Ethiopia. Three InDel markers, AFLC04, AFLC08 and AFLC19, accounted for the main assignment of individuals to the three Groups; their loci corresponded to aflC (pksA), hypC, and aflW (moxY) genes, respectively. Despite InDels within the ABC being often associated to loss of aflatoxin production, the vast InDel polymorphism observed in the Aspergillus isolates did not completely impaired their aflatoxin production in vitro.
Collapse
Affiliation(s)
- Abdi Mohammed
- School of Plant Science, College of Agriculture and Environmental Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Paola C Faustinelli
- United States Department of Agriculture-Agricultural Research Service-National Peanut Research Laboratory, Dawson, GA, 39842-0509, USA
| | - Alemayehu Chala
- College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
| | - Mashilla Dejene
- School of Plant Science, College of Agriculture and Environmental Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Chemeda Fininsa
- School of Plant Science, College of Agriculture and Environmental Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Amare Ayalew
- Partnership for Aflatoxin Control in Africa (PACA), African Union Commission, Addis Ababa, Ethiopia
| | - Chris O Ojiewo
- ICRISAT - Nairobi, UN-Avenue, Box 39063-00623, Nairobi, Kenya
| | - David A Hoisington
- College of Agriculture and Environmental Sciences, Peanut and Mycotoxin Innovation Lab, University of Georgia, Athens, GA, 30602-4356, USA
| | - Victor S Sobolev
- United States Department of Agriculture-Agricultural Research Service-National Peanut Research Laboratory, Dawson, GA, 39842-0509, USA
| | - Jaime Martínez-Castillo
- Centro de Investigación Científica de Yucatán A.C., Unidad de Recursos Naturales, Calle 43 No. 130, Colonia Chuburná de Hidalgo CP 97200, Mérida, Mexico
| | - Renee S Arias
- United States Department of Agriculture-Agricultural Research Service-National Peanut Research Laboratory, Dawson, GA, 39842-0509, USA.
| |
Collapse
|
16
|
Ortega-Beltran A, Agbetiameh D, Atehnkeng J, Falade TDO, Bandyopadhyay R. Does Use of Atoxigenic Biocontrol Products to Mitigate Aflatoxin in Maize Increase Fumonisin Content in Grains? PLANT DISEASE 2021; 105:2196-2201. [PMID: 33210967 DOI: 10.1094/pdis-07-20-1447-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the tropics and subtropics, maize (Zea mays) and other crops are frequently contaminated with aflatoxins by Aspergillus flavus. Treatment of crops with atoxigenic isolates of A. flavus formulated into biocontrol products can significantly reduce aflatoxin contamination. Treated crops contain up to 100% fewer aflatoxins compared with untreated crops. However, there is the notion that protecting crops from aflatoxin contamination may result in increased accumulation of other toxins, particularly fumonisins produced by a few Fusarium species. The objective of this study was to determine if treatment of maize with aflatoxin biocontrol products increased fumonisin concentration and fumonisin-producing fungi in grains. Over 200 maize samples from fields treated with atoxigenic biocontrol products in Nigeria and Ghana were examined for fumonisin content and contrasted with maize from untreated fields. Apart from low aflatoxin levels, most treated maize also harbored fumonisin levels considered safe by the European Union (<1 part per million; ppm). Most untreated maize also harbored equally low fumonisin levels but contained higher aflatoxin levels. In addition, during one year, we detected considerably lower Fusarium spp. densities in treated maize than in untreated maize. Our results do not support the hypothesis that treating crops with atoxigenic isolates of A. flavus used in biocontrol formulations results in higher grain fumonisin levels.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Daniel Agbetiameh
- International Institute of Tropical Agriculture, Ibadan 200001, Nigeria
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Agro Enterprise Development, Faculty of Applied Science and Technology, Ho Technical University, Ho, Ghana
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Bukavu, D. R. Congo
| | | | | |
Collapse
|
17
|
Khan R, Ghazali FM, Mahyudin NA, Samsudin NIP. Biocontrol of Aflatoxins Using Non-Aflatoxigenic Aspergillus flavus: A Literature Review. J Fungi (Basel) 2021; 7:jof7050381. [PMID: 34066260 PMCID: PMC8151999 DOI: 10.3390/jof7050381] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aflatoxins (AFs) are mycotoxins, predominantly produced by Aspergillus flavus, A. parasiticus, A. nomius, and A. pseudotamarii. AFs are carcinogenic compounds causing liver cancer in humans and animals. Physical and biological factors significantly affect AF production during the pre-and post-harvest time. Several methodologies have been developed to control AF contamination, yet; they are usually expensive and unfriendly to the environment. Consequently, interest in using biocontrol agents has increased, as they are convenient, advanced, and friendly to the environment. Using non-aflatoxigenic strains of A. flavus (AF−) as biocontrol agents is the most promising method to control AFs’ contamination in cereal crops. AF− strains cannot produce AFs due to the absence of polyketide synthase genes or genetic mutation. AF− strains competitively exclude the AF+ strains in the field, giving an extra advantage to the stored grains. Several microbiological, molecular, and field-based approaches have been used to select a suitable biocontrol agent. The effectiveness of biocontrol agents in controlling AF contamination could reach up to 99.3%. Optimal inoculum rate and a perfect time of application are critical factors influencing the efficacy of biocontrol agents.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
- Correspondence: ; Tel.: +60-12219-8912
| | - Nor Ainy Mahyudin
- Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nik Iskandar Putra Samsudin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
18
|
Agbetiameh D, Ortega-Beltran A, Awuah RT, Atehnkeng J, Elzein A, Cotty PJ, Bandyopadhyay R. Field efficacy of two atoxigenic biocontrol products for mitigation of aflatoxin contamination in maize and groundnut in Ghana. BIOLOGICAL CONTROL : THEORY AND APPLICATIONS IN PEST MANAGEMENT 2020; 150:104351. [PMID: 33144821 PMCID: PMC7457722 DOI: 10.1016/j.biocontrol.2020.104351] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Biological control is one of the recommended methods for aflatoxin mitigation. Biocontrol products must be developed, and their efficacy demonstrated before widespread use. Efficacy of two aflatoxin biocontrol products, Aflasafe GH01 and Aflasafe GH02, were evaluated in 800 maize and groundnut farmers' fields during 2015 and 2016 in the Ashanti, Brong Ahafo, Northern, Upper East, and Upper West regions of Ghana. Both products were developed after an extensive examination of fungi associated with maize and groundnut in Ghana. Each product contains as active ingredient fungi four Aspergillus flavus isolates belonging to atoxigenic African Aspergillus Vegetative Compatibility Groups (AAVs) widely distributed across Ghana. An untreated field was maintained for each treated field to determine product efficacy. Proportions of atoxigenic AAVs composing each product were assessed in soils before product application, and soils and grains at harvest. Significant (P < 0.05) displacement of toxigenic fungi occurred in both crops during both years, in all five regions. Biocontrol-treated crops consistently had significantly (P < 0.05) less aflatoxins (range = 76% to 100% less; average = 99% less) than untreated crops. Results indicate that both biocontrol products are highly efficient, cost-effective, environmentally safe tools for aflatoxin mitigation. Most crops from treated fields could have been sold in both local and international food and feed premium markets. Adoption and use of biocontrol products have the potential to improve the health of Ghanaians, and both income and trade opportunities of farmers, aggregators, distributors, and traders.
Collapse
Affiliation(s)
- Daniel Agbetiameh
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Richard T. Awuah
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Abuelgasim Elzein
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Peter J. Cotty
- United States Department of Agriculture – Agricultural Research Service, Tucson, AZ 85721, USA
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | |
Collapse
|
19
|
Mamo FT, Abate BA, Tesfaye K, Nie C, Wang G, Liu Y. Mycotoxins in Ethiopia: A Review on Prevalence, Economic and Health Impacts. Toxins (Basel) 2020; 12:E648. [PMID: 33049980 PMCID: PMC7601512 DOI: 10.3390/toxins12100648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mycotoxigenic fungi and their toxins are a global concern, causing huge economic and health impacts in developing countries such as Ethiopia, where the mycotoxin control system is inadequate. This work aimed to review the occurrences of agriculturally essential fungi such as Aspergillus, Fusarium, and Penicillium and their major mycotoxins in Ethiopian food/feedstuffs. The incidents of crucial toxins, including aflatoxins (B1, B2, G1, G2, M1), fumonisins (B1, B2), zearalenone, deoxynivalenol, and ochratoxin A, were studied. The impacts of chronic aflatoxin exposure on liver cancer risks, synergy with chronic hepatitis B infection, and possible links with Ethiopian childhood malnutrition were thoroughly examined. In addition, health risks of other potential mycotoxin exposure are also discussed, and the impacts of unsafe level of mycotoxin contaminations on economically essential export products and livestock productions were assessed. Feasible mycotoxin mitigation strategies such as biocontrol methods and binding agents (bentonite) were recommended because they are relatively cheap for low-income farmers and widely available in Ethiopia, respectively. Moreover, Ethiopian mycotoxin regulations, storage practice, adulteration practice, mycotoxin tests, and knowledge gaps among value chain actors were highlighted. Finally, sustained public awareness was suggested, along with technical and human capacity developments in the food control sector.
Collapse
Affiliation(s)
- Firew Tafesse Mamo
- School of Food Science and Engineering, Foshan University, Foshan 528231, China; (F.T.M.); (C.N.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar 79, Ethiopia
| | | | - Kassahun Tesfaye
- Ethiopian Biotechnology Institute, Addis Ababa 5954, Ethiopia; (B.A.A.); (K.T.)
| | - Chengrong Nie
- School of Food Science and Engineering, Foshan University, Foshan 528231, China; (F.T.M.); (C.N.)
| | - Gang Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, Foshan 528231, China; (F.T.M.); (C.N.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
20
|
Karunasinghe TG, Maharachchikumbura SSN, Velazhahan R, Al-Sadi AM. Antagonistic Activity of Endophytic and Rhizosphere Fungi Isolated From Sea Purslane ( Sesuvium portulacastrum) Against Pythium Damping off of Cucumber. PLANT DISEASE 2020; 104:2158-2167. [PMID: 32539595 DOI: 10.1094/pdis-01-20-0003-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study was conducted to investigate the antagonistic activity of endophytic and rhizosphere fungi isolated from a medicinal plant, Sesuvium portulacastrum, against Pythium aphanidermatum, the cause of damping off of cucumber. A total of 40 endophytic and 19 rhizosphere fungi were isolated from S. portulacastrum. Three endophytic isolates and two rhizosphere isolates gave >50% suppression of P. aphanidermatum in the in vitro dual-culture tests. Scanning electron microscopic studies at the inhibition zone showed hyphae wall damage and abnormal mycelial growth of the genus Pythium. Molecular analysis identified the antagonistic endophytes as Aspergillus insulicola (isolate A435), A. insulicola (A419), and Aspergillus melleus (A412) and the rhizosphere antagonists as Aspergillus terreus (A213) and Aspergillus luchuensis (A116). Except for A116, the culture filtrates of the other antagonists significantly increased the electrolyte leakage from Pythium mycelia, whereas ethyl acetate extracts of A435, A412, and A213 showed significant growth suppression. All five antagonists were able to produce varying amounts of cellulase and β-glucanase enzymes. However, A435, A412, and A213 showed significantly higher cellulase activity, whereas A435 and A116 showed the highest β-glucanase activity. Controlled glasshouse growth experiments showed that isolates A435 and A116 resulted in up to 70% control of damping off, whereas isolates A412 and A213 showed 30 to 40% damping-off control. The antagonists A435, A116, and A213 also contributed to increased cucumber shoot length as well as shoot and root dry mass. The synergetic effects of metabolites and hydrolytic enzymes could be the reason for the variation between isolates in the antagonistic activity and cucumber growth promotion. This study reports for the first time A. insulicola, A. melleus, and A. luchuensis as potential biocontrol agents against P. aphanidermatum-induced damping off of cucumber.
Collapse
Affiliation(s)
- Thamodini G Karunasinghe
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - S S N Maharachchikumbura
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - Rethinasamy Velazhahan
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - Abdullah M Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| |
Collapse
|
21
|
Reis T, Oliveira T, Zorzete P, Faria P, Corrêa B. A non-toxigenic Aspergillus flavus strain prevents the spreading of Fusarium verticillioides and fumonisins in maize. Toxicon 2020; 181:6-8. [DOI: 10.1016/j.toxicon.2020.04.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/17/2020] [Accepted: 04/12/2020] [Indexed: 10/24/2022]
|
22
|
Raksha Rao K, Vipin AV, Venkateswaran G. Mechanism of inhibition of aflatoxin synthesis by non-aflatoxigenic strains of Aspergillus flavus. Microb Pathog 2020; 147:104280. [PMID: 32505654 DOI: 10.1016/j.micpath.2020.104280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/04/2023]
Abstract
Aflatoxins are toxic secondary metabolites primarily produced by Aspergillus flavus and A. paraciticus. Exposure to these mycotoxins through contaminated food and feed may cause oxidative stress and liver toxicity in animals. One of the promising strategies to mitigate aflatoxin accumulation is the biological management during pre-harvest using non-aflatoxigenic A. flavus. The mechanism offered by these strains in mitigating aflatoxin is still unclear. Thus, the aim of the present study is to delineate the mechanism of intraspecific inhibition of aflatoxin production. Among the 18 non-aflatoxigenic strains evaluated, six strains were able to reduce more than 50% of the aflatoxins produced by the native aflatoxigenic strains. The non-aflatoxigenic strains used in this study failed to degrade the aflatoxins. Eventhough, the non-aflatoxigenic strains were not able to inhibit the synthesis of aflatoxins completely. Four non-aflatoxigenic isolates could competitively excluded the aflatoxigenic strain. Furthermore, when non-aflatoxigenic and an aflatoxigenic isolate were separated by 0.4 and 3 μm filters, aflatoxin synthesis was not significantly reduced. However, when the pore size was 8 μm, there was a significant decrease in aflatoxin production. This results suggest the role of physical contact between the hyphae, thigmoregulation, in the inhibition of aflatoxin production. Additionally, to better understand the transcriptional level control of this phenomenon, we analyzed the gene expression profile of aflatoxin biosynthesis genes in the aflatoxigenic strain. The aflatoxin biosynthesis genes were down regulated in the aflatoxigenic strain in contact with non-aflatoxigenic strain group when compared to the control. This is the first evidence of the combined action of competitive exclusion and thigmodownregulation which led to the intraspecific inhibition of aflatoxin production.
Collapse
Affiliation(s)
- K Raksha Rao
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute Campus, Mysore, 570 020, Karnataka, India
| | - A V Vipin
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute Campus, Mysore, 570 020, Karnataka, India
| | - G Venkateswaran
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute Campus, Mysore, 570 020, Karnataka, India.
| |
Collapse
|
23
|
Del Palacio A, Pan D. Occurrence and toxigenic potential of Aspergillus section Flavi on wheat and sorghum silages in Uruguay. Mycology 2020; 11:147-157. [PMID: 32923022 PMCID: PMC7448941 DOI: 10.1080/21501203.2020.1752321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Species belonging to Aspergillus section Flavi occur naturally in crops and can cause food spoilage and/or toxin production. The aim of this study was to determine the occurrence and diversity of the species of Aspergillus section Flavi found in wheat and sorghum at harvest time and during silage storage, and to evaluate the toxigenic potential of the isolates to determine the contamination risk of mycotoxins in grains. Strains from Aspergillus flavus and Aspergillus parasiticus were found based on multi-gene phylogenetic analyses. This is the first report on the presence of A. parasiticus in wheat from Uruguay. Of the 80 isolates Aspergillus section Flavi, 30% produced aflatoxins (AFs), mainly type B1, and 25% produced cyclopiazonic acid (CPA). Within the isolates from wheat samples, 35% were AFs producers and 27.5% were CPA producers. Among the Aspergillus section Flavi isolates from sorghum, 25% were AFs producers while 22.5% were CPA producers. This work contributes to the knowledge of the species in crops and helps define appropriate strategies for the prevention and control of contamination with AFs and CPA by Aspergillus section Flavi fungi.
Collapse
Affiliation(s)
- Agustina Del Palacio
- Laboratorio de Micología, Facultad de Ciencias, Facultad de Ingeniería, UdelaR, Montevideo, Uruguay
| | - Dinorah Pan
- Laboratorio de Micología, Facultad de Ciencias, Facultad de Ingeniería, UdelaR, Montevideo, Uruguay
| |
Collapse
|
24
|
Soni P, Gangurde SS, Ortega-Beltran A, Kumar R, Parmar S, Sudini HK, Lei Y, Ni X, Huai D, Fountain JC, Njoroge S, Mahuku G, Radhakrishnan T, Zhuang W, Guo B, Liao B, Singam P, Pandey MK, Bandyopadhyay R, Varshney RK. Functional Biology and Molecular Mechanisms of Host-Pathogen Interactions for Aflatoxin Contamination in Groundnut ( Arachis hypogaea L.) and Maize ( Zea mays L.). Front Microbiol 2020; 11:227. [PMID: 32194520 PMCID: PMC7063101 DOI: 10.3389/fmicb.2020.00227] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
Aflatoxins are secondary metabolites produced by soilborne saprophytic fungus Aspergillus flavus and closely related species that infect several agricultural commodities including groundnut and maize. The consumption of contaminated commodities adversely affects the health of humans and livestock. Aflatoxin contamination also causes significant economic and financial losses to producers. Research efforts and significant progress have been made in the past three decades to understand the genetic behavior, molecular mechanisms, as well as the detailed biology of host-pathogen interactions. A range of omics approaches have facilitated better understanding of the resistance mechanisms and identified pathways involved during host-pathogen interactions. Most of such studies were however undertaken in groundnut and maize. Current efforts are geared toward harnessing knowledge on host-pathogen interactions and crop resistant factors that control aflatoxin contamination. This study provides a summary of the recent progress made in enhancing the understanding of the functional biology and molecular mechanisms associated with host-pathogen interactions during aflatoxin contamination in groundnut and maize.
Collapse
Affiliation(s)
- Pooja Soni
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sunil S. Gangurde
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Rakesh Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sejal Parmar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Hari K. Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Yong Lei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, United States Department of Agriculture – Agriculture Research Service, Tifton, GA, United States
| | - Dongxin Huai
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jake C. Fountain
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Samuel Njoroge
- International Crops Research Institute for the Semi-Arid Tropics, Lilongwe, Malawi
| | - George Mahuku
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | | | - Weijian Zhuang
- Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United States Department of Agriculture – Agricultural Research Service, Tifton, GA, United States
| | - Boshou Liao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| |
Collapse
|
25
|
Feng J, Dou J, Zhang Y, Wu Z, Yin D, Wu W. Thermosensitive Hydrogel for Encapsulation and Controlled Release of Biocontrol Agents to Prevent Peanut Aflatoxin Contamination. Polymers (Basel) 2020; 12:E547. [PMID: 32138229 PMCID: PMC7182945 DOI: 10.3390/polym12030547] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Starch, alginate, and poly(N-isopropylacrylamide) (PNIPAAm) were combined to prepare a semi-interpenetrating network (IPN) hydrogel with temperature sensitivity. Calcium chloride was used as cross-linking agent, the non-toxigenic Aspergillus flavus spores were successfully encapsulated as biocontrol agents by the method of ionic gelation. Characterization of the hydrogel was performed by Fourier-transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), and thermogravimetry analysis (TGA). Formulation characteristics, such as entrapment efficiency, beads size, swelling behavior, and rheological properties were evaluated. The optical and rheological measurements indicated that the lower critical solution temperature (LCST) of the samples was about 29-30 °C. TGA results demonstrated that the addition of kaolin could improve the thermal stability of the semi-IPN hydrogel. Morphological analysis showed a porous honeycomb structure on the surface of the beads. According to the release properties of the beads, the semi-IPN hydrogel beads containing kaolin not only have the effect of slow release before peanut flowering, but they also can rapidly release biocontrol agents after flowering begins. The early flowering stage of the peanut is the critical moment to apply biocontrol agents. Temperature-sensitive hydrogel beads containing kaolin could be considered as carriers of biocontrol agents for the control of aflatoxin in peanuts.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenfu Wu
- Department of Biological and Agricultural Engineering, Jilin University, Changchun 130000, China; (J.F.); (J.D.); (Y.Z.); (Z.W.); (D.Y.)
| |
Collapse
|
26
|
Ren X, Zhang Q, Zhang W, Mao J, Li P. Control of Aflatoxigenic Molds by Antagonistic Microorganisms: Inhibitory Behaviors, Bioactive Compounds, Related Mechanisms, and Influencing Factors. Toxins (Basel) 2020; 12:E24. [PMID: 31906282 PMCID: PMC7020460 DOI: 10.3390/toxins12010024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin contamination has been causing great concern worldwide due to the major economic impact on crop production and their toxicological effects to human and animals. Contamination can occur in the field, during transportation, and also in storage. Post-harvest contamination usually derives from the pre-harvest infection of aflatoxigenic molds, especially aflatoxin-producing Aspergilli such as Aspergillusflavus and A. parasiticus. Many strategies preventing aflatoxigenic molds from entering food and feed chains have been reported, among which biological control is becoming one of the most praised strategies. The objective of this article is to review the biocontrol strategy for inhibiting the growth of and aflatoxin production by aflatoxigenic fungi. This review focuses on comparing inhibitory behaviors of different antagonistic microorganisms including various bacteria, fungi and yeasts. We also reviewed the bioactive compounds produced by microorganisms and the mechanisms leading to inhibition. The key factors influencing antifungal activities of antagonists are also discussed in this review.
Collapse
Affiliation(s)
- Xianfeng Ren
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
27
|
Norlia M, Jinap S, Nor-Khaizura MAR, Radu S, Samsudin NIP, Azri FA. Aspergillus section Flavi and Aflatoxins: Occurrence, Detection, and Identification in Raw Peanuts and Peanut-Based Products Along the Supply Chain. Front Microbiol 2019; 10:2602. [PMID: 31824445 PMCID: PMC6886384 DOI: 10.3389/fmicb.2019.02602] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Aflatoxin contamination in foods is a global concern as they are carcinogenic, teratogenic and mutagenic compounds. The aflatoxin-producing fungi, mainly from the Aspergillus section Flavi, are ubiquitous in nature and readily contaminate various food commodities, thereby affecting human's health. The incidence of aflatoxigenic Aspergillus spp. and aflatoxins in various types of food, especially raw peanuts and peanut-based products along the supply chain has been a concern particularly in countries having tropical and sub-tropical climate, including Malaysia. These climatic conditions naturally support the growth of Aspergillus section Flavi, especially A. flavus, particularly when raw peanuts and peanut-based products are stored under inappropriate conditions. Peanut supply chain generally consists of several major stakeholders which include the producers, collectors, exporters, importers, manufacturers, retailers and finally, the consumers. A thorough examination of the processes along the supply chain reveals that Aspergillus section Flavi and aflatoxins could occur at any step along the chain, from farm to table. Thus, this review aims to give an overview on the prevalence of Aspergillus section Flavi and the occurrence of aflatoxins in raw peanuts and peanut-based products, the impact of aflatoxins on global trade, and aflatoxin management in peanuts with a special focus on peanut supply chain in Malaysia. Furthermore, aflatoxin detection and quantification methods as well as the identification of Aspergillus section Flavi are also reviewed herein. This review could help to shed light to the researchers, peanut stakeholders and consumers on the risk of aflatoxin contamination in peanuts along the supply chain.
Collapse
Affiliation(s)
- Mahror Norlia
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Selamat Jinap
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Son Radu
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nik Iskandar Putra Samsudin
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | - Farah Asilah Azri
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
28
|
Bandyopadhyay R, Atehnkeng J, Ortega-Beltran A, Akande A, Falade TDO, Cotty PJ. "Ground-Truthing" Efficacy of Biological Control for Aflatoxin Mitigation in Farmers' Fields in Nigeria: From Field Trials to Commercial Usage, a 10-Year Study. Front Microbiol 2019; 10:2528. [PMID: 31824438 PMCID: PMC6882503 DOI: 10.3389/fmicb.2019.02528] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 01/09/2023] Open
Abstract
In sub-Saharan Africa (SSA), diverse fungi belonging to Aspergillus section Flavi frequently contaminate staple crops with aflatoxins. Aflatoxins negatively impact health, income, trade, food security, and development sectors. Aspergillus flavus is the most common causal agent of contamination. However, certain A. flavus genotypes do not produce aflatoxins (i.e., are atoxigenic). An aflatoxin biocontrol technology employing atoxigenic genotypes to limit crop contamination was developed in the United States. The technology was adapted and improved for use in maize and groundnut in SSA under the trademark Aflasafe. Nigeria was the first African nation for which an aflatoxin biocontrol product was developed. The current study includes tests to assess biocontrol performance across Nigeria over the past decade. The presented data on efficacy spans years in which a relatively small number of maize and groundnut fields (8-51 per year) were treated through use on circa 36,000 ha in commercially-produced maize in 2018. During the testing phase (2009-2012), fields treated during one year were not treated in the other years while during commercial usage (2013-2019), many fields were treated in multiple years. This is the first report of a large-scale, long-term efficacy study of any biocontrol product developed to date for a field crop. Most (>95%) of 213,406 tons of maize grains harvested from treated fields contained <20 ppb total aflatoxins, and a significant proportion (>90%) contained <4 ppb total aflatoxins. Grains from treated plots had preponderantly >80% less aflatoxin content than untreated crops. The frequency of the biocontrol active ingredient atoxigenic genotypes in grains from treated fields was significantly higher than in grains from control fields. A higher proportion of grains from treated fields met various aflatoxin standards compared to grains from untreated fields. Results indicate that efficacy of the biocontrol product in limiting aflatoxin contamination is stable regardless of environment and cropping system. In summary, the biocontrol technology allows farmers across Nigeria to produce safer crops for consumption and increases potential for access to premium markets that require aflatoxin-compliant crops.
Collapse
Affiliation(s)
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | | | | | - Peter J. Cotty
- Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| |
Collapse
|
29
|
Wang X, You SH, Lien KW, Ling MP. Using disease-burden method to evaluate the strategies for reduction of aflatoxin exposure in peanuts. Toxicol Lett 2019; 314:75-81. [PMID: 31284020 DOI: 10.1016/j.toxlet.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/05/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022]
Abstract
Aflatoxin is a fungal secondary metabolite with high toxicity that is capable of contaminating various types of food crops. It has been identified as a Group 1 human carcinogen by the International Agency for Research on Cancer. Chronic aflatoxin exposure has caused worldwide concern as a matter of public food safety. Peanuts and peanut products are the major sources of aflatoxin exposure. Therefore, some reduction interventions have been developed to minimize contamination throughout the peanut production chain. The purpose of this study is to estimate the efficacy of interventions in reducing the health impact of hepatocellular carcinoma caused by aflatoxin contamination in peanuts. The estimated total Disability-Adjusted Life Years (DALYs) were calculated using FDA-iRISK software. Six aflatoxin reduction strategies were evaluated, including good agricultural practice (GAP), biocontrol, Purdue Improved Crop Storage packaging, basic processing, ozonolysis, and ultraviolet irradiation. The results indicated that basic processing could prevent huge public health loss of 4,079.7-21,833 total DALYs per year. In addition, GAP and biocontrol were both found to be effective strategies in the farm field. Meanwhile, the other three interventions had limited effectiveness in reducing total DALYs. In conclusion, this study could help farmers, processing plants, and government policy makers to alleviate aflatoxin contamination issues in the peanut production chain.
Collapse
Affiliation(s)
- Xin Wang
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | - Shu-Han You
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City, Taiwan
| | - Keng-Wen Lien
- Food and Drug Administration, Ministry of Health and Welfare, Taipei City, Taiwan; Institute of Food Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Min-Pei Ling
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan.
| |
Collapse
|
30
|
Agbetiameh D, Ortega-Beltran A, Awuah RT, Atehnkeng J, Islam MS, Callicott KA, Cotty PJ, Bandyopadhyay R. Potential of Atoxigenic Aspergillus flavus Vegetative Compatibility Groups Associated With Maize and Groundnut in Ghana as Biocontrol Agents for Aflatoxin Management. Front Microbiol 2019; 10:2069. [PMID: 31555251 PMCID: PMC6743268 DOI: 10.3389/fmicb.2019.02069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/22/2019] [Indexed: 11/24/2022] Open
Abstract
Increasing knowledge of the deleterious health and economic impacts of aflatoxin in crop commodities has stimulated global interest in aflatoxin mitigation. Current evidence of the incidence of Aspergillus flavus isolates belonging to vegetative compatibility groups (VCGs) lacking the ability to produce aflatoxins (i.e., atoxigenic) in Ghana may lead to the development of an aflatoxin biocontrol strategy to mitigate crop aflatoxin content. In this study, 12 genetically diverse atoxigenic African A. flavus VCGs (AAVs) were identified from fungal communities associated with maize and groundnut grown in Ghana. Representative isolates of the 12 AAVs were assessed for their ability to inhibit aflatoxin contamination by an aflatoxin-producing isolate in laboratory assays. Then, the 12 isolates were evaluated for their potential as biocontrol agents for aflatoxin mitigation when included in three experimental products (each containing four atoxigenic isolates). The three experimental products were evaluated in 50 maize and 50 groundnut farmers' fields across three agroecological zones (AEZs) in Ghana during the 2014 cropping season. In laboratory assays, the atoxigenic isolates reduced aflatoxin biosynthesis by 87-98% compared to grains inoculated with the aflatoxin-producing isolate alone. In field trials, the applied isolates moved to the crops and had higher (P < 0.05) frequencies than other A. flavus genotypes. In addition, although at lower frequencies, most atoxigenic genotypes were repeatedly found in untreated crops. Aflatoxin levels in treated crops were lower by 70-100% in groundnut and by 50-100% in maize (P < 0.05) than in untreated crops. Results from the current study indicate that combined use of appropriate, well-adapted isolates of atoxigenic AAVs as active ingredients of biocontrol products effectively displace aflatoxin producers and in so doing limit aflatoxin contamination. A member each of eight atoxigenic AAVs with superior competitive potential and wide adaptation across AEZs were selected for further field efficacy trials in Ghana. A major criterion for selection was the atoxigenic isolate's ability to colonize soils and grains after release in crop field soils. Use of isolates belonging to atoxigenic AAVs in biocontrol management strategies has the potential to improve food safety, productivity, and income opportunities for smallholder farmers in Ghana.
Collapse
Affiliation(s)
- Daniel Agbetiameh
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Richard T. Awuah
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Md-Sajedul Islam
- Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Kenneth A. Callicott
- Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Peter J. Cotty
- Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | | |
Collapse
|
31
|
Gong AD, Wu NN, Kong XW, Zhang YM, Hu MJ, Gong SJ, Dong FY, Wang JH, Zhao ZY, Liao YC. Inhibitory Effect of Volatiles Emitted From Alcaligenes faecalis N1-4 on Aspergillus flavus and Aflatoxins in Storage. Front Microbiol 2019; 10:1419. [PMID: 31293550 PMCID: PMC6603156 DOI: 10.3389/fmicb.2019.01419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/05/2019] [Indexed: 11/28/2022] Open
Abstract
Controlling aflatoxigenic Aspergillus flavus and aflatoxins (AFs) in grains and food during storage is a great challenge to humans worldwide. Alcaligenes faecalis N1-4 isolated from tea rhizosphere soil can produce abundant antifungal volatiles, and greatly inhibited the growth of A. flavus in un-contacted face-to-face dual culture testing. Gas chromatography tandem mass spectrometry revealed that dimethyl disulfide (DMDS) and methyl isovalerate (MI) were two abundant compounds in the volatile profiles of N1-4. DMDS was found to have the highest relative abundance (69.90%, to the total peak area) in N1-4, which prevented the conidia germination and mycelial growth of A. flavus at 50 and 100 μL/L, respectively. The effective concentration for MI against A. flavus is 200 μL/L. Additionally, Real-time quantitative PCR analysis proved that the expression of 12 important genes in aflatoxin biosynthesis pathway was reduced by these volatiles, and eight genes were down regulated by 4.39 to 32.25-folds compared to control treatment with significant differences. And the A. flavus infection and AFs contamination in groundnut, maize, rice and soybean of high water activity were completely inhibited by volatiles from N1-4 in storage. Scanning electron microscope further proved that A. flavus conidia inoculated on peanuts surface were severely damaged by volatiles from N1-4. Furthermore, strain N1-4 showed broad and antifungal activity to other six important plant pathogens including Fusarium graminearum, F. equiseti, Alternaria alternata, Botrytis cinerea, Aspergillus niger, and Colletotrichum graminicola. Thus, A. faecalis N1-4 and volatile DMDS and MI may have potential to be used as biocontrol agents to control A. flavus and AFs during storage.
Collapse
Affiliation(s)
- An-Dong Gong
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan-Nan Wu
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xian-Wei Kong
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yi-Mei Zhang
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Meng-Jun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Shuang-Jun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fei-Yan Dong
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jian-Hua Wang
- Institute for Agri-Food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhi-Yong Zhao
- Institute for Agri-Food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu-Cai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Zhou Y, Wang J, Gao X, Wang K, Wang W, Wang Q, Yan P. Isolation of a novel deep-sea Bacillus circulus strain and uniform design for optimization of its anti-aflatoxigenic bioactive metabolites production. Bioengineered 2019; 10:13-22. [PMID: 30836830 PMCID: PMC6527075 DOI: 10.1080/21655979.2019.1586055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The deep-sea bacterium strain FA13 was isolated from the sediment of the South Atlantic Ocean and identified as Bacillus circulans based on 16S ribosomal DNA sequence. Through liquid fermentation with five media, the cell-free supernatant fermented with ISP2 showed the highest inhibition activities against mycelial growth of Aspergillus parasiticus mutant strain NFRI-95 and accumulation of norsolorinic acid, a precursor for aflatoxin production. Based on ISP2, uniform design was used to optimize medium formula and fermentation conditions. After optimization, the inhibition efficacy of the 20-time diluted supernatant against A. parasiticus NFRI-95 mycelial growth and aflatoxin production was increased from 0–23.1% to 100%. Moreover, compared to the original protocol, medium cost and fermentation temperature were significantly reduced, and dependence on seawater was completely relieved, thus preventing the fermentor from corrosion. This is the first report of a deep-sea microorganism which can inhibit A. parasiticus NFRI-95 mycelial growth and aflatoxin production.
Collapse
Affiliation(s)
- Ying Zhou
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China.,b Key Laboratory of Marine Biogenetic Resources , Third Institute of Oceanography, State Oceanic Administration , Xiamen , China
| | - Jingying Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Xiujun Gao
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Kai Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Wenwei Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Qi Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Peisheng Yan
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| |
Collapse
|
33
|
Peromingo B, Andrade MJ, Delgado J, Sánchez-Montero L, Núñez F. Biocontrol of aflatoxigenic Aspergillus parasiticus by native Debaryomyces hansenii in dry-cured meat products. Food Microbiol 2019; 82:269-276. [PMID: 31027783 DOI: 10.1016/j.fm.2019.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022]
Abstract
Dry-cured meat products, such as dry-cured ham or dry-fermented sausages, are characterized by their particular ripening process, where a mould population grows on their surface. Some of these moulds are hazardous to the consumers because of their ability to produce mycotoxins including aflatoxins (AFs). The use of native yeasts could be considered a potential strategy for controlling the presence of AFs in dry-cured meat products. The aim of this work was to evaluate the antagonistic activity of two native Debaryomyces hansenii strains on the relative growth rate and the AFs production in Aspergillus parasiticus. Both D. hansenii strains significantly reduced the growth rates of A. parasiticus when grown in a meat-model system at different water activity (aw) conditions. The presence of D. hansenii strains caused a stimulation of AFs production by A. parasiticus at 0.99 aw. However, at 0.92 aw the yeasts significantly reduced the AFs concentration in the meat-model system. The relative expression levels of the aflR and aflS genes involved in the AFs biosynthetic pathway were also repressed at 0.92 aw in the presence of both D. hansenii strains. These satisfactory results were confirmed in dry-cured ham and dry-fermented sausage slices inoculated with A. parasiticus, since both D. hansenii strains significantly reduced AFs amounts in these matrices. Therefore, both tested D. hansenii strains could be proposed as biocontrol agents within a HACCP framework to minimize the hazard associated with the presence of AFs in dry-cured meat products.
Collapse
Affiliation(s)
- Belén Peromingo
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain
| | - María J Andrade
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain
| | - Josué Delgado
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain
| | - Lourdes Sánchez-Montero
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain
| | - Félix Núñez
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain.
| |
Collapse
|
34
|
Camiletti BX, Moral J, Asensio CM, Torrico AK, Lucini EI, Giménez-Pecci MDLP, Michailides TJ. Characterization of Argentinian Endemic Aspergillus flavus Isolates and Their Potential Use as Biocontrol Agents for Mycotoxins in Maize. PHYTOPATHOLOGY 2018; 108:818-828. [PMID: 29384448 DOI: 10.1094/phyto-07-17-0255-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Maize (Zea mays L.) is a highly valuable crop in Argentina, frequently contaminated with the mycotoxins produced by Aspergillus flavus. Biocontrol products formulated with atoxigenic (nontoxic) strains of this fungal species are well known as an effective method to reduce this contamination. In the present study, 83 A. flavus isolates from two maize regions of Argentina were characterized and evaluated for their ability to produce or lack of producing mycotoxins in order to select atoxigenic strains to be used as potential biocontrol agents (BCA). All of the isolates were tested for aflatoxin and cyclopiazonic acid (CPA) production in maize kernels and a liquid culture medium. Genetic diversity of the nonaflatoxigenic isolates was evaluated by analysis of vegetative compatibility groups (VCG) and confirmation of deletions in the aflatoxin biosynthesis cluster. Eight atoxigenic isolates were compared for their ability to reduce aflatoxin and CPA contamination in maize kernels in coinoculation tests. The A. flavus population was composed of 32% aflatoxin and CPA producers and 52% CPA producers, and 16% was determined as atoxigenic. All of the aflatoxin producer isolates also produced CPA. Aflatoxin and CPA production was significantly higher in maize kernels than in liquid medium. The 57 nonaflatoxigenic strains formed six VCG, with AM1 and AM5 being the dominant groups, with a frequency of 58 and 35%, respectively. In coinoculation experiments, all of the atoxigenic strains reduced aflatoxin from 54 to 83% and CPA from 60 to 97%. Members of group AM1 showed a greater aflatoxin reduction than members of AM5 (72 versus 66%) but no differences were detected in CPA production. Here, we described for the first time atoxigenic isolates of A. flavus that show promise to be used as BCA in maize crops in Argentina. This innovating biological control approach should be considered, developed further, and used by the maize industry to preserve the quality properties and food safety of maize kernels in Argentina.
Collapse
Affiliation(s)
- Boris X Camiletti
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Juan Moral
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Claudia M Asensio
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Ada Karina Torrico
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Enrique I Lucini
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - María de la Paz Giménez-Pecci
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Themis J Michailides
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| |
Collapse
|
35
|
Jeyaramraja P, Meenakshi SN, Woldesenbet F. Relationship between drought and preharvest aflatoxin contamination in groundnut (Arachis hypogaea L.). WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Groundnut is a commercial oilseed crop that is prone to infection by Aspergillus flavus or Aspergillus parasiticus. Drought impairs the defence mechanism of the plant and favours the production of aflatoxin by the fungus. Aflatoxin is a carcinogen and its presence in food and feed causes significant economic loss. The answer to the question, ‘how drought tolerance and aflatoxin resistance are related?’ is not clear. In this review paper, the relationship of drought and preharvest aflatoxin contamination (AC), the relationship of drought tolerance traits and AC, and the approaches to enhance resistance to AC are discussed using up-to-date literature. Factors leading to AC are drought, high geocarposphere temperature, kernel/pod damage, and reduced phytoalexin synthesis by the plant. If the fungus colonises a kernel with reduced water activity, the plant cannot synthesise phytoalexin and then, the fungus synthesises aflatoxin. Breeding for resistance to AC is complicated because aflatoxin concentration is costly to measure, highly variable, and influenced by the environment. Since drought tolerant cultivars have resistance to AC, traits of drought tolerance have been used as indirect selection tools for reduced AC. The genetics of aflatoxin resistance mechanisms have not been made clear as the environment influences the host-pathogen relationship. Host-pathogen interactions under the influence of environment should be studied at molecular level to identify plant resistant factors using the tools of genomics, proteomics, and metabolomics in order to develop cultivars with durable resistance. Many candidate genes involved in host-pathogen interactions have been identified due to improvements in fungal expressed sequence tags, microarrays, and genome sequencing techniques. Moreover, research projects are underway on identifying genes coding for antifungal compounds, resistance associated proteins and quantitative trait loci associated with aflatoxin resistance. This review is expected to help those who wish to work on reducing AC in groundnuts.
Collapse
Affiliation(s)
- P.R. Jeyaramraja
- Department of Biology, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Gamo Gofa Zone, Ethiopia
| | - S. Nithya Meenakshi
- Department of Botany, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641 004, Tamilnadu, India
| | - F. Woldesenbet
- Department of Biology, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Gamo Gofa Zone, Ethiopia
| |
Collapse
|
36
|
Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents. Int J Food Microbiol 2018; 277:58-63. [PMID: 29684766 DOI: 10.1016/j.ijfoodmicro.2018.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/26/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
Aspergillus flavus is an opportunistic pathogen and may produce aflatoxins in maize, one of the most important crops in Argentina. A promising strategy to reduce aflatoxin accumulation is the biological control based on competitive exclusion. In order to select potential biocontrol agents among isolates from the maize growing region in Argentina, a total of 512 A. flavus strains were isolated from maize kernels and soil samples. Thirty-six per cent of the isolates from maize kernels did not produce detectable levels of aflatoxins, while 73% of the isolates from soil were characterized as non-aflatoxin producers. Forty percent and 49% of the isolates from maize kernels and soil samples, respectively, were not producers of cyclopiazonic acid (CPA). Sclerotia morphology was evaluated using Czapek Dox media. Eighty-six per cent of the isolates from maize kernels and 85% of the isolates from soil samples were L sclerotia morphotype (average diameter > 400 μm). The remaining isolates did not produce sclerotia. All isolates had MAT 1-1 idiomorph. The competitive ability of 9 non aflatoxigenic strains, 4 CPA(+) and 5 CPA(-), was evaluated in co-inoculations of maize kernels with an aflatoxigenic strain. All evaluated strains significantly (p < 0.05) reduced aflatoxin contamination in maize kernels. The aflatoxin B1 (AFB1) reduction ranged from 6 to 60%. The strain A. flavus ARG5/30 isolated from maize kernels would be a good candidate as a potential biocontrol agent to be used in maize, since it was characterized as neither aflatoxin nor CPA producer, morphotype L, MAT 1-1 idiomorph, and reduced AFB1 content in maize kernels by 59%. This study showed the competitive ability of potential aflatoxin biocontrol agents to be evaluated under field trials in a maize agro-ecosystem in Argentina.
Collapse
|
37
|
Mamo FT, Shang B, Selvaraj JN, Wang Y, Liu Y. Isolation and characterization of Aspergillus flavus strains in China. J Microbiol 2018; 56:119-127. [PMID: 29392555 DOI: 10.1007/s12275-018-7144-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022]
Abstract
Important staple foods (peanuts, maize and rice) are susceptible to contamination by aflatoxin (AF)-producing fungi such as Aspergillus flavus. The objective of this study was to explore non-aflatoxin-producing (atoxigenic) A. flavus strains as biocontrol agents for the control of AFs. In the current study, a total of 724 A. flavus strains were isolated from different regions of China. Polyphasic approaches were utilized for species identification. Non-aflatoxin and non-cyclopiazonic acid (CPA)-producing strains were further screened for aflatoxin B1 (AFB1) biosynthesis pathway gene clusters using a PCR assay. Strains lacking an amplicon for the regulatory gene aflR were then analyzed for the presence of the other 28 biosynthetic genes. Only 229 (32%) of the A. flavus strains were found to be atoxigenic. Smaller (S) sclerotial phenotypes were dominant (51%) compared to large (L, 34%) and non-sclerotial (NS, 15%) phenotypes. Among the atoxigenic strains, 24 strains were PCR-negative for the fas-1 and aflJ genes. Sixteen (67%) atoxigenic A. flavus strains were PCRnegative for 10 or more of the biosynthetic genes. Altogether, 18 new PCR product patterns were observed, indicating great diversity in the AFB1 biosynthesis pathway. The current study demonstrates that many atoxigenic A. flavus strains can be isolated from different regions of China. In the future laboratory as well as field based studies are recommended to test these atoxigenic strains as biocontrol agents for aflatoxin contamination.
Collapse
Affiliation(s)
- Firew Tafesse Mamo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Bo Shang
- Academy of State Administration of Grain, Beijing, 100037, P. R. China
| | | | - Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China.
| |
Collapse
|
38
|
Sarma UP, Bhetaria PJ, Devi P, Varma A. Aflatoxins: Implications on Health. Indian J Clin Biochem 2017; 32:124-133. [PMID: 28428686 DOI: 10.1007/s12291-017-0649-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 01/02/2023]
Abstract
Environmental occurrence of Aspergillus and other fungal spores are hazardous to humans and animals. They cause a broad spectrum of clinical complications. Contamination of aflatoxins in agri-food and feed due to A. flavus and A. parasiticus result in toxicity in humans and animals. Recent advances in aspergillus genomics and aflatoxin management practices are encouraging to tackle the challenges posed by important aspergillus species.
Collapse
Affiliation(s)
- Usha P Sarma
- Department of Plant Pathology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012 India
| | - Preetida J Bhetaria
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Prameela Devi
- Department of Plant Pathology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012 India
| | - Anupam Varma
- Department of Plant Pathology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012 India
| |
Collapse
|