1
|
Chen Y, Yang Y, Cai W, Zeng J, Liu N, Wan Y, Fu G. Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process. Crit Rev Food Sci Nutr 2023; 63:12308-12323. [PMID: 35848108 DOI: 10.1080/10408398.2022.2101090] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Saccharomyces cerevisiae plays a decisive role in the brewing of alcohol products, and the ideal growth and fermentation characteristics can give the pure flavor of alcohol products. However, S. cerevisiae can be affected profoundly by environmental factors during the brewing process, which have negative effects on the growth and fermentation characteristics of S. cerevisiae, and seriously hindered the development of brewing industry. Therefore, we summarized the environmental stress factors (ethanol, organic acids, temperature and osmotic pressure) that affect S. cerevisiae during the brewing process. Their impact mechanisms and the metabolic adaption of S. cerevisiae in response to these stress factors. Of note, S. cerevisiae can increase the ability to resist stress factors by changing the cell membrane components, expressing transcriptional regulatory factors, activating the anti-stress metabolic pathway and enhancing ROS scavenging ability. Meantime, the strategies and methods to improve the stress- tolerant ability of S. cerevisiae during the brewing process were also introduced. Compared with the addition of exogenous anti-stress substances, mutation breeding and protoplast fusion, it appears that adaptive evolution and genetic engineering are able to generate ideal environmental stress tolerance strains of S. cerevisiae and are more in line with the needs of the current brewing industry.
Collapse
Affiliation(s)
- Yanru Chen
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering & Biotechnology, Taizhou, PR China
| | - Wenqin Cai
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Jiali Zeng
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Na Liu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| |
Collapse
|
2
|
Yan X, Li S, Tu T, Li Y, Niu M, Tong Y, Yang Y, Xu T, Zhao J, Shen C, Wang S. Free amino acids identification and process optimization in greengage wine fermentation and flavor formation. J Food Sci 2023; 88:988-1003. [PMID: 36691797 DOI: 10.1111/1750-3841.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 12/20/2022] [Indexed: 01/25/2023]
Abstract
Greengage wine with low alcohol content is increasing in popularity owing to its fruity taste and rich nutrition. The key to wine aroma and taste is flavor substances like free amino acids (FAAs), volatile fatty acids, higher alcohols, and esters. Amino acid (AA) metabolisms in yeast are an important source of these secondary compounds, which vary with the fermentation conditions. This study explored and optimized the impact of different parameters (carbon source, inoculum, pH, temperature) on FAA contents and dynamics in greengage wine. The results demonstrated that total and essential amino acid (EAA) content rose with a higher proportion of glucose, less yeast inoculation, higher temperature, and higher initial pH. With the results obtained it was concluded that the condition of 22.4°C, pH 4.5, and 3% inoculation was optimum for a 14.9-fold increase of EAAs in fermented greengage wine. In the long run, the research will aid in the development of the greengage brewing industry.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shu Li
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China.,Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tingyao Tu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yiqin Li
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Mansi Niu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yuqin Tong
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yang Yang
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Tao Xu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Caihong Shen
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Songtao Wang
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| |
Collapse
|
3
|
Cui Y, Cao J, Wu Z, Du J. The Effects of Harvesting Methods and Crop Numbers of Top-Fermenting Yeasts on the Flavor of Wheat Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2081958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yunqian Cui
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jing Cao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Zimeng Wu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Junjie Du
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| |
Collapse
|
4
|
Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics 2022; 114:110386. [PMID: 35569731 DOI: 10.1016/j.ygeno.2022.110386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions. Transcriptomic analysis of the three strains revealed a huge complexity of cellular mechanisms and responses. Overall, cold exerted a stronger transcriptional response in the three strains comparing with heat conditions, with a higher number of down-regulating genes than of up-regulating genes regardless the strain analyzed. The comparison of the transcriptome at both sub- and supra-optimal temperatures showed the presence of common genes up- or down-regulated in both conditions, but also the presence of common genes up- or down-regulated in the three studied strains. More specifically, we have identified and validated three up-regulated genes at sub-optimal temperature in the three strains, OPI3, EFM6 and YOL014W. Finally, the comparison of the transcriptomic data with a previous proteomic study with the same strains revealed a good correlation between gene activity and protein abundance, mainly at low temperature. Our work provides a global insight into the specific mechanisms involved in temperature adaptation regarding both transcriptome and proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Collapse
|
5
|
Predicting Fermentation Rates in Ale, Lager and Whisky. FERMENTATION 2021. [DOI: 10.3390/fermentation7010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently there has been an increased interest in characterising the rates of alcoholic fermentations. Sigmoidal models have been used to predict changes such as the rate of density decline. In this study, three published sigmoidal models were assessed and fit to industrial fermentation data. The first is the four-parameter logistic model described in the ASBC Yeast-14 method. The second model is a nested form of the four-parameter logistic function, adding an extra parameter, creating the 5-parameter logistic equation., where an additional parameter was added to allow for asymmetry. The final model is a three-parameter logistic equation which describes the change in the Apparent Degree of Fermentation with time. The three models were compared by fitting them to industrial data from Australian and Canadian lagers, American and Scottish ales and Scotch Whisky fermentations. The model fits were then compared to one another with a technique developed by Akaike and a nested F-test. The Akaike information criterion compares the models and accounts for both the goodness of fit, and the number of parameters in the model. Finally, consideration was given to the establishment of prediction bands (that enclose the area that one can be 99% sure contains the true datapoints). Calculation of these bands was “challenging” but successful as the industrial fermentation data was heteroscedastic.
Collapse
|
6
|
Next Generation Winemakers: Genetic Engineering in Saccharomyces cerevisiae for Trendy Challenges. Bioengineering (Basel) 2020; 7:bioengineering7040128. [PMID: 33066502 PMCID: PMC7712467 DOI: 10.3390/bioengineering7040128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The most famous yeast of all, Saccharomyces cerevisiae, has been used by humankind for at least 8000 years, to produce bread, beer and wine, even without knowing about its existence. Only in the last century we have been fully aware of the amazing power of this yeast not only for ancient uses but also for biotechnology purposes. In the last decades, wine culture has become and more demanding all over the world. By applying as powerful a biotechnological tool as genetic engineering in S. cerevisiae, new horizons appear to develop fresh, improved, or modified wine characteristics, properties, flavors, fragrances or production processes, to fulfill an increasingly sophisticated market that moves around 31.4 billion € per year.
Collapse
|
7
|
DNA Methylation Changes Induced by Cold in Psychrophilic and Psychrotolerant Naganishia Yeast Species. Microorganisms 2020; 8:microorganisms8020296. [PMID: 32093408 PMCID: PMC7074839 DOI: 10.3390/microorganisms8020296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
The involvement of DNA methylation in the response to cold stress of two different yeast species (Naganishia antarctica, psychrophilic, and Naganishia albida, psychrotolerant), exhibiting different temperature aptitudes, has been studied. Consecutive incubations at respective optimum temperatures, at 4 °C (cold stress) and at optimum temperatures again, were performed. After Methylation Sensitive Amplified Polymorphism (MSAP) fingerprints a total of 550 and 423 clear and reproducible fragments were amplified from N. antarctica and N. albida strains, respectively. The two Naganishia strains showed a different response in terms of level of DNA methylation during cold stress and recovery from cold stress. The percentage of total methylated fragments in psychrophilic N. antarctica did not show any significant change. On the contrary, the methylation of psychrotolerant N. albida exhibited a nonsignificant increase during the incubation at 4 °C and continued during the recovery step, showing a significant difference if compared with control condition, resembling an uncontrolled response to cold stress. A total of 12 polymorphic fragments were selected, cloned, and sequenced. Four fragments were associated to genes encoding for elongation factor G and for chitin synthase export chaperon. To the best of our knowledge, this is the first study on DNA methylation in the response to cold stress carried out by comparing a psychrophilic and a psychrotolerant yeast species.
Collapse
|
8
|
Liu PT, Yu KJ, Li YT, Duan CQ, Yan GL. The content of linoleic acid in grape must influences the aromatic effect of branched-chain amino acids addition on red wine. Food Res Int 2018; 114:214-222. [DOI: 10.1016/j.foodres.2018.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 11/28/2022]
|
9
|
Peter JJ, Watson TL, Walker ME, Gardner JM, Lang TA, Borneman A, Forgan A, Tran T, Jiranek V. Use of a wine yeast deletion collection reveals genes that influence fermentation performance under low-nitrogen conditions. FEMS Yeast Res 2018; 18:4841842. [DOI: 10.1093/femsyr/foy009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/05/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Josephine J Peter
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tommaso L Watson
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Michelle E Walker
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Jennifer M Gardner
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tom A Lang
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Angus Forgan
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tina Tran
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
10
|
Gibson B, Geertman JMA, Hittinger CT, Krogerus K, Libkind D, Louis EJ, Magalhães F, Sampaio JP. New yeasts—new brews: modern approaches to brewing yeast design and development. FEMS Yeast Res 2017; 17:3861261. [DOI: 10.1093/femsyr/fox038] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
|
11
|
Krogerus K, Magalhães F, Vidgren V, Gibson B. Novel brewing yeast hybrids: creation and application. Appl Microbiol Biotechnol 2016; 101:65-78. [PMID: 27885413 PMCID: PMC5203825 DOI: 10.1007/s00253-016-8007-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland. .,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland.
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland.,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| |
Collapse
|