1
|
Papafragkou E, Kita-Yarbro A, Yang Z, Chhabra P, Davis T, Blackmore J, Ziemer C, Klos R, Hall AJ, Vinjé J. Traceback and Testing of Food Epidemiologically Linked to a Norovirus Outbreak at a Wedding Reception. J Food Prot 2024:100395. [PMID: 39505084 DOI: 10.1016/j.jfp.2024.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
We investigated a suspected norovirus outbreak associated with a wedding reception in Wisconsin in May 2015. Fifty-six of 106 (53%) wedding attendees were interviewed and 23 (41%) reported symptoms consistent with norovirus infection. A retrospective cohort study identified fruit salad as the likely vehicle of infection (risk ratio 3.2, 95% confidence interval 1.1- 8.3). Norovirus was detected by real-time reverse transcription polymerase chain reaction (RT-qPCR) in stool specimens collected from four attendees and one food handler and in 12 leftover fruit salad samples from both an opened and a sealed container. Norovirus-positive clinical samples (n=4) were genotyped as GII.4 Sydney and norovirus-positive fruit salad samples (n=2) confirmed the presence of GII.4 norovirus by Sanger sequencing with 98% nucleotide (n=236) similarity in 5' end of ORF2 between fruit salad and clinical specimens. In conclusion, this comprehensive norovirus outbreak investigation combined epidemiologic, virologic, and environmental findings to traceback the contaminated food as the source of the outbreak.
Collapse
Affiliation(s)
| | | | - Zihui Yang
- Food and Drug Administration, Laurel, MD
| | | | - Timothy Davis
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin
| | | | | | - Rachel Klos
- Wisconsin Department of Health Services, Division of Public Health
| | - Aron J Hall
- Centers for Disease Control and Prevention, Atlanta, GA
| | - Jan Vinjé
- Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
2
|
Yang Z, Kulka M, Yang Q, Papafragkou E, Yu C, Wales SQ, Ngo D, Chen H. Whole-Genome Sequencing-Based Confirmatory Methods on RT-qPCR Results for the Detection of Foodborne Viruses in Frozen Berries. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:225-240. [PMID: 38687458 PMCID: PMC11186866 DOI: 10.1007/s12560-024-09591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/13/2024] [Indexed: 05/02/2024]
Abstract
Accurate detection, identification, and subsequent confirmation of pathogens causing foodborne illness are essential for the prevention and investigation of foodborne outbreaks. This is particularly true when the causative agent is an enteric virus that has a very low infectious dose and is likely to be present at or near the limit of detection. In this study, whole-genome sequencing (WGS) was combined with either of two non-targeted pre-amplification methods (SPIA and SISPA) to investigate their utility as a confirmatory method for RT-qPCR positive results of foods contaminated with enteric viruses. Frozen berries (raspberries, strawberries, and blackberries) were chosen as the food matrix of interest due to their association with numerous outbreaks of foodborne illness. The hepatitis A virus (HAV) and human norovirus (HuNoV) were used as the contaminating agents. The non-targeted WGS strategy employed in this study could detect and confirm HuNoV and HAV at genomic copy numbers in the single digit range, and in a few cases, identified viruses present in samples that had been found negative by RT-qPCR analyses. However, some RT-qPCR-positive samples could not be confirmed using the WGS method, and in cases with very high Ct values, only a few viral reads and short sequences were recovered from the samples. WGS techniques show great potential for confirmation and identification of virally contaminated food items. The approaches described here should be further optimized for routine application to confirm the viral contamination in berries.
Collapse
Affiliation(s)
- Zhihui Yang
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA.
| | - Michael Kulka
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Qianru Yang
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Efstathia Papafragkou
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Christine Yu
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Samantha Q Wales
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Diana Ngo
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Haifeng Chen
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| |
Collapse
|
3
|
Yang Z, Mammel M, Wolfe J. Near-full-length genome sequences of human norovirus GI.7[P7] and GII.4[P31] strains co-infecting a California patient in 2017. Microbiol Resour Announc 2023; 12:e0061723. [PMID: 37772888 PMCID: PMC10586127 DOI: 10.1128/mra.00617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Accurate identification of human noroviruses (HuNoVs) from outbreaks or sporadic cases is critical for source tracing and outbreak investigation. Whole-genome sequencing is a powerful tool for the detection, identification, and discrimination of HuNoV strains. We report here the nearly complete genome sequences of GI.7[P7] and GII.4[P31] strains detected in a Californian patient co-infected by both strains in 2017.
Collapse
Affiliation(s)
- Zhihui Yang
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Mark Mammel
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Julia Wolfe
- Orange County Health Care Agency, Public Health Laboratory, Santa Ana, California, USA
| |
Collapse
|
4
|
Nemes K, Persson S, Simonsson M. Hepatitis A Virus and Hepatitis E Virus as Food- and Waterborne Pathogens-Transmission Routes and Methods for Detection in Food. Viruses 2023; 15:1725. [PMID: 37632066 PMCID: PMC10457876 DOI: 10.3390/v15081725] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne viruses are an important threat to food safety and public health. Globally, there are approximately 5 million cases of acute viral hepatitis due to hepatitis A virus (HAV) and hepatitis E virus (HEV) every year. HAV is responsible for numerous food-related viral outbreaks worldwide, while HEV is an emerging pathogen with a global health burden. The reported HEV cases in Europe have increased tenfold in the last 20 years due to its zoonotic transmission through the consumption of infected meat or meat products. HEV is considered the most common cause of acute viral hepatitis worldwide currently. This review focuses on the latest findings on the foodborne transmission routes of HAV and HEV and the methods for their detection in different food matrices.
Collapse
Affiliation(s)
- Katalin Nemes
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Dag Hammarskjölds väg 56 A, 75237 Uppsala, Sweden; (S.P.); (M.S.)
| | | | | |
Collapse
|
5
|
Aladhadh M. A Review of Modern Methods for the Detection of Foodborne Pathogens. Microorganisms 2023; 11:1111. [PMID: 37317085 DOI: 10.3390/microorganisms11051111] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023] Open
Abstract
Despite the recent advances in food preservation techniques and food safety, significant disease outbreaks linked to foodborne pathogens such as bacteria, fungi, and viruses still occur worldwide indicating that these pathogens still constitute significant risks to public health. Although extensive reviews of methods for foodborne pathogens detection exist, most are skewed towards bacteria despite the increasing relevance of other pathogens such as viruses. Therefore, this review of foodborne pathogen detection methods is holistic, focusing on pathogenic bacteria, fungi, and viruses. This review has shown that culture-based methods allied with new approaches are beneficial for the detection of foodborne pathogens. The current application of immunoassay methods, especially for bacterial and fungal toxins detection in foods, are reviewed. The use and benefits of nucleic acid-based PCR methods and next-generation sequencing-based methods for bacterial, fungal, and viral pathogens' detection and their toxins in foods are also reviewed. This review has, therefore, shown that different modern methods exist for the detection of current and emerging foodborne bacterial, fungal, and viral pathogens. It provides further evidence that the full utilization of these tools can lead to early detection and control of foodborne diseases, enhancing public health and reducing the frequency of disease outbreaks.
Collapse
Affiliation(s)
- Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
6
|
Kong J, Li W, Hu J, Zhao S, Yue T, Li Z, Xia Y. The Safety of Cold-Chain Food in Post-COVID-19 Pandemic: Precaution and Quarantine. Foods 2022; 11:1540. [PMID: 35681292 PMCID: PMC9180738 DOI: 10.3390/foods11111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Since the outbreak of coronavirus disease-19 (COVID-19), cold-chain food contamination caused by the pathogenic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has attracted huge concern. Cold-chain foods provide a congenial environment for SARS-CoV-2 survival, which presents a potential risk for public health. Strengthening the SARS-CoV-2 supervision of cold-chain foods has become the top priority in many countries. Methodologically, the potential safety risks and precaution measures of SARS-CoV-2 contamination on cold-chain food are analyzed. To ensure the safety of cold-chain foods, the advances in SARS-CoV-2 detection strategies are summarized based on technical principles and target biomarkers. In particular, the techniques suitable for SARS-CoV-2 detection in a cold-chain environment are discussed. Although many quarantine techniques are available, the field-based quarantine technique on cold-chain food with characteristics of real-time, sensitive, specific, portable, and large-scale application is urgently needed.
Collapse
Affiliation(s)
- Jia Kong
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| | - Wenxin Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| | - Jinyao Hu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| | - Shixuan Zhao
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Xianyang 712100, China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Xianyang 712100, China
| | - Yinqiang Xia
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| |
Collapse
|
7
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Raymond P, Paul S, Perron A, Bellehumeur C, Larocque É, Charest H. Detection and Sequencing of Multiple Human Norovirus Genotypes from Imported Frozen Raspberries Linked to Outbreaks in the Province of Quebec, Canada, in 2017. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:40-58. [PMID: 35066807 PMCID: PMC8881426 DOI: 10.1007/s12560-021-09507-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Human noroviruses are among the main causes of acute gastroenteritis worldwide. Frozen raspberries have been linked to several norovirus food-related outbreaks. However, the extraction of norovirus RNA from frozen raspberries remains challenging. Recovery yields are low and PCR inhibitors limit the sensitivity of the detection methodologies. In 2017, 724 people from various regions of the Province of Quebec, Canada, were infected by noroviruses and the outbreak investigation pointed to frozen raspberries as a putative source. A new magnetic silica bead approach was used for the extraction of viruses from different outbreak samples. The RNA extracts were tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and five samples were confirmed positive for norovirus by RT-qPCR amplicon sequencing. A multiplex long-range two-step RT-PCR approach was developed to amplify norovirus ORF2 and ORF3 capsid genes from the positive frozen raspberry RNA extracts and other sequencing strategies were also explored. These capsid genes were sequenced by Next-Generation Sequencing. Phylogenetic analyses confirmed the presence of multiple genotypes (GI.3, GI.6, and GII.17) and intra-genotype variants in some of the frozen raspberry samples. Variants of genotype GI.3 and GI.6 had 100% homology with sequences from patient samples. Similar strains were also reported in previous outbreaks. Confirmation approaches based on sequencing the norovirus capsid genes using Next-Generation Sequencing can be applied at trace level contaminations and could be useful to assess risk and assist in source tracking.
Collapse
Affiliation(s)
- Philippe Raymond
- Canadian Food Inspection Agency (CFIA), Saint-Hyacinthe Laboratory - Food Virology, Saint-Hyacinthe, QC, Canada.
| | - Sylvianne Paul
- Canadian Food Inspection Agency (CFIA), Saint-Hyacinthe Laboratory - Food Virology, Saint-Hyacinthe, QC, Canada
| | - André Perron
- Canadian Food Inspection Agency (CFIA), Saint-Hyacinthe Laboratory - Food Virology, Saint-Hyacinthe, QC, Canada
| | - Christian Bellehumeur
- Canadian Food Inspection Agency (CFIA), Saint-Hyacinthe Laboratory - Food Virology, Saint-Hyacinthe, QC, Canada
| | - Émilie Larocque
- Canadian Food Inspection Agency (CFIA), Saint-Hyacinthe Laboratory - Food Virology, Saint-Hyacinthe, QC, Canada
| | - Hugues Charest
- Laboratoire de santé publique du Québec et Université de Montréal, département de microbiologie, infectiologie et immunologie, Montréal, QC, Canada
| |
Collapse
|
9
|
Billington C, Kingsbury JM, Rivas L. Metagenomics Approaches for Improving Food Safety: A Review. J Food Prot 2022; 85:448-464. [PMID: 34706052 DOI: 10.4315/jfp-21-301] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Advancements in next-generation sequencing technology have dramatically reduced the cost and increased the ease of microbial whole genome sequencing. This approach is revolutionizing the identification and analysis of foodborne microbial pathogens, facilitating expedited detection and mitigation of foodborne outbreaks, improving public health outcomes, and limiting costly recalls. However, next-generation sequencing is still anchored in the traditional laboratory practice of the selection and culture of a single isolate. Metagenomic-based approaches, including metabarcoding and shotgun and long-read metagenomics, are part of the next disruptive revolution in food safety diagnostics and offer the potential to directly identify entire microbial communities in a single food, ingredient, or environmental sample. In this review, metagenomic-based approaches are introduced and placed within the context of conventional detection and diagnostic techniques, and essential considerations for undertaking metagenomic assays and data analysis are described. Recent applications of the use of metagenomics for food safety are discussed alongside current limitations and knowledge gaps and new opportunities arising from the use of this technology. HIGHLIGHTS
Collapse
Affiliation(s)
- Craig Billington
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Lucia Rivas
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| |
Collapse
|
10
|
Jothikumar N, Cromeans T, Shivajothi J, Vinjé J, Murphy J. Development and evaluation of a ligation-free sequence-independent, single-primer amplification (LF-SISPA) assay for whole genome characterization of viruses. J Virol Methods 2022; 299:114346. [PMID: 34740706 PMCID: PMC11075090 DOI: 10.1016/j.jviromet.2021.114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022]
Abstract
Molecular identification and characterization of novel or re-emerging infectious pathogens is critical for disease surveillance and outbreak investigations. Next generation sequencing (NGS) using Sequence-Independent, Single-Primer Amplification (SISPA) is being used extensively in sequencing of viral genomes but it requires an expensive library preparation step. We developed a simple, low-cost method that enriches nucleic acids followed by a ligation-free (LF) 2-step Polymerase Chain Reaction (PCR) procedure for library preparation. A pan-chimeric universal primer (JS15N14) containing 15 nucleotides with a random tetradecamer (14N) attached to the 3'-end was designed. The complimentary primer (JS15) was used for nucleic acid enrichment in a first round PCR. A second PCR was designed to create Illumina sequencer-compatible sequencing-ready libraries for NGS. The new LF-SISPA protocol was tested using six RNA and DNA viral genomes (10.8-229.4 kilobases, kb) from an ATCC virome nucleic acid mix (ATCC® MSA-1008™) followed by analysis using One Codex, an online identification tool. In addition, a human stool sample known to be positive for norovirus GII was sequenced, and de novo assembly was performed using the Genome Detective Virus Tool allowing for near complete genome identification in less than 24 h. The LF-SISPA method does not require prior knowledge of target sequences and does not require an expensive enzymatic library preparation kit, thereby providing a simple, fast, low-cost alternative for the identification of unknown viral pathogens.
Collapse
Affiliation(s)
- Narayanan Jothikumar
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| | - Theresa Cromeans
- CDC Foundation, USA Contracted to Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | | | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Jennifer Murphy
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| |
Collapse
|
11
|
NGS Techniques Reveal a High Diversity of RNA Viral Pathogens and Papillomaviruses in Fresh Produce and Irrigation Water. Foods 2021; 10:foods10081820. [PMID: 34441597 PMCID: PMC8394881 DOI: 10.3390/foods10081820] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
Fresh fruits and vegetables are susceptible to microbial contamination at every stage of the food production chain, and as a potential source of pathogens, irrigation water quality is a critical factor. Next-generation sequencing (NGS) techniques have been flourishing and expanding to a wide variety of fields. However, their application in food safety remains insufficiently explored, and their sensitivity requires improvement. In this study, quantitative polymerase chain reaction (qPCR) assays showed low but frequent contamination of common circulating viral pathogens, which were found in 46.9% of samples of fresh produce: 6/12 lettuce samples, 4/12 strawberries samples, and 5/8 parsley samples. Furthermore, the application of two different NGS approaches, target enrichment sequencing (TES) for detecting viruses that infect vertebrates and amplicon deep sequencing (ADS), revealed a high diversity of viral pathogens, especially Norovirus (NoV) and Human Papillomavirus (HPV), in fresh produce and irrigation water. All NoV and HPV types found in fresh fruit and vegetable samples were also detected in irrigation water sources, indicating that these viruses are common circulating pathogens in the population and that irrigation water may be the most probable source of viral pathogens in food samples.
Collapse
|
12
|
Tan MTH, Ho SX, Chu JJH, Li D. Application of virome capture sequencing in shellfish sold at retail level in Singapore. Lett Appl Microbiol 2021; 73:486-494. [PMID: 34268776 DOI: 10.1111/lam.13540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022]
Abstract
During the period from late 2019 to early 2020, we performed a foodborne virus detection from shellfish collected in Singapore at retail level. Multiple human enteric viruses were included as our targets including human noroviruses (NoVs) GI and GII, hepatitis A virus, hepatitis E virus and rotavirus. Out of the 60 shellfish samples, 23 (38·3%) were detected to be positive by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) with human enteric viruses. Six samples were selected to proceed with virome capture sequencing with positive control samples spiked with serially diluted NoV GII clinical samples in oyster extract. As a result, the natural sample with comparable Ct values (34·0-35·0) of the spiked sample as detected by RT-qPCR generated much lower read counts (>7-log2 cumulative sum scaling difference) and genome coverage (406 nt. vs 3715 nt.), suggesting that the RT-qPCR positive signals detected from the shellfish samples collected at the retail market were likely from degraded RNA derived from inactive virus particles.
Collapse
Affiliation(s)
- M T H Tan
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - S X Ho
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - J J H Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - D Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
13
|
Application of whole-genome sequencing for norovirus outbreak tracking and surveillance efforts in Orange County, CA. Food Microbiol 2021; 98:103796. [PMID: 33875224 DOI: 10.1016/j.fm.2021.103796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/20/2022]
Abstract
Noroviruses are the leading cause of acute gastroenteritis and foodborne illness in the United States. Traditional Sanger sequencing of short genomic regions (~300-600 bp) is the primary method for differentiation of this pathogen; however, whole-genome sequencing (WGS) offers a valuable approach to further characterize strains of this virus. The objective of this study was to investigate the ability of WGS compared to Sanger sequencing to differentiate norovirus strains and enhance outbreak investigation and surveillance efforts. WGS results for 41 norovirus-positive stool samples from 15 different outbreaks occurring from 2012 to 2019 in Orange County, CA, were analyzed for this study. All samples were genotyped with both WGS and Sanger sequencing based on the B-C region. WGS generated nearly full-length viral genome sequences (7029-7768 bp) with 4x to 35,378x coverage. Phylogenetic analysis of WGS data enabled differentiation of genotypically similar strains from separate outbreaks. Single nucleotide variation (SNV) analysis on a subset of strains revealed nucleotide variations (15-79 nt) among isolates from multiple outbreaks of GII.4 Sydney_2015[P31] and GII.17[P17]. Overall, the results demonstrated that coupling norovirus genotype identification with WGS enables enhanced genetic differentiation of strains and provides valuable information for outbreak investigation and surveillance efforts.
Collapse
|
14
|
Zhang W, He H, Zhu L, Liu G, Wu L. Food Safety in Post-COVID-19 Pandemic: Challenges and Countermeasures. BIOSENSORS 2021; 11:71. [PMID: 33806704 PMCID: PMC8000942 DOI: 10.3390/bios11030071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Understanding food safety hazard risks is essential to avoid potential negative heath impacts in the food supply chain in a post-COVID-19 pandemic era. Development of strategies for virus direction in foods plays an important role in food safety and verification. Early warning, tracing, and detection should be implemented as an integrated system in order to mitigate thecoronavirus disease 2019 (COVID-19) outbreak, in which the detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is critical as it not only concerns screening of populations but also monitoring of possible contaminated sources such as the food supply chain. In this review, we point out the consequences in different aspects of our daily life in the post-COVID-19 pandemic from the perspective of the food supply chain and the food industry. We summarize the possible transmission routes of COVID-19 in the food supply chain before exploring the development of corresponding detection tools of SARS-CoV-2. Accordingly, we compare different detection methods for the virus in foods, including different pretreatments of food matrices in the virus detection. Finally, the future perspectives are proposed.
Collapse
Affiliation(s)
- Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Huiyu He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.H.); (L.Z.)
| | - Lin Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.H.); (L.Z.)
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Long Wu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China;
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
15
|
Kim S, Mertens-Talcott SU, Vaidya B, Venancio VP, Cho SY, Song JA, Chew BP, Kwon J, Kim D. Performance of concanavalin A-immobilized on polyacrylate beads for the detection of human norovirus and hepatitis A virus in fecal specimens. Food Sci Biotechnol 2020; 29:1727-1733. [PMID: 33282439 PMCID: PMC7708564 DOI: 10.1007/s10068-020-00833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Quantitative reverse transcription PCR (qRT-PCR) is a sensitive method for the detection of foodborne viruses in fecal samples. However, the performance of qRT-PCR depends on the efficiency of virus concentration methods. In this study, the effect of Concanavalin A (Con A)-immobilized on polyacrylate beads (Con A-PAB) on the qRT-PCR performance, in terms of sensitivity and specificity to detect foodborne viruses in human fecal specimens was compared with commercial viral RNA extraction kit (VRNA). The detection of foodborne viruses by qRT-PCR was validated by viral genome sequencing. Both Con A-PAB and VRNA methods were equally sensitive and specific for detecting hepatitis A virus in fecal specimens. Even though both methods showed high specificity (100% vs. 100%) for detecting human norovirus (HuNoV), Con A-PAB method exhibited higher sensitivity (100% vs. 42.9%) and accuracy (100% vs. 73.3%) compared to VRNA method. In conclusion, the application of Con A-PAB would improve the performance of qRT-PCR for the detection of HuNoV in fecal samples.
Collapse
Affiliation(s)
- Songhak Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| | | | - Bipin Vaidya
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Vinicius Paula Venancio
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843-2252 USA
| | - Se-Young Cho
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jong-Am Song
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 34133 Republic of Korea
| | - Boon P. Chew
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843-2252 USA
| | - Joseph Kwon
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 34133 Republic of Korea
| | - Duwoon Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
16
|
Yu C, Hida K, Papafragkou E, Kulka M. Evaluation of U.S. Food and Drug Administration Enteric Viruses Microarray for Detection of Hepatitis A Virus and Norovirus in Inoculated Tomatoes, Green Onions, and Celery. J Food Prot 2020; 83:1576-1583. [PMID: 32379890 DOI: 10.4315/jfp-19-574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/03/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Foodborne viral contamination of fresh produce has been associated with numerous outbreaks. Detection of such contaminated foods is important in protecting public health. Here, we demonstrate for the first time the capability of the U.S. Food and Drug Administration Enteric Viruses tiling microarray (FDA-EVIR) to perform rapid molecular identification of hepatitis A virus (HAV) and human norovirus extracted from artificially inoculated fresh produce. Two published viral extraction strategies, total RNA extraction or virus particle isolation, were used to prepare the viral targets. The total RNA extraction method was used on material eluted from tomatoes, using an alkaline Tris-glycine-beef extract (TGBE) buffer. Optimization procedures including DNase treatment and poly(A)-RNA enrichment were adopted to improve microarray sensitivity. For green onions or celery, material was eluted using either glycine buffer or TGBE buffer supplemented with pectinase, respectively, and then virus particles were concentrated by ultracentrifugation. We also assessed the amount of viral RNA extracted from celery using three commercially available kits and how well that RNA performed on FDA-EVIR. Our results confirm that FDA-EVIR can identify common enteric viruses isolated from fresh produce when present as either a single or mixed species of viruses. Using total RNA extraction from tomatoes yielded a limit of detection of 1.0 × 105 genome equivalents (ge) of HAV per array input. The limit of detection for viral RNA obtained using ultracentrifugation was 1.2 × 105 ge of HAV from green onions and 1.0 × 103 ge of norovirus from celery per array input. Extending microarray methods to other food matrices should provide important support to surveillance and outbreak investigations. HIGHLIGHTS
Collapse
Affiliation(s)
- Christine Yu
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Molecular Biology, 8301 Muirkirk Road, Laurel, Maryland 20708, USA (ORCID: https://orcid.org/0000-0003-0731-7118 [C.Y.])
| | - Kaoru Hida
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Molecular Biology, 8301 Muirkirk Road, Laurel, Maryland 20708, USA (ORCID: https://orcid.org/0000-0003-0731-7118 [C.Y.])
| | - Efstathia Papafragkou
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Molecular Biology, 8301 Muirkirk Road, Laurel, Maryland 20708, USA (ORCID: https://orcid.org/0000-0003-0731-7118 [C.Y.])
| | - Michael Kulka
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Molecular Biology, 8301 Muirkirk Road, Laurel, Maryland 20708, USA (ORCID: https://orcid.org/0000-0003-0731-7118 [C.Y.])
| |
Collapse
|
17
|
Desdouits M, de Graaf M, Strubbia S, Oude Munnink BB, Kroneman A, Le Guyader FS, Koopmans MPG. Novel opportunities for NGS-based one health surveillance of foodborne viruses. ONE HEALTH OUTLOOK 2020; 2:14. [PMID: 33829135 PMCID: PMC7993515 DOI: 10.1186/s42522-020-00015-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/01/2020] [Indexed: 05/15/2023]
Abstract
Foodborne viral infections rank among the top 5 causes of disease, with noroviruses and hepatitis A causing the greatest burden globally. Contamination of foods by infected food handlers or through environmental pollution are the main sources of foodborne illness, with a lesser role for consumption of products from infected animals. Viral partial genomic sequencing has been used for more than two decades to track foodborne outbreaks and whole genome or metagenomics next-generation-sequencing (NGS) are new additions to the toolbox of food microbiology laboratories. We discuss developments in the field of targeted and metagenomic NGS, with an emphasis on application in food virology, the challenges and possible solutions towards future routine application.
Collapse
Affiliation(s)
- Marion Desdouits
- IFREMER, Laboratoire de Microbiologie, LSEM/SG2M, Nantes, France
| | - Miranda de Graaf
- Viroscience Department, Erasmus Medical Centre, Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sofia Strubbia
- IFREMER, Laboratoire de Microbiologie, LSEM/SG2M, Nantes, France
| | - Bas B. Oude Munnink
- Viroscience Department, Erasmus Medical Centre, Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Annelies Kroneman
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Marion P. G. Koopmans
- Viroscience Department, Erasmus Medical Centre, Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
18
|
Randazzo W, Sánchez G. Hepatitis A infections from food. J Appl Microbiol 2020; 129:1120-1132. [DOI: 10.1111/jam.14727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022]
Affiliation(s)
- W. Randazzo
- Department of Preservation and Food Safety Technologies IATA‐CSIC Valencia Spain
- Department of Microbiology and Ecology University of Valencia Valencia Spain
| | - G. Sánchez
- Department of Preservation and Food Safety Technologies IATA‐CSIC Valencia Spain
| |
Collapse
|
19
|
Apruzzese I, Song E, Bonah E, Sanidad VS, Leekitcharoenphon P, Medardus JJ, Abdalla N, Hosseini H, Takeuchi M. Investing in Food Safety for Developing Countries: Opportunities and Challenges in Applying Whole-Genome Sequencing for Food Safety Management. Foodborne Pathog Dis 2019; 16:463-473. [PMID: 31188022 PMCID: PMC6653794 DOI: 10.1089/fpd.2018.2599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Whole-genome sequencing (WGS) has become a significant tool in investigating foodborne disease outbreaks and some countries have incorporated WGS into national food control systems. However, WGS poses technical challenges that deter developing countries from incorporating it into their food safety management system. A rapid scoping review was conducted, followed by a focus group session, to understand the current situation regarding the use of WGS for foodborne disease surveillance and food monitoring at the global level and identify key limiting factors for developing countries in adopting WGS for their food control systems. The results showed that some developed nations routinely use WGS in their food surveillance systems resulting in more precise understanding of the causes of outbreaks. In developing nations, knowledge of WGS exists in the academic/research sectors; however, there is limited understanding at the government level regarding the usefulness of WGS for food safety regulatory activities. Thus, incorporation of WGS is extremely limited in most developing nations. While some countries lack the capacity to collect and analyze the data generated from WGS, the most significant technical gap in most developing countries is in data interpretation using bioinformatics. The gaps in knowledge and capacities between developed and developing nations regarding use of WGS likely introduce an inequality in international food trade, and thus, relevant international organizations, as well as the countries that are already proficient in the use of WGS, have significant roles in assisting developing nations to be able to fully benefit from the technology and its applications in food safety management.
Collapse
Affiliation(s)
- Isabella Apruzzese
- 1 Franco Prattico Masters' Course in Science Communication, Trieste, Italy
| | - Eunyeong Song
- 2 Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China
| | - Ernest Bonah
- 3 Food and Drugs Authority, Northern Regional Office, Accra, Ghana
| | | | | | - Julius John Medardus
- 6 Department of Veterinary Anatomy and Pathology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Hedayat Hosseini
- 8 National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Teheran, Iran
| | - Masami Takeuchi
- 9 Food and Agriculture Organization of the United Nations, Rome, Italy
| |
Collapse
|
20
|
Inter- and Intra-Host Nucleotide Variations in Hepatitis A Virus in Culture and Clinical Samples Detected by Next-Generation Sequencing. Viruses 2018; 10:v10110619. [PMID: 30423964 PMCID: PMC6265925 DOI: 10.3390/v10110619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 11/17/2022] Open
Abstract
The accurate virus detection, strain discrimination, and source attribution of contaminated food items remains a persistent challenge because of the high mutation rates anticipated to occur in foodborne RNA viruses, such as hepatitis A virus (HAV). This has led to predictions of the existence of more than one sequence variant between the hosts (inter-host) or within an individual host (intra-host). However, there have been no reports of intra-host variants from an infected single individual, and little is known about the accuracy of the single nucleotide variations (SNVs) calling with various methods. In this study, the presence and identity of viral SNVs, either between HAV clinical specimens or among a series of samples derived from HAV clone1-infected FRhK4 cells, were determined following analyses of nucleotide sequences generated using next-generation sequencing (NGS) and pyrosequencing methods. The results demonstrate the co-existence of inter- and intra-host variants both in the clinical specimens and the cultured samples. The discovery and confirmation of multi-viral RNAs in an infected individual is dependent on the strain discrimination at the SNV level, and critical for successful outbreak traceback and source attribution investigations. The detection of SNVs in a time series of HAV infected FRhK4 cells improved our understanding on the mutation dynamics determined probably by different selective pressures. Additionally, it demonstrated that NGS could potentially provide a valuable investigative approach toward SNV detection and identification for other RNA viruses.
Collapse
|
21
|
Petronella N, Ronholm J, Suresh M, Harlow J, Mykytczuk O, Corneau N, Bidawid S, Nasheri N. Genetic characterization of norovirus GII.4 variants circulating in Canada using a metagenomic technique. BMC Infect Dis 2018; 18:521. [PMID: 30333011 PMCID: PMC6191920 DOI: 10.1186/s12879-018-3419-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Human norovirus is the leading cause of viral gastroenteritis globally, and the GII.4 has been the most predominant genotype for decades. This genotype has numerous variants that have caused repeated epidemics worldwide. However, the molecular evolutionary signatures among the GII.4 variants have not been elucidated throughout the viral genome. METHOD A metagenomic, next-generation sequencing method, based on Illumina RNA-Seq, was applied to determine norovirus sequences from clinical samples. RESULTS Herein, the obtained deep-sequencing data was employed to analyze full-genomic sequences from GII.4 variants prevailing in Canada from 2012 to 2016. Phylogenetic analysis demonstrated that the majority of these sequences belong to New Orleans 2009 and Sydney 2012 strains, and a recombinant sequence was also identified. Genome-wide similarity analyses implied that while the capsid gene is highly diverse among the isolates, the viral protease and polymerase genes remain relatively conserved. Numerous amino acid substitutions were observed at each putative antigenic epitope of the VP1 protein, whereas few amino acid changes were identified in the polymerase protein. Co-infection with other enteric RNA viruses was investigated and the astrovirus genome was identified in one of the samples. CONCLUSIONS Overall this study demonstrated the application of whole genome sequencing as an important tool in molecular characterization of noroviruses.
Collapse
Affiliation(s)
- Nicholas Petronella
- Biostatistics and Modeling Division, Bureau of Food Surveillance and Science Integration, Food Directorate, Health Canada Ottawa, Ottawa, ON, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada.,Department of Animal Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Menka Suresh
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Oksana Mykytczuk
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Nathalie Corneau
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Sabah Bidawid
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
22
|
Bartsch C, Höper D, Mäde D, Johne R. Analysis of frozen strawberries involved in a large norovirus gastroenteritis outbreak using next generation sequencing and digital PCR. Food Microbiol 2018; 76:390-395. [PMID: 30166165 DOI: 10.1016/j.fm.2018.06.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/25/2018] [Accepted: 06/30/2018] [Indexed: 12/30/2022]
Abstract
Virus-contaminated frozen berries have been frequently identified as cause of foodborne disease outbreaks. To provide new tools for virus detection and characterization in berries, next generation sequencing (NGS) and reverse transcription-digital PCR (RT-dPCR) techniques were tested here with strawberries previously involved in a large-scale norovirus (NoV) gastroenteritis outbreak in Germany. By NGS, about 29 million sequence reads were generated, which mainly showed identities to sequences from the plant matrix and from the bacterial flora. Most abundant virus sequences originated from plant-specific viruses, whereas sequences with high identity to human viruses were rare. Only two sequence reads showed homologies to human NoV. They were identical to GII.P16/GII.13 NoV sequences from patients and a strawberry sample independently analyzed during the outbreak. Quantification of the GII NoV RNA of the berries using RT-dPCR confirmed a low mean virus amount of 185 copies/25 g, which is similar to independently assessed RT-qPCR results (257 copies/25 g). The study shows that identification of human-pathogenic viruses in naturally contaminated frozen berries is possible using NGS technologies. However, the method needs to be further optimized in order to enable convenient and reproducible detection of a low amount of human-pathogenic virus sequences in a background of highly abundant nucleic acids of other sources.
Collapse
Affiliation(s)
- Christina Bartsch
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Dirk Höper
- Friedrich Loeffler Institute, Südufer 10, 17493, Greifswald (Insel Riems), Germany
| | - Dietrich Mäde
- State Office for Consumer Protection, Freiimfelder Str. 68, 06112, Halle (Saale), Saxony-Anhalt, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
23
|
Randazzo W, D'Souza DH, Sanchez G. Norovirus: The Burden of the Unknown. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 86:13-53. [PMID: 30077220 DOI: 10.1016/bs.afnr.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human noroviruses (HNoVs) are primarily transmitted by the fecal-oral route, either by person-to-person contact, or by ingestion of contaminated food or water as well as by aerosolization. Moreover, HNoVs significantly contribute to foodborne diseases being the causative agent of one-fifth of acute gastroenteritis worldwide. As a consequence of globalization, transnational outbreaks of foodborne infections are reported with increasing frequency. Therefore, in this review, state-of-the-art information regarding molecular procedures for human norovirus detection in food as well common food processing technologies have been summarized. Besides, the purpose of this chapter is to consolidate basic information on various aspects of HNoVs and to summarize food processing technologies that can potentially be applied in the food industry.
Collapse
Affiliation(s)
- Walter Randazzo
- IATA-CSIC, Valencia, Spain; University of Valencia, Valencia, Spain
| | | | | |
Collapse
|