1
|
Charmpi C, Thamsborg KKM, Mikalsen SO, Magnussen E, Sosa Fajardo A, Van der Veken D, Leisner JJ, Leroy F. Bacterial species diversity of traditionally ripened sheep legs from the Faroe Islands (skerpikjøt). Int J Food Microbiol 2023; 386:110023. [PMID: 36463775 DOI: 10.1016/j.ijfoodmicro.2022.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Skerpikjøt is a traditionally ripened sheep leg product from the Faroe Islands, constituting a relatively underexplored microbial ecosystem. The objective of this study is to achieve a deeper understanding of the microbial composition of this artisanal product. Nine ripened hind legs, obtained from three different producers, were assessed regarding their bacterial communities and contents of biogenic amines, including both surface and core samples. Biogenic amine concentrations were generally low, although one sample had a somewhat elevated concentration of cadaverine. Bacterial diversity was investigated by culture-dependent and culture-independent techniques. Gram-positive catalase-positive cocci (GCC) constituted the most abundant group. Within this group, Staphylococcus equorum was the most prevailing species, followed by Kocuria sp., Mammaliicoccus vitulinus, and Staphylococcus saprophyticus. Lactic acid bacteria prevailed in only one sample and were mainly represented by Latilactobacillus curvatus. Enterobacterial communities were characterised by the prevalence of Serratia proteamaculans. Despite the majority of GCC, Clostridium putrefaciens was the most abundant bacterial species in some core samples. Taken together, the culture-dependent and culture-independent identification methods gave complementary results.
Collapse
Affiliation(s)
- Christina Charmpi
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Kristian Key Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Svein-Ole Mikalsen
- Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO-100 Tórshavn, Faroe Islands
| | - Eyðfinn Magnussen
- Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO-100 Tórshavn, Faroe Islands
| | - Ana Sosa Fajardo
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Jørgen J Leisner
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium.
| |
Collapse
|
2
|
Optimization of Gamma Aminobutyric Acid Production Using High Pressure Processing (HPP) by Lactobacillus brevis PML1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8540736. [PMID: 35071599 PMCID: PMC8776451 DOI: 10.1155/2022/8540736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
In the present research, the production potential of gamma aminobutyric acid (GABA) using Lactobacillus brevis PML1 was investigated. In addition, the microorganism viability was examined in MAN, ROGOSA, and SHARPE (MRS) after undergoing high hydrostatic pressure at 100, 200, and 300 MPa for 5, 10, and 15 min. Response surface methodology (RSM) was applied to optimize the production conditions of GABA as well as the bacteria viability. Analysis of variance (ANOVA) indicated that both the independent variables (pressure and time) significantly influenced the dependent ones (GABA and bacteria viability) (
). The optimum extraction conditions to maximize the production of GABA included the pressure of 300 MPa and the time of 15 min. The amount of the compound was quantified using thin-layer chromatography (TLC) and spectrophotometry. For the process optimization, a central composite design (CCD) was created using Design Expert with 5 replications at the center point, whereby the highest content of GABA was obtained to be 397.73 ppm which was confirmed by high performance liquid chromatography (HPLC). Moreover, scanning electron microscopy (SEM) was utilized to observe the morphological changes in the microorganism. The results revealed that not only did have Lactobacillus brevis PML1 the potential for the production of GABA under conventional conditions (control sample) but also the content of this bioactive compound could be elevated by optimizing the production parameters.
Collapse
|
3
|
Volatile compounds in high-pressure-treated dry-cured ham: A review. Meat Sci 2021; 184:108673. [PMID: 34662747 DOI: 10.1016/j.meatsci.2021.108673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022]
Abstract
The use of high pressure processing (HPP) for the treatment of dry-cured ham and other meat products has considerably increased worldwide. Its well-documented lethal effect on pathogenic and spoilage bacteria ensures the microbial safety of dry-cured ham and extends its shelf life. However, the effects of HPP on the volatile compounds, odor and aroma of dry-cured ham are less known. In the present review, the effects of HPP on the enzymes and microorganisms responsible for the generation of volatile compounds in dry-cured ham and the changes in the levels of the main groups of volatile compounds resulting from different HPP treatments are discussed. Particular attention is devoted to the fate of odor-active compounds after HPP treatments and throughout further commercial storage. The use of efficient sensory techniques yielding odor and aroma outputs closer to those perceived by consumers is encouraged. Needs for future research on the volatile compounds, odor and aroma of HPP-treated dry-cured ham are highlighted.
Collapse
|
4
|
Zhang XM, Dang XJ, Wang YB, Sun T, Wang Y, Yu H, Yang WS. Diversity and composition of microbiota during fermentation of traditional Nuodeng ham. J Microbiol 2020; 59:20-28. [PMID: 33355893 DOI: 10.1007/s12275-021-0219-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023]
Abstract
The microbial community is one of the most important factors in shaping the characteristics of fermented food. Nuodeng ham, traditionally produced and subjected to 1-4 years of fermentation, is a dry fermented food product with cultural and economic significance to locals in southwestern China. In this study, we aimed to characterize the microbiota and physicochemical profiles of Nuodeng ham across different stages of fermentation. Ham samples from each of the four years were analyzed by sequencing bacterial 16S rRNA gene and fungal internal transcribed spacer sequence, in order to characterize the diversity and composition of their microflora. A total of 2,679,483 bacterial and 2,983,234 fungal sequences of high quality were obtained and assigned to 514 and 57 genera, respectively. Among these microbes, Staphylococcus and Candida were the most abundant genera observed in the ham samples, though samples from different years showed differences in their microbial abundance. Results of physicochemical properties (pH, water, amino acid, NaCl, nitrate and nitrite contents, and the composition of volatile compounds) revealed differences among the ham samples in the composition of volatile compounds, especially in the third year samples, in which no nitrite was detected. These results suggest that the structure and diversity of microbial communities significantly differed across different stages of fermentation. Moreover, the third year hams exhibits a unique and balanced microbial community, which might contribute to the special flavor in the green and safe food products. Thus, our study lends insights into the production of high quality Nuodeng ham.
Collapse
Affiliation(s)
- Xiao-Mei Zhang
- Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, P. R. China.,College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, P. R. China.,The Research Center of Cordyceps Development and Utilization of Kunming, Yunnan Herbal Biotech Co. Ltd, Kunming, 650106, P. R. China
| | - Xi-Jun Dang
- Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, P. R. China.,The Research Center of Cordyceps Development and Utilization of Kunming, Yunnan Herbal Biotech Co. Ltd, Kunming, 650106, P. R. China
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, P. R. China.,The Research Center of Cordyceps Development and Utilization of Kunming, Yunnan Herbal Biotech Co. Ltd, Kunming, 650106, P. R. China
| | - Tao Sun
- Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, P. R. China.,The Research Center of Cordyceps Development and Utilization of Kunming, Yunnan Herbal Biotech Co. Ltd, Kunming, 650106, P. R. China
| | - Yao Wang
- Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, P. R. China.,The Research Center of Cordyceps Development and Utilization of Kunming, Yunnan Herbal Biotech Co. Ltd, Kunming, 650106, P. R. China
| | - Hong Yu
- Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, P. R. China. .,The Research Center of Cordyceps Development and Utilization of Kunming, Yunnan Herbal Biotech Co. Ltd, Kunming, 650106, P. R. China.
| | - Wu-Song Yang
- The Nuodeng Ham Plant Based in Dali State, Yunnan, Dali, P. R. China
| |
Collapse
|
5
|
Gomez-Samblas M, Vilchez S, Ortega-Velázquez R, Fuentes MV, Osuna A. Absence of Toxoplasma gondii in 100% Iberian products from experimentally infected pigs cured following a specific traditional process. Food Microbiol 2020; 95:103665. [PMID: 33397604 DOI: 10.1016/j.fm.2020.103665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
Infection with Toxoplasma gondii in humans has usually been related to the consumption of raw, undercooked or cured meat. Our study is based on the detection of T. gondii in cured legs and shoulders made from 100% Iberian sows fed mainly with acorn and raised as outdoor livestock in Aracena (Spain), which having been elaborated following a specific curing process (time period and location). An outdoor farm with a total of 636 animals was studied, showing a seroprevalence of 10% for the parasite T. gondii. Twenty individuals were chosen to be experimentally infected and slaughtered 60 days post-infection. Their legs and shoulders were processed to make 100% Iberian ham legs and shoulders. The meat ready to be eaten was analyzed by quantification and viability assays using magnetic capture real-time qPCR and bioassay techniques proving that this specific traditional "Cinco Jotas" curing process 100% Iberian ham is strong enough to eliminate the parasite T. gondii, resulting in a safe product for consumers.
Collapse
Affiliation(s)
- Mercedes Gomez-Samblas
- Instituto de Biotecnología, Universidad de Granada, Campus Universitario Fuentenueva, 18071, Granada, Spain; Grupo de Bioquímica y Parasitología Molecular. Departamento de Parasitología, Universidad de Granada, Campus Universitario Fuentenueva, 18071, Granada, Spain.
| | - Susana Vilchez
- Instituto de Biotecnología, Universidad de Granada, Campus Universitario Fuentenueva, 18071, Granada, Spain; Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Campus Universitario Fuentenueva, 18071, Granada, Spain
| | - Rocío Ortega-Velázquez
- Sanchez Romero Carvajal Jabugo SA, ctra. San Juan del Puerto s/n, 21290, Jabugo, Huelva, Spain
| | - Màrius V Fuentes
- Parasites & Health Research Group, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Av. Vicent, Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Antonio Osuna
- Instituto de Biotecnología, Universidad de Granada, Campus Universitario Fuentenueva, 18071, Granada, Spain; Grupo de Bioquímica y Parasitología Molecular. Departamento de Parasitología, Universidad de Granada, Campus Universitario Fuentenueva, 18071, Granada, Spain.
| |
Collapse
|
6
|
Pérez-Baltar A, Alía A, Rodríguez A, Córdoba JJ, Medina M, Montiel R. Impact of Water Activity on the Inactivation and Gene Expression of Listeria monocytogenes during Refrigerated Storage of Pressurized Dry-Cured Ham. Foods 2020; 9:E1092. [PMID: 32785197 PMCID: PMC7466251 DOI: 10.3390/foods9081092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes population and the expression patterns of three virulence (plcA, hly, and iap) and one stress-related (sigB) genes in dry-cured ham with different water activity (aw) values (0.92, 0.88, and 0.84) and treated with high pressure processing (HPP, 450 MPa/10 min and 600 MPa/5 min) were monitored throughout 30 days (d) at 4 °C. The antimicrobial effect of HPP at 600 MPa against L. monocytogenes S4-2 (serotype 1/2b) and S12-1 (serotype 1/2c) was greater in dry-cured ham with aw values of 0.92, with reductions of 2.5 and 2.8 log units, respectively. The efficacy of HPP treatments decreased at lower aw values. Regarding gene expression, L. monocytogenes strains responded differently to HPP. For strain S4-2, the four target genes were generally overexpressed in dry-cured ham immediately after HPP treatments at the three aw values investigated, although the extent of this induction was lower in the samples pressurized at 600 MPa and with aw values of 0.84. For strain S12-1, the expression of all target genes was repressed at the three aw values investigated. The antimicrobial efficacy of HPP against L. monocytogenes could be compromised by low aw values in food products. However, no growth of HPP-survival cells was observed during refrigerated storage in low-aw dry-cured ham, and the overexpression of virulence and stress-related genes decreased.
Collapse
Affiliation(s)
- Aida Pérez-Baltar
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (A.P.-B.); (M.M.)
| | - Alberto Alía
- Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de la Universidad, s/n., 10003 Cáceres, Spain; (A.A.); (A.R.); (J.J.C.)
| | - Alicia Rodríguez
- Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de la Universidad, s/n., 10003 Cáceres, Spain; (A.A.); (A.R.); (J.J.C.)
| | - Juan José Córdoba
- Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de la Universidad, s/n., 10003 Cáceres, Spain; (A.A.); (A.R.); (J.J.C.)
| | - Margarita Medina
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (A.P.-B.); (M.M.)
| | - Raquel Montiel
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (A.P.-B.); (M.M.)
| |
Collapse
|
7
|
Rosario DKA, Rodrigues BL, Bernardes PC, Conte-Junior CA. Principles and applications of non-thermal technologies and alternative chemical compounds in meat and fish. Crit Rev Food Sci Nutr 2020; 61:1163-1183. [PMID: 32319303 DOI: 10.1080/10408398.2020.1754755] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods of food preservation have demonstrated several disadvantages and limitations in the efficiency of the microbial load reduction and maintain food quality. Hence, non-thermal preservation technologies (NTPT) and alternative chemical compounds (ACC) have been considered a high promissory replacer to decontamination, increasing the shelf life and promoting low levels of physicochemical, nutritional and sensorial alterations of meat and fish products. The combination of these methods can be a potential alternative to the food industry. This review deals with the most critical aspects of the mechanisms of action under microbial, physicochemical, nutritional and sensorial parameters and the efficiency of the different NTPT (ultrasound, high pressure processing, gamma irradiation and UV-C radiation) and ACC (peracetic acid, bacteriocins, nanoparticles and essential oils) applied in meat and fish products. The NTPT and ACC present a high capacity of microorganisms inactivation, ensuring low alterations level in the matrix and high reduction of environmental impact. However, the application conditions of the different methods as exposition time, energy intensity and concentration thresholds of chemical compounds need to be specifically established and continuously improved for each matrix type to reduce to the maximum the physicochemical, nutritional and sensorial changes. In addition, the combination of the methods (hurdle concept) may be an alternative to enhance the matrix decontamination. In this way, undesirable changes in meat and fish products can be further reduced without a decrease in the efficiency of the decontamination.
Collapse
Affiliation(s)
- Denes K A Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil
| | - Bruna L Rodrigues
- Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil
| | - Patricia C Bernardes
- Department of Food Engineering, Federal University of Espírito Santo, Alegre, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil.,National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Martínez-Onandi N, Sánchez C, Nuñez M, Picon A. Microbiota of Iberian dry-cured ham as influenced by chemical composition, high pressure processing and prolonged refrigerated storage. Food Microbiol 2019; 80:62-69. [PMID: 30704597 DOI: 10.1016/j.fm.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/20/2018] [Accepted: 01/06/2019] [Indexed: 11/24/2022]
Abstract
The effect of high pressure processing (HPP) on the microbiota of ripened Iberian ham of different water activity, salt concentration and intramuscular fat content was investigated before and after a 5-month refrigeration period. At the beginning of the refrigeration period, the only significant effects of chemical composition were those of water activity on psychrotrophs and Micrococcaceae in untreated hams, and of the salt-in-lean ratio on lactic acid bacteria in HPP-treated hams. At the end of the refrigeration period, the only significant effect was that of intramuscular fat content on moulds and yeasts in HPP-treated samples. All microbial groups were significantly affected by HPP, with reductions ranging from 1.7 to 2.0 log cycles after treatment. A significant recovery of all microbial groups took place in HPP-treated hams during the refrigeration period, with increases ranging from 0.5 to 1.1 log cycles. In spite of this recovery, microbial levels in HPP-treated hams remained significantly lower than in untreated hams. Staphylococcus accounted for 93.4% of Iberian ham bacterial isolates, with S. equorum as the most abundant species. Representatives of the Tetragenococcus, Carnobacterium and Streptomyces genera, not previously reported in dry-cured ham, were also isolated. Most of the yeast isolates (75.0%) were identified as Debaryomyces hansenii.
Collapse
Affiliation(s)
- Nerea Martínez-Onandi
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Carmen Sánchez
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Manuel Nuñez
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Antonia Picon
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Hernández A, Pérez-Nevado F, Ruiz-Moyano S, Serradilla MJ, Villalobos MC, Martín A, Córdoba MG. Spoilage yeasts: What are the sources of contamination of foods and beverages? Int J Food Microbiol 2018; 286:98-110. [PMID: 30056262 DOI: 10.1016/j.ijfoodmicro.2018.07.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Foods and beverages are nutrient-rich ecosystems in which most microorganisms are able to grow. Moreover, several factors, such as physicochemical characteristics, storage temperature, culinary practices, and application of technologies for storage, also define the microbial population of foods and beverages. The yeast population has been well-characterised in fresh and processed fruit and vegetables, dairy products, dry-cured meat products, and beverages, among others. Some species are agents of alteration in different foods and beverages. Since the most comprehensive studies of spoilage yeasts have been performed in the winemaking process, hence, these studies form the thread of the discussion in this review. The natural yeast populations in raw ingredients and environmental contamination in the manufacturing facilities are the main modes by which food contamination occurs. After contamination, yeasts play a significant role in food and beverage spoilage, particularly in the alteration of fermented foods. Several mechanisms contribute to spoilage by yeasts, such as the production of lytic enzymes (lipases, proteases, and cellulases) and gas, utilisation of organic acids, discolouration, and off-flavours. This review addresses the role of yeasts in foods and beverages degradation by considering the modes of contamination and colonisation by yeasts, the yeast population diversity, mechanisms involved, and the analytical techniques for their identification, primarily molecular methods.
Collapse
Affiliation(s)
- A Hernández
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain.
| | - F Pérez-Nevado
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - S Ruiz-Moyano
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - M J Serradilla
- Área de Vegetales, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), A5 km 372, 06187 Guadajira, Spain
| | - M C Villalobos
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - A Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - M G Córdoba
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| |
Collapse
|
10
|
Effect of High-Pressure Processing on Quality and Microbiological Properties of a Fermented Beverage Manufactured from Sweet Whey Throughout Refrigerated Storage. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2078-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|