1
|
Timofeeva AM, Galyamova MR, Krivosheev DM, Karabanov SY, Sedykh SE. Investigation of Antibiotic Resistance of E. coli Associated with Farm Animal Feces with Participation of Citizen Scientists. Microorganisms 2024; 12:2308. [PMID: 39597696 PMCID: PMC11596788 DOI: 10.3390/microorganisms12112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
This paper presents the findings of a large-scale study on antibiotic resistance in bacteria found in farm animal feces across Russia. The study included 6578 samples of farm animal manure from 13 regions in Russia, with the help of citizen scientists. Molecular and microbiological methods were used to analyze 1111 samples of E. coli. The microbiological analysis focused on culturing the microorganisms present in the fecal samples on selective media for E. coli and evaluating the sensitivity of the bacteria to different antibiotics, including ampicillin, tetracycline, chloramphenicol, cefotaxime, and ciprofloxacin. The molecular analysis involved isolating the genomic DNA of the bacteria and conducting PCR assays to detect the vanA, vanB, and mcr-1 antibiotic resistance genes. The results demonstrated significant differences in antibiotic sensitivity of the samples that are morphologically identical to E. coli from different regions. For example, 98.0% and 82.5% of E. coli and other fecal bacterial isolates from the Omsk and Vologda regions lacked antibiotic resistance genes, while 97.7% of samples from the Voronezh region possessed three resistance genes simultaneously. The phenotypic antibiotic sensitivity test also revealed regional differences. For instance, 98.1% of fecal bacterial samples from cattle in the Udmurt Republic were sensitive to all five antibiotics tested, whereas 92.8% of samples from the Voronezh region showed resistance to all five antibiotics. The high level of antibiotic resistance observed may be attributed to their use in farming practices. The distinctive feature of our research is that comprehensive geographical coverage was achieved by using a citizen science platform. Citizen scientists, specifically students from colleges and universities, were responsible for the collection and initial analysis of samples. The project attracted 3096 student participants, enabling the collection and analysis of a significant number of samples from various locations in Russia.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | | | | | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
2
|
Ortiz Y, Cerino B, Moreno M, Yañez E, Heredia N, Dávila-Aviña J, Quezada T, Calle A, García S. Diarrheagenic Escherichia coli with Multidrug Resistance in Cattle from Mexico. J Food Prot 2024; 87:100257. [PMID: 38423360 DOI: 10.1016/j.jfp.2024.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Mexico is an important producer/exporter of cattle and cattle products. In the last decade, an increase in antibiotic resistance in E. coli pathotype strains from livestock environments has been reported. This study aimed to determine the prevalence and antibiotic resistance profiles of E. coli pathotype strains from the feces of beef or dairy cattle reared in the states of Aguascalientes (AG, central) and Nuevo Leon (NL, northeastern) in Mexico. One hundred and ten fecal samples were collected (beef cattle-AG = 30; dairy cattle-AG = 20; beef cattle-NL = 30; dairy cattle-NL = 30). From these, E. coli was isolated using selective/differential media and confirmed on chromogenic media. Multiplex PCR was used to identify diarrheagenic E. coli, and the Kirby-Bauer technique was used to determine the antimicrobial susceptibilities. All the animals harbored E. coli, and pathotypes were found in 34 animals from both, beef and dairy cattle, mainly from Aguascalientes. Of the positive samples, 31 harbored a single E. coli pathotype, whereas three samples harbored two different pathotypes; EHEC was the most prevalent, followed by EPEC, ETEC, and EIEC or the combination of two of them in some samples. Most pathotype strains (19/37) were isolated from beef cattle. Neither the animals' productive purpose (beef or dairy cattle) (r = 0.155) nor the geographic regions (Aguascalientes or Nuevo Leon) (r = -0.066) had a strong positive correlation with the number of E. coli pathotype strains. However, animals reared in Aguascalientes had up to 8.5-fold higher risk of harboring E. coli pathotype strains than those reared in Nuevo Leon. All pathotype strains were resistant to erythromycin, tetracycline, and trimethoprim/sulfamethoxazole, and all dairy cattle pathotype strains were further resistant to five β-lactams (χ2, P = 0.017). The existence of these pathotypes and multidrug-resistant pathogens in the food chain is a risk to public health.
Collapse
Affiliation(s)
- Yaraymi Ortiz
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México 66455, Mexico
| | - Brenda Cerino
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México 66455, Mexico
| | - Mauricio Moreno
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México 66455, Mexico
| | - Elizabeth Yañez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México 66455, Mexico
| | - Norma Heredia
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México 66455, Mexico
| | - Jorge Dávila-Aviña
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México 66455, Mexico
| | - Teódulo Quezada
- Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, México 20100, Mexico
| | | | - Santos García
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México 66455, Mexico.
| |
Collapse
|
3
|
Hu X, Chen Y, Xu H, Qiao J, Ge H, Liu R, Zheng B. Genomic epidemiology and transmission characteristics of mcr1-positive colistin-resistant Escherichia coli strains circulating at natural environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163600. [PMID: 37086987 DOI: 10.1016/j.scitotenv.2023.163600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
MCR-positive Escherichia coli (MCRPEC) have been reported in humans worldwide. The high prevalence of mcr-1 poses clinical and environmental risks due to its diverse genetic mechanisms. Given the vital role of animals and the environment in the spread of antibiotic resistance, a "One Health" perspective should be taken when addressing antimicrobial resistance issues. This study conducted a prospective study in six farms (located in Jiaxing City, Zhejiang province, China) in 2019. MCRPEC strains were screened from samples of different sources. The molecular epidemiological surveys and transmission potential were investigated by whole-genome sequencing and phylogenetic analysis. MCRPEC were detected in different farms with various sources. Sequence type complex 10 was dominant and distributed widely in multiple sources. Core-genome multilocus sequence type (cgMLST) analysis indicated that clonal transmission could occur within and between farms. In addition, mcr-1 genes with different locations showed different transmission tendencies. The study indicated that interspecies and cross-regional transmission of MCRPEC could occur between different sectors in farms. Further surveillance and research of non-clinical MCRPEC strains are necessary to reduce the threat of MCRPEC.
Collapse
Affiliation(s)
- Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yingying Chen
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jie Qiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Haoyu Ge
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
4
|
Ewers C, Göpel L, Prenger-Berninghoff E, Semmler T, Kerner K, Bauerfeind R. Occurrence of mcr-1 and mcr-2 colistin resistance genes in porcine Escherichia coli isolates (2010-2020) and genomic characterization of mcr-2-positive E. coli. Front Microbiol 2022; 13:1076315. [PMID: 36569100 PMCID: PMC9780603 DOI: 10.3389/fmicb.2022.1076315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction The global emergence of plasmid-mediated colistin resistance is threatening the efficacy of colistin as one of the last treatment options against multi-drug resistant Gram-negative bacteria. To date, ten mcr-genes (mcr-1 to mcr-10) were reported. While mcr-1 has disseminated globally, the occurrence of mcr-2 was reported scarcely. Methods and results We determined the occurrence of mcr-1 and mcr-2 genes among Escherichia coli isolates from swine and performed detailed genomic characterization of mcr-2-positive strains. In the years 2010-2017, 7,614 porcine E. coli isolates were obtained from fecal swine samples in Europe and isolates carrying at least one of the virulence associated genes predicting Shiga toxin producing E. coli (STEC), enterotoxigenic E. coli (ETEC) or enteropathogenic E. coli (EPEC) were stored. 793 (10.4%) of these isolates carried the mcr-1 gene. Of 1,477 additional E. coli isolates obtained from sheep blood agar containing 4 mg/L colistin between 2018 and 2020, 36 (2.4%) isolates were mcr-1-positive. In contrast to mcr-1, the mcr-2 gene occurred at a very low frequency (0.13%) among the overall 9,091 isolates. Most mcr-2-positive isolates originated from Belgium (n = 9), one from Spain and two from Germany. They were obtained from six different farms and revealed multilocus sequence types ST10, ST29, ST93, ST100, ST3057 and ST5786. While the originally described mcr-2.1 was predominant, we also detected a new mcr-2 variant in two isolates from Belgium, which was termed mcr-2.8. MCR-2 isolates were mostly classified as ETEC or ETEC-like, while one isolate from Spain represented an atypical enteropathogenic E. coli (aEPEC; eae+). The ST29-aEPEC isolate carried mcr-2 on the chromosome. Another eight isolates carried their mcr-2 gene on IncX4 plasmids that resembled the pKP37-BE MCR-2 plasmid originally described in Belgium in 2015. Three ST100 E. coli isolates from a single farm in Belgium carried the mcr-2.1 gene on a 47-kb self-transmissible IncP type plasmid of a new IncP-1 clade. Discussion This is the first report of mcr-2 genes in E. coli isolates from Germany. The detection of a new mcr-2 allele and a novel plasmid backbone suggests the presence of so far undetected mcr-2 variants and mobilizable vehicles.
Collapse
Affiliation(s)
- Christa Ewers
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany,*Correspondence: Christa Ewers,
| | - Lisa Göpel
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Ellen Prenger-Berninghoff
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Semmler
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Katharina Kerner
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Rolf Bauerfeind
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Zhang S, Huang Y, Chen M, Yang G, Zhang J, Wu Q, Wang J, Ding Y, Ye Q, Lei T, Su Y, Pang R, Yang R, Zhang Y. Characterization of Escherichia coli O157:non-H7 isolated from retail food in China and first report of mcr-1/IncI2-carrying colistin-resistant E. coli O157:H26 and E. coli O157:H4. Int J Food Microbiol 2022; 378:109805. [DOI: 10.1016/j.ijfoodmicro.2022.109805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
|
6
|
Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock-A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11060659. [PMID: 35745513 PMCID: PMC9230117 DOI: 10.3390/pathogens11060659] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Antimicrobial resistance is a serious public-health problem throughout the world. Escherichia coli, the most common Gram-negative microorganism, has developed different resistance mechanisms, making treating infections difficult. Colistin is considered a last-resort drug in the treatment of infections caused by E. coli. Plasmid-mediated mobile-colistin-resistant (mcr) genes in E. coli, now disseminated globally, are considered a major public-health threat. Humans, chickens, and pigs are the main reservoirs for E. coli and the sources of antibiotic resistance. Hence, an up-to-date and precise estimate of the global prevalence of mcr resistance genes in these reservoirs is necessary to understand more precisely the worldwide spread and to more effectively implement control and prevention strategies. Methodology: Publications were identified in the PubMed database on the basis of the PRISMA guidelines. English full-text articles were selected from December 2014 to March 2021. Descriptive statistics and a meta-analysis were performed in Excel and R software, respectively. Colistin resistance was defined as the molecular-genetic detection of the mcr genes. The crude and estimated prevalence were calculated for each host and continent. The studies were divided into two groups; community-based when they involved isolates from healthy humans, chickens, or pigs, and clinical studies when they involved only hospital, outpatient, or laboratory isolates. Results: A total of 1278 studies were identified and 218 were included in this systematic review and meta-analysis, divided into community studies (159 studies) and clinical studies (59 studies). The general prevalence of mcr-mediated colistin-resistant E. coli (mcrMCRE) was 6.51% (n = 11,583/177,720), reported in 54 countries and on five continents; Asia with 119 studies followed by Europe with 61 studies registered the most articles. Asia reported the major diversity of mcr-variants (eight of nine, except mcr-2). Worldwide, chickens and pigs proved to be the principal reservoir of mcr with an estimated prevalence of 15.8% and 14.9%, respectively. Healthy humans and clinical isolates showed a lower prevalence with 7.4% and 4.2% respectively. Conclusions: In this systematic review and meta-analysis, the worldwide prevalence of mcr in E. coli isolated from healthy humans, chickens, and pigs was investigated. A wide prevalence and distribution of mcr genes was demonstrated on all continents in E. coli isolates from the selected reservoirs. Understanding the epidemiology and occurrence in the reservoirs of mcr in E. coli on different continents of the world facilitates tracing how mcr genes are transmitted and determining the infection risks for humans. This knowledge can be used to reduce the incidence of zoonotic transmission by implementing the appropriate control programs.
Collapse
|
7
|
Li F, Cheng P, Li X, Liu R, Liu H, Zhang X. Molecular Epidemiology and Colistin-Resistant Mechanism of mcr-Positive and mcr-Negative Escherichia coli Isolated From Animal in Sichuan Province, China. Front Microbiol 2022; 13:818548. [PMID: 35422787 PMCID: PMC9002323 DOI: 10.3389/fmicb.2022.818548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
Colistin is the last line of defense for the treatment of multidrug-resistant gram-negative bacterial infections. However, colistin resistance is gradually increasing worldwide, with resistance commonly regulated by two-component system and mcr gene. Thus, this study aimed to investigate molecular epidemiology and colistin-resistant mechanism of mcr-positive and mcr-negative Escherichia coli isolates from animal in Sichuan Province, China. In this study, a total of 101 colistin-resistant E. coli strains were isolated from 300 fecal samples in six farms in Sichuan Province. PCR was used to detect mcr gene (mcr-1 to mcr-9). The prevalence of mcr-1 in colistin-resistant E. coli was 53.47% (54/101), and the prevalence of mcr-3 in colistin-resistant E. coli was 10.89% (11/101). The colistin-resistant E. coli and mcr-1–positive E. coli showed extensive antimicrobial resistance profiles. For follow-up experiments, we used 30 mcr-negative and 30 mcr-1–positive colistin-resistant E. coli isolates and E. coli K-12 MG1655 model strain. Multi-locus sequence typing (MLST) of 30 strains carrying mcr-1 as detected by PCR identified revealed six strains (20%) of ST10 and three strains (10%) of each ST206, ST48, and ST155 and either two (for ST542 and 2539) or just one for all other types. The conjugation experiment and plasmid replicon type analysis suggest that mcr-1 was more likely to be horizontally transferred and primarily localized on IncX4-type and IncI2-type plasmid. The ST diversity of the mcr-1 indicated a scattered and non-clonal spreading in mcr-1–positive E. coli. Twenty-eight mcr-negative colistin-resistant E. coli isolates carried diverse amino acid alterations in PmrA, PmrB, PhoP, PhoQ, and MgrB, whereas no mutation was found in the remaining isolates. The finding showed the high prevalence of colistin resistance in livestock farm environments in Sichuan Province, China. Our study demonstrates that colistin resistance is related to chromosomal point mutations including the two-component systems PhoP/PhoQ, PmrA/PmrB, and their regulators MgrB. These point mutations may confer colistin resistance in mcr-negative E. coli. These findings help in gaining insight of chromosomal-encoded colistin resistance in E. coli.
Collapse
Affiliation(s)
- Fulei Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoting Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruimeng Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haibin Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Torres RT, Cunha MV, Araujo D, Ferreira H, Fonseca C, Palmeira JD. Emergence of colistin resistance genes (mcr-1) in Escherichia coli among widely distributed wild ungulates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118136. [PMID: 34530238 DOI: 10.1016/j.envpol.2021.118136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The environment is considered a major reservoir of antimicrobial resistant microorganisms (AMR) and antimicrobial resistance genes (ARG). Colistin, a "last resort" antibiotic, is used for the treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. The global dissemination of mobile colistin resistance genes (mcr) in natural and non-natural environments is a major setback in the fight against antimicrobial resistance. Hitherto, there is a limited number of studies screening this resistance determinant in bacteria from wildlife. In this study, we describe for the first time the detection of plasmid-mediated colistin resistance in Escherichia coli from wild ungulates in Portugal, which are also widely distributed across Europe. This information is critical to identify the importance of ungulates in the dissemination of resistant bacteria, and their corresponding genes, across the environment. Here, 151 resistant-Enterobacteriaceae isolated from 181 samples collected from different wild ungulate species throughout Portugal were screened for mcr genes. Four mcr-1-positive Escherichia coli were detected from four fallow deer individuals that were sampled in the same hunting ground. These four isolates harboured mcr-1-related IncP plasmids belonging to sequencing types ST155, ST533 and ST345 (n = 2), suggesting bacterial and/or plasmid circulation. All mcr-1-positive E. coli also showed other resistance phenotypes, including MDR, including the B1 commensal phylogenetic profile. All mcr-1-positive E. coli show additional resistance phenotypes, including MDR, including the B1 commensal phylogenetic profile. Our findings are upsetting, highlighting the global dissemination of colistin resistance genes in the whole ecosystem, which, under the One Health framework, emphasizes the urgent need for effective implementation of AMR surveillance and control in the human-animal-environment interfaces.
Collapse
Affiliation(s)
- Rita Tinoco Torres
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Débora Araujo
- Faculty of Engineering of University of Porto, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE - University of Porto, Porto, Portugal
| | - Helena Ferreira
- Faculty of Engineering of University of Porto, Porto, Portugal; Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Portugal
| | - Carlos Fonseca
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Josman Dantas Palmeira
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
9
|
Valiakos G, Kapna I. Colistin Resistant mcr Genes Prevalence in Livestock Animals (Swine, Bovine, Poultry) from a Multinational Perspective. A Systematic Review. Vet Sci 2021; 8:265. [PMID: 34822638 PMCID: PMC8619609 DOI: 10.3390/vetsci8110265] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/23/2022] Open
Abstract
The objective of this review is to collect and present the results of relevant studies on an international level, on the subject of colistin resistance due to mcr genes prevalence in livestock animals. After a literature search, and using PRISMA guidelines principles, a total of 40 swine, 16 bovine and 31 poultry studies were collected concerning mcr-1 gene; five swine, three bovine and three poultry studies referred to mcr-2 gene; eight swine, one bovine, two poultry studies were about mcr-3 gene; six swine, one bovine and one poultry manuscript studied mcr-4 gene; five swine manuscripts studied mcr-5 gene; one swine manuscript was about mcr-6, mcr-7, mcr-8, mcr-9 genes and one poultry study about mcr-10 gene was found. Information about colistin resistance in bacteria derived from animals and animal product foods is still considered limited and that should be continually enhanced; most of the information about clinical isolates are relative to enteropathogens Escherichia coli and Salmonella spp. This review demonstrates the widespread dispersion of mcr genes to livestock animals, indicating the need to further increase measures to control this important threat for public health issue.
Collapse
Affiliation(s)
- George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | | |
Collapse
|
10
|
Pungpian C, Lee S, Trongjit S, Sinwat N, Angkititrakul S, Prathan R, Srisanga S, Chuanchuen R. Colistin resistance and plasmid-mediated mcr genes in Escherichia coli and Salmonella isolated from pigs, pig carcass and pork in Thailand, Lao PDR and Cambodia border provinces. J Vet Sci 2021; 22:e68. [PMID: 34423604 PMCID: PMC8460466 DOI: 10.4142/jvs.2021.22.e68] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Colistin and carbapenem-resistant bacteria have emerged and become a serious public health concern, but their epidemiological data is still limited. OBJECTIVES This study examined colistin and carbapenem resistance in Escherichia coli and Salmonella from pigs, pig carcasses, and pork in Thailand, Lao PDR, and Cambodia border provinces. METHODS The phenotypic and genotypic resistance to colistin and meropenem was determined in E. coli and Salmonella obtained from pigs, pig carcasses, and pork (n = 1,619). A conjugative experiment was performed in all isolates carrying the mcr gene (s) (n = 68). The plasmid replicon type was determined in the isolates carrying a conjugative plasmid with mcr by PCR-based replicon typing (n = 7). The genetic relatedness of mcr-positive Salmonella (n = 11) was investigated by multi-locus sequence typing. RESULTS Colistin resistance was more common in E. coli (8%) than Salmonella (1%). The highest resistance rate was found in E. coli (17.8%) and Salmonella (1.7%) from Cambodia. Colistin-resistance genes, mcr-1, mcr-3, and mcr-5, were identified, of which mcr-1 and mcr-3 were predominant in E. coli (5.8%) and Salmonella (1.7%), respectively. The mcr-5 gene was observed in E. coli from pork in Cambodia. Two colistin-susceptible pig isolates from Thailand carried both mcr-1 and mcr-3. Seven E. coli and Salmonella isolates contained mcr-1 or mcr-3 associated with the IncF and IncI plasmids. The mcr-positive Salmonella from Thailand and Cambodia were categorized into two clusters with 94%-97% similarity. None of these clusters was meropenem resistant. CONCLUSIONS Colistin-resistant E. coli and Salmonella were distributed in pigs, pig carcasses, and pork in the border areas. Undivided-One Health collaboration is needed to address the issue.
Collapse
Affiliation(s)
- Chanika Pungpian
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Scarlett Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, United States
| | - Suthathip Trongjit
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuananong Sinwat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine Kasetsart University, Kamphangsaen Nakornpathom 73140, Thailand
| | - Sunpetch Angkititrakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rangsiya Prathan
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Songsak Srisanga
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
11
|
Zhang S, Huang Y, Yang G, Lei T, Chen M, Ye Q, Wang J, Gu Q, Wei X, Zhang J, Wu Q. High prevalence of multidrug-resistant Escherichia coli and first detection of IncHI2/IncX4-plasmid carrying mcr-1 E. coli in retail ready-to-eat foods in China. Int J Food Microbiol 2021; 355:109349. [PMID: 34371389 DOI: 10.1016/j.ijfoodmicro.2021.109349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Antibiotic-resistant bacteria in food pose an important threat to public health. Multidrug-resistant strains in ready-to-eat (RTE) foods can be transferred to humans through diet, which increases their health risk. This study systematically investigated antibiotic resistance and antibiotic resistance genes in E. coli isolated from retail RTE foods and characterized plasmid-mediated colistin-resistant E. coli strains. A total of 1118 RTE food samples were collected from markets in 39 cities in China, and 126 E. coli strains, >95% of which were multidrug-resistant, were isolated. The isolates showed a high prevalence of resistance to tetracycline (95.24%), ampicillin (82.54%), trimethoprim-sulfamethoxazole (77.78%), nalidixic acid (74.60%), cephalothin (72.22%), chloramphenicol (66.67%), and streptomycin (53.97%). Twenty-two extended-spectrum β-lactamase (ESBL)-producing E. coli and four colistin-resistant E. coli were identified. The resistance genes TEM, CTX-M, tetA, sul2, strA/strB, aadA, and qnrS were the most frequently detected. CTX-M-55 and CTX-M-14 were the predominant CTX-M types. All the four colistin-resistant E. coli isolates were positive for mcr-1. The mcr-1 gene can be transferred to E. coli C600 through conjugation and transformation. Whole-genome sequencing revealed that the mcr-1 genes were found in IncX4 and IncHI2 plasmids. To the best of our knowledge, this is the first report of IncHI2/IncX4 plasmid-bearing mcr-1-positive E. coli strains in RTE foods sold in markets, and the first report of the isolation of the international epidemic E. coli clone ST101 and mcr-1-carrying ESBL-producing E. coli from RTE foods. These results provide valuable information for assessing antibiotic-resistant E. coli infections and controlling antibiotic-resistant E. coli.
Collapse
Affiliation(s)
- Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Yuanbin Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Guangzhu Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China.
| |
Collapse
|
12
|
Cheng P, Yang Y, Cao S, Liu H, Li X, Sun J, Li F, Ishfaq M, Zhang X. Prevalence and Characteristic of Swine-Origin mcr-1-Positive Escherichia coli in Northeastern China. Front Microbiol 2021; 12:712707. [PMID: 34354696 PMCID: PMC8329492 DOI: 10.3389/fmicb.2021.712707] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of the plasmid-mediated colistin resistance gene mcr-1 is threatening the last-line role of colistin in human medicine. With mcr-1-positive Escherichia coli (E. coli) isolated from food animal being frequently reported in China, the prevalence of mcr-1 in food animal has attracted public attention. In the present study, a total of 105 colistin-resistant E. coli strains were isolated from 200 fecal samples collected from six swine farms in northeastern China. mcr-PCR revealed that the prevalence of mcr-1 in colistin-resistant E. coli was 53.33% (56/105). mcr-1-positive E. coli showed extensive antimicrobial resistance profiles with the presence of additional resistance genes, increased expression of multidrug efflux pump-associated genes, and increased biofilm formation ability. MLST differentiated all the mcr-1-positive E. coli into 25 sequence types (STs) and five unknown ST, and the most common ST was ST10 (n = 11). By phylogenetic group classification, the distribution of all mcr-1-positive E. coli belonging to groups A, B1, B2, and D was 46.43, 35.71, 5.36, and 5.36%, respectively. Conjugation experiment demonstrated that most of the mcr-1 were transferable at frequencies of 2.68 × 10–6–3.73 × 10–3 among 30 representative mcr-1-positive E. coli. The plasmid replicon types IncI2 (n = 9), IncX4 (n = 5), IncHI2 (n = 3), IncN (n = 3), and IncP (n = 1) were detected in the transconjugants. The results of growth assay, competition experiment, and plasmid stability testing showed that acquisition of mcr-1-harboring plasmids could reduce the fitness of bacterial hosts, but mcr-1 remained stable in the recipient strain. Due to the potential possibility of these mcr-1-positive E. coli being transmitted to humans through the food chain or through horizontal transmission, therefore, it is necessary to continuously monitor the prevalence and dissemination of mcr-1 in food animal, particularly in swine.
Collapse
Affiliation(s)
- Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuqi Yang
- Pharmacology Teaching and Research Department, School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Sai Cao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haibin Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoting Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jichao Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fulei Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Ling Z, Yin W, Shen Z, Wang Y, Shen J, Walsh TR. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. J Antimicrob Chemother 2021; 75:3087-3095. [PMID: 32514524 DOI: 10.1093/jac/dkaa205] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The identification of the first mobile colistin resistance (MCR) gene, mcr-1, in 2015 triggered a rash of mcr screening reports. Subsequently, nine MCR-family genes and their variants have been described. However, a comprehensive overview concerning the epidemiology of the whole MCR family, which is essential for facilitating rational interventions against mcr dissemination, is lacking. Here, based on the National Database of Antibiotic Resistant Organisms and published studies, we have summarized the latest epidemiological characteristics of the mcr genes.
Collapse
Affiliation(s)
- Zhuoren Ling
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Wenjuan Yin
- Medical College, Hebei University, Hebei, China
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Timothy R Walsh
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| |
Collapse
|
14
|
Nakano A, Nakano R, Nishisouzu R, Suzuki Y, Horiuchi S, Kikuchi-Ueda T, Ubagai T, Ono Y, Yano H. Prevalence and Relatedness of mcr-1-Mediated Colistin-Resistant Escherichia coli Isolated From Livestock and Farmers in Japan. Front Microbiol 2021; 12:664931. [PMID: 33981293 PMCID: PMC8107264 DOI: 10.3389/fmicb.2021.664931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Colistin is used to treat infectious diseases in humans and livestock; it has also been used as a feed additive for livestock for approximately 50 years. Since the mcr-1 plasmid-mediated colistin resistance gene was discovered in China in 2015, it has been detected worldwide, mainly in livestock. In this study, we investigated the prevalence and characteristics of mcr-mediated colistin-resistant Escherichia coli in livestock and farmers in Japan. We collected fecal samples from 295 healthy livestock (202 cattle and 93 swine) and 62 healthy farmers from 72 livestock farms (58 cattle farms and 14 swine farms) between 2013 and 2015. Twenty-eight mcr-1-harboring E. coli strains were isolated from 25 livestock (six cattle and 19 swine) and three farmers (two cattle farmers and one swine farmer). The prevalence rates of mcr-1-harboring E. coli in livestock and farmers were 8.47 and 4.84%, respectively. Of the 28 strains, the resistance genes of three were transferable via the mcr-1-coding plasmids to E. coli J53 at low frequencies (10−7–10−8). Six strains coharbored mcr-1 with CTX-M β-lactamases (CTX-M-14, CTX-M-27, or CTX-M-156). Of the isolates obtained from livestock and farmers in four farms (farms C, I, N, and P), nine strains had the same genotypical characteristics (sequence types and pulsed-field gel electrophoresis band patterns), plasmid characteristics (incompatibility group and plasmid transferability), and minimum inhibitory concentrations. Thus, the findings suggested that clonal strains could spread among livestock and farmers within farms. To our knowledge, this is the first study to detect clonal relatedness of mcr-1-mediated colistin-resistant E. coli in livestock and farmers. It is suggested that farmers are at a higher risk of acquiring mcr-1-harboring strains, calling for our attention based on the One Health concept.
Collapse
Affiliation(s)
- Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara, Japan
| | - Ryuji Nishisouzu
- Livestock Food Agriculture Course, Soo High School Kagoshima, Kagoshima, Japan
| | - Yuki Suzuki
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara, Japan
| | - Saori Horiuchi
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara, Japan
| | - Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara, Japan
| |
Collapse
|
15
|
Nagy Á, Székelyhidi R, Hanczné Lakatos E, Kapcsándi V. Review on the occurrence of the mcr-1 gene causing colistin resistance in cow's milk and dairy products. Heliyon 2021; 7:e06800. [PMID: 33898852 PMCID: PMC8060599 DOI: 10.1016/j.heliyon.2021.e06800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/25/2021] [Accepted: 04/10/2021] [Indexed: 01/17/2023] Open
Abstract
Both livestock farmers and the clinic use significant amount of antibiotics worldwide, in many cases the same kind. Antibiotic resistance is not a new phenomenon, however, it is a matter of concern that resistance genes (mcr - Mobilized Colistin Resistance - genes) that render last-resort drugs (Colistin) ineffective, have already evolved. Nowadays, there is a significant consumption of milk and dairy products, which, if not treated properly, can contain bacteria (mainly Gram-negative bacteria). We collected articles and reviews in which Gram-negative bacteria carrying the mcr-1 gene have been detected in milk, dairy products, or cattle. Reports have shown that although the incidence is still low, unfortunately the gene has been detected in some dairy products on almost every continent. In the interest of our health, the use of colistin in livestock farming must be banned as soon as possible, and new treatments should be applied so that we can continue to have a chance in fighting multidrug-resistant bacteria in human medicine.
Collapse
|
16
|
Hameed MF, Chen Y, Wang Y, Shafiq M, Bilal H, Liu L, Ma J, Gu P, Ge H. Epidemiological Characterization of Colistin and Carbapenem Resistant Enterobacteriaceae in a Tertiary: A Hospital from Anhui Province. Infect Drug Resist 2021; 14:1325-1333. [PMID: 33854345 PMCID: PMC8040073 DOI: 10.2147/idr.s303739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/13/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Antimicrobial resistance, especially carbapenem resistance Enterobacteriaceae and plasmid mediated mobile colistin resistance, is a serious issue worldwide. This study was designed to determine the epidemiological characteristics of plasmid mediated colistin resistance and carbapenem resistant Enterobacteriaceae from tertiary A hospital located in Hefei, China. METHODS Totally, 158 carbapenems resistant Enterobacteriaceae (CRE) were screened for antibiotic susceptibility, mcr-1, extended spectrum β-lactamases (ESBLs), metallo-β-lactamases (MBLs), and fosfomycin resistance genes using PCR and sequencing. The sequence types were identified by multilocus sequence typing (MLST). Plasmid profiles were determined by PCR based replicon typing (PBRT), and the plasmid sizes were confirmed by southern blotting. RESULTS The isolates showed high MIC50 and MIC90 for all antimicrobials, except tigecycline, meropenem, and colistin. The main Carbapenemase genes were bla KPC-2 (90.5%), bla NDM-1(3.7%), bla OXA-48(5.6%) and fosA3 (14.5%). The bla CTXM-15 found 36.7%, mcr-1 (3.7%) recorded in six isolates. PBRT revealed bla KPC-2 in K. pneumoniae on IncR, IncFII, and IncA/C. bla NDM-1 in E. coli on IncFII, whereas in E. cloacae noticed on IncHI2 plasmid. mcr-1 was recorded among IncFIIK, IncFII, and IncF in E. coli, K. pneumoniae, and E. cloacae. Resistance genes (mcr-1, bla NDM-1, bla KPC-2) harboring plasmids are successfully trans-conjugant to EC-600. A high incidence of ST11 was observed in K. pneumoniae carbapenem resistant isolates. While in E. coli, multiple STs were identified. However, mcr-1 in ST23 was identified for the first time in Anhui Province. Among Enterobacter cloacae, ST270 detected carrying bla NDM-1. Southern-hybridization confirmed the plasmid sizes 35-150kb. CONCLUSION This study indicates the co-carrying of mcr-1, bla KPC-2, and bla NDM-1 among clinical isolates, the prevalence of different Enterobacteriaceae STs is alarming, especially in E. coli. Holding such a resistance profile is a threat for humans and animals, which may be transferred between the strains through plasmid transfusion. Persistent control actions are immediately necessary to combat this hazard.
Collapse
Affiliation(s)
- Muhammad Fazal Hameed
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People’s Republic of China
| | - Yanan Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People’s Republic of China
| | - Ying Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, People’s Republic of China
| | - Muhammad Shafiq
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Hazrat Bilal
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People’s Republic of China
| | - Linqing Liu
- The Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, People’s Republic of China
| | - Jinming Ma
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People’s Republic of China
| | - Pengying Gu
- The Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, People’s Republic of China
| | - Honghua Ge
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People’s Republic of China
| |
Collapse
|
17
|
Ilbeigi K, Askari Badouei M, Vaezi H, Zaheri H, Aghasharif S, Kafshdouzan K. Molecular survey of mcr1 and mcr2 plasmid mediated colistin resistance genes in Escherichia coli isolates of animal origin in Iran. BMC Res Notes 2021; 14:107. [PMID: 33757569 PMCID: PMC7989013 DOI: 10.1186/s13104-021-05519-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Objectives The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is one of the major public health concerns as colistin is the last-resort antibiotic for treating infections caused by multidrug-resistant Gram-negative bacteria. We aimed to determine the prevalence of the prototype widespread colistin resistance genes (mcr-1 and mcr-2) among commensal and pathogenic Escherichia coli strains isolated from food-producing and companion animals in Iran. Results A total of 607 E. coli isolates which were previously collected from different animal sources between 2008 and 2016 used to uncover the possible presence of plasmid-mediated colistin resistance genes (mcr-1 and mcr-2) by PCR. Overall, our results could not confirm the presence of any mcr-1 or mcr-2 positive E. coli among the studied isolates. It is concluded that despite the important role of food-producing animals in transferring the antibiotic resistance, they were not the main source for carriage of mcr-1 and mcr-2 in Iran until 2016. This study suggests that the other mcr variants (mcr-3 to mcr-9) might be responsible for conferring colistin resistance in animal isolates in Iran. The possible linkage between pig farming industry and high level of mcr carriage in some countries needs to be clarified in future prospective studies.
Collapse
Affiliation(s)
- Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Mahdi Askari Badouei
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Semnan, Iran.
| | - Hossein Vaezi
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Semnan, Iran
| | - Hassan Zaheri
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Semnan, Iran
| | - Sina Aghasharif
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Khatereh Kafshdouzan
- Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| |
Collapse
|
18
|
Fan J, Zhang L, He J, Zhao M, Loh B, Leptihn S, Yu Y, Hua X. Plasmid Dynamics of mcr-1-Positive Salmonella spp. in a General Hospital in China. Front Microbiol 2020; 11:604710. [PMID: 33414775 PMCID: PMC7782425 DOI: 10.3389/fmicb.2020.604710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Salmonella is an important food pathogen that can cause severe gastroenteritis with more than 600,000 deaths globally every year. Colistin (COL), a last-resort antibiotic, is ineffective in bacteria that carry a functional mcr-1 gene, which is often spread by conjugative plasmids. Our work aimed to understand the prevalence of the mcr-1 gene in clinical isolates of Salmonella, as the frequency of occurrence of the mcr-1 gene is increasing globally. Therefore, we analyzed 689 clinical strains, that were isolated between 2009 and late 2018. The mcr-1 gene was found in six strains, which we analyzed in detail by whole genome sequencing and antibiotic susceptibility testing, while we also provide the clinical information on the patients suffering from an infection. The genomic analysis revealed that five strains had plasmid-encoded mcr-1 gene located in four IncHI2 plasmids and one IncI2 plasmid, while one strain had the chromosomal mcr-1 gene originated from plasmid. Surprisingly, in two strains the mcr-1 genes were inactive due to disruption by insertion sequences (ISs): ISApl1 and ISVsa5. A detailed analysis of the plasmids revealed a multitude of ISs, most commonly IS26. The IS contained genes that meditate broad resistance toward most antibiotics underlining their importance of the mobile elements, also with respect to the spread of the mcr-1 gene. Our study revealed potential reservoirs for the transmission of COL resistance and offers insights into the evolution of the mcr-1 gene in Salmonella.
Collapse
Affiliation(s)
- Jianzhong Fan
- Department of Laboratory Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Maoying Zhao
- Department of Laboratory Medicine, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Emergence of mcr-3 carrying Escherichia coli in Diseased Pigs in South Korea. Microorganisms 2020; 8:microorganisms8101538. [PMID: 33036214 PMCID: PMC7650651 DOI: 10.3390/microorganisms8101538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
We examined the prevalence and molecular characteristics of mcr-3 carrying colistin-resistant Escherichia coli among cattle, pig, and chicken isolates in South Korea. Among a total of 185 colistin-resistant E. coli isolates determined in this study (47 from cattle, 90 from pigs, and 48 from chicken), PCR amplification detected mcr-3 genes in 17 isolates predominantly from diseased pigs. The mcr-3 genes were characterized as mcr-3.1 in 15 isolates and mcr-3.5 in 2 isolates. The mcr-3 gene was transferred to the E. coli J53 recipient strain from more than 50% of the mcr-3-carrying isolates. The mcr-3.1 and mcr-3.5 genes were identified predominantly in IncHI2 and IncP plasmids, respectively. Multi-locus sequence typing analysis revealed eight previously reported sequence types (ST), including ST1, ST10, and ST42. We identified isolates with similar pulsed-field gel electrophoresis patterns from diseased pigs in three farms. Besides, the isolates carried various virulence factors and demonstrated resistance to multiple antimicrobials, including β-lactams and quinolones. Further, the mcr-3.5 encodes three amino acid substitutions compared with mcr-3.1. To the best of our knowledge, this is the first report of pathogenic E. coli carrying mcr-3.5 in South Korea, which implies that mcr-3 variants may have already been widely spread in the pig industry.
Collapse
|
20
|
Makarov DA, Ivanova OE, Karabanov SY, Gergel MA, Pomazkova AV. Antimicrobial resistance of commensal Escherichia coli from food-producing animals in Russia. Vet World 2020; 13:2053-2061. [PMID: 33281337 PMCID: PMC7704320 DOI: 10.14202/vetworld.2020.2053-2061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Commensal Escherichia coli is an important indicator of antimicrobial resistance (AMR) in animals and food of animal origin. Therefore, it was recommended by the World Health Organization and OIE for inclusion in resistance surveillance programs. At the same time, the data on E. coli isolates from animals in Russia are scarce. The aim of this work was to determine the current prevalence of resistance and genetic markers of non-pathogenic commensal E. coli collected from major food-producing animals (poultry, pigs, and cows) in different regions of Russia and to compare these data with data from other countries to prioritize antimicrobials for limiting their use according to the National Action Plan Materials and Methods: Samples (n=306) were collected from biomaterial of chicken, turkey, cows, and pigs raised on 11 farms in the European part of Russia, Siberia, and North Caucasus. Isolates (n=306) of E. coli were tested for resistance to 11 antimicrobials from ten classes using the broth microdilution method. MICs were interpreted against EUCAST microbiological and clinical breakpoints. For data analysis and statistical processing, the AMRcloud online platform was used. The data are presented in comparison with other countries. Results: In Russia, higher levels of microbiological and clinical resistance of E. coli to critically important antimicrobials, including colistin, cefotaxime, and ciprofloxacin, were found compared to other countries, especially in poultry: About 30% of isolates from chicken were resistant to colistin, 8% to cefotaxime, and 88% to ciprofloxacin according to EUCAST ECOFFs. Only 10% of isolates from cows were resistant to cefotaxime. About 47% of isolates of E. coli from chicken had a moderate relative resistance for ampicillin and 56% for tetracycline. For most antimicrobials, isolates from cows demonstrated a lower resistance than isolates from poultry and pigs. All tested isolates from chicken, turkey, and pigs showed a simultaneous microbiological resistance to at least three classes of antimicrobials. No pan-resistant isolates were found. Conclusion: High levels of AMR of commensal E. coli from poultry, especially for critically important drugs, are a matter of concern and should be taken into account when choosing antimicrobials to be restricted for use in animal husbandry according to the National Action Plan.
Collapse
Affiliation(s)
- Dmitry A Makarov
- Department of Pharmaceutical Drugs for Animals, Food and Feed Safety, Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe Highway, Russia
| | - Olga E Ivanova
- Department of Biotechnology, Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe Highway, Russia
| | - Sergey Yu Karabanov
- Department of Biotechnology, Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe Highway, Russia
| | - Maria A Gergel
- Department of Biotechnology, Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe Highway, Russia
| | - Anastasia V Pomazkova
- Department of Biotechnology, Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe Highway, Russia
| |
Collapse
|
21
|
Marin C, Sevilla-Navarro S, Lonjedo R, Catalá-Gregori P, Ferrús MA, Vega S, Jiménez-Belenguer A. Genotyping and molecular characterization of antimicrobial resistance in thermophilic Campylobacter isolated from poultry breeders and their progeny in Eastern Spain. Poult Sci 2020; 99:5096-5104. [PMID: 32988548 PMCID: PMC7598336 DOI: 10.1016/j.psj.2020.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/04/2022] Open
Abstract
Thermophilic Campylobacter spp. are recognized as a major cause of acute bacterial diarrhea in humans, with broiler meat being the most common source of human infection. Antibiotic therapy is usually necessary for severe or prolonged infections, especially in immunocompromised populations such as young or elderly individuals. However, different studies have demonstrated a close association between antibiotic use in animal production and antimicrobial resistance (AMR) in humans. In this sense, there is social pressure to reduce antibiotic administration and find adequate alternatives to control the presence of bacterial infections in farms. However, there is a lack of information related to Campylobacter AMR dynamics through the entire production system from breeders to their progeny. It is unknown if resistance genes are a result of adaptation through chromosomal mutation or through horizontal gene transfer, instead of vertical transmission of DNA from the parent to their progeny. Thus, the main objectives of this study were to assess the main AMR rates present in a poultry production system, to study the relationship between Campylobacter AMR profiles from breeders and their progeny, and to study the presence and distribution of antibiotic resistance genes in poultry production. Regarding AMR rates, ciprofloxacin was classified as extremely high, followed by nalidixic acid and tetracyclines that were classified as very high. Moreover, this study demonstrated a relationship between the AMR patterns and genes found from Campylobacter strains isolated in breeders and those present in their progeny.
Collapse
Affiliation(s)
- C Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - S Sevilla-Navarro
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, Spain; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - R Lonjedo
- Biotechnology Department. Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 Valencia, Spain
| | - P Catalá-Gregori
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, Spain; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - M A Ferrús
- Biotechnology Department. Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 Valencia, Spain
| | - S Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - A Jiménez-Belenguer
- Biotechnology Department. Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
22
|
Wang J, Zhou M, Huang G, Guo Z, Sauser J, Metsini A, Pittet D, Zingg W. Antimicrobial resistance in southern China: results of prospective surveillance in Dongguan city, 2017. J Hosp Infect 2020; 105:188-196. [PMID: 32243952 PMCID: PMC7270154 DOI: 10.1016/j.jhin.2020.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/23/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Few studies have estimated the burden of infections due to antimicrobial-resistant (AMR) pathogens in China. AIM To summarize antimicrobial resistance and assess the frequency of community-associated infections (CAIs) and healthcare-associated infections (HCAIs) due to AMR pathogens in Dongguan city, China. METHODS Seven acute care hospitals provided antimicrobial susceptibility data for 2017, from which 'bug-drug' combinations were analysed. To calculate incidence proportions of CAI and incidence densities of HCAI, data from three tertiary care hospitals were merged with patient data, obtained from the Dongguan Nosocomial Infection Surveillance System. FINDINGS A total of 16,548 pathogens were analysed. Non-susceptibility to third-generation cephalosporins (3GCs) in Escherichia coli and Klebsiella pneumoniae was 43.9% and 30.2%, respectively. Non-susceptibility to carbapenems in Pseudomonas aeruginosa and Acinetobacter baumannii was 29.5% and 50.9%, respectively. A quarter of Staphylococcus aureus (26.3%) were non-susceptible to oxacillin. The incidence density of HCAI due to E. coli non-susceptible to 3GCs and fluoroquinolones combined was 0.09 (95% confidence interval: 0.07-0.11) per 1000 patient-days. Both E. coli and K. pneumoniae were the predominant pathogens isolated from blood. Compared with the 2017 European Antimicrobial Resistance Surveillance Network report, the incidence proportion of bloodstream infections due to multidrug-resistant E. coli was significantly higher (14.9% and 4.6%, respectively). CONCLUSION The incidence of non-susceptible bug-drug combinations in Dongguan city was lower compared with China as a whole. Non-susceptible bug-drug combinations were significantly more frequent in HCAI compared with CAI. The incidence proportion of bloodstream infections due to multidrug-resistant pathogens in Dongguan City was higher compared with Europe.
Collapse
Affiliation(s)
- J Wang
- Infection Control Programme and WHO Collaborating Centre on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland; Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Infection Control, Dongguan Hospital of Traditional Chinese Medicine, Dongguan city, Guang Dong Province, China
| | - M Zhou
- Department of Infection Control, Dongguan Tung Wah Hospital, Sun Yat-sen University, Dongguan city, Guang Dong Province, China; Dongguan Nosocomial Infection Control and Quality Improvement Centre, Dongguan city, Guang Dong Province, China
| | - G Huang
- Department of Infection Control, Dongguan Tung Wah Hospital, Sun Yat-sen University, Dongguan city, Guang Dong Province, China; Dongguan Nosocomial Infection Control and Quality Improvement Centre, Dongguan city, Guang Dong Province, China
| | - Z Guo
- Department of Microbiology, Dongguan Tung Wah Hospital, Sun Yat-sen University, Dongguan city, Guang Dong Province, China
| | - J Sauser
- Infection Control Programme and WHO Collaborating Centre on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - A Metsini
- Infection Control Programme and WHO Collaborating Centre on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - D Pittet
- Infection Control Programme and WHO Collaborating Centre on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - W Zingg
- Infection Control Programme and WHO Collaborating Centre on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland; National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College of London, London, UK.
| |
Collapse
|
23
|
Clinical relevance and plasmid dynamics of mcr-1-positive Escherichia coli in China: a multicentre case-control and molecular epidemiological study. LANCET MICROBE 2020; 1:e24-e33. [DOI: 10.1016/s2666-5247(20)30001-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
|
24
|
The dynamic of antibiotic resistance in commensal Escherichia coli throughout the growing period in broiler chickens: fast-growing vs. slow-growing breeds. Poult Sci 2020; 99:1591-1597. [PMID: 32111325 PMCID: PMC7587802 DOI: 10.1016/j.psj.2019.10.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is an important threat to public health worldwide. Furthermore, different studies have demonstrated a close association between antibiotic use in animal production and AMR in humans. It is well known that it is necessary to reduce antibiotic administration in farms by finding effective alternative treatments, using more resistant breeds and improving animal welfare. However, to be able to assess the alternatives proposed, it is essential to study the epidemiology of AMR under production conditions. Hence, the aim of this study was to investigate the AMR dynamic in 2 genetic poultry breeds during the growing period. The study was performed in 2 experimental poultry houses to simulate real production conditions, and no antibiotics were administered during the growing period. In addition, 2 poultry breeds were used, fast-growing and slow-growing. To evaluate AMR evolution, Escherichia coli was selected as indicator bacterium. To this end, animals from each experimental group were sampled at different times: on day of arrival, at mid-period, and at slaughter day. In the laboratory, cecal content was removed and inoculated in selective media. Then, biochemical tests were performed to confirm E. coli. Finally, antibiotic susceptibility was assessed according to Decision 2013/653. At the onset of the cycle, significant differences were observed between breeds, as the E. coli strains isolated from fast-growing 1-day-old-chicks showed higher AMR rates. However, at the end of the period, no significant differences were found between breeds and their presence of resistant bacteria (above 95%). Therefore, although no antibiotics were administered during the growing period, a high level of AMR at slaughter day was demonstrated. Further studies are necessary to determine the main risk factors that increase the level of AMR throughout the productive cycle in broiler chickens. In conclusion, it is important to highlight that although it is crucial to control both antibiotic use and animal welfare during the growing period, measures should be taken at all levels of the production chain.
Collapse
|
25
|
Peng Z, Liang W, Hu Z, Li X, Guo R, Hua L, Tang X, Tan C, Chen H, Wang X, Wu B. O-serogroups, virulence genes, antimicrobial susceptibility, and MLST genotypes of Shiga toxin-producing Escherichia coli from swine and cattle in Central China. BMC Vet Res 2019; 15:427. [PMID: 31783837 PMCID: PMC6883634 DOI: 10.1186/s12917-019-2177-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/15/2019] [Indexed: 11/12/2022] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) is a leading cause of worldwide food-borne and waterborne infections. Despite an increase in the number of STEC outbreaks, there is a lack of data on prevalence of STEC at the farm level, distribution of serogroups, and virulence factors. Results In the present study, a total of 91 (6.16%) STEC strains were isolated from 1477 samples including pig intestines, pig feces, cattle feces, milk, and water from dairy farms. The isolation rates of STEC strains from pig intestines, pig feces, and cattle feces were 7.41% (32/432), 4.38% (21/480), and 9.57% (38/397), respectively. No STEC was isolated from the fresh milk and water samples. By O-serotyping methods, a total of 30 types of O-antigens were determined, and the main types were O100, O97, O91, O149, O26, O92, O102, O157, and O34. Detection of selected virulence genes (stx1, stx2, eae, ehxA, saa) revealed that over 94.51% (86/91) of the isolates carried more than two types of virulence associated genes, and approximately 71.43% (65/91) of the isolates carried both stx1 and stx2, simultaneously. Antimicrobial susceptibility tests showed that most of the STEC isolates were susceptible to ofloxacin and norfloxacin, but showed resistance to tetracycline, kanamycin, trimethoprim-sulfamethoxazole, streptomycin, amoxicillin, and ampicillin. MLST determined 13 categories of sequence types (STs), and ST297 (31.87%; 29/91) was the most dominant clone. This clone displayed a close relationship to virulent strains STEC ST678 (O104: H4). The prevalence of ST297 clones should receive more attentions. Conclusions Our preliminary data revealed that a heterogeneous group of STEC is present, but the non-O157 serogroups and some ST clones such as ST297 should receive more attentions.
Collapse
Affiliation(s)
- Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Animal Husbandry and Veterinary Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zizhe Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaosong Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Guo
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xibiao Tang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
26
|
Liu G, Ali T, Gao J, Ur Rahman S, Yu D, Barkema HW, Huo W, Xu S, Shi Y, Kastelic JP, Han B. Co-Occurrence of Plasmid-Mediated Colistin Resistance ( mcr-1) and Extended-Spectrum β-Lactamase Encoding Genes in Escherichia coli from Bovine Mastitic Milk in China. Microb Drug Resist 2019; 26:685-696. [PMID: 31755810 DOI: 10.1089/mdr.2019.0333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Both mcr-1 phosphoethanolamine transferase enzymes and extended-spectrum β-lactamases (ESBLs) are the main plasmid-mediated mechanisms of resistance to colistin and third-generation cephalosporins, respectively, and currently considered a major concern to humans and food animals. Prevalence of mcr-1 gene in Escherichia coli from dairy cattle has rarely been reported. Our objective was to determine prevalence and characteristics of mcr-1 carrying E. coli isolated from clinical mastitis cases in large dairy farms (>500 cows) in 16 provinces of China. A total of 249 E. coli was isolated from 2,038 mastitic milk samples. Among these isolates, 2.0% (n = 5) and 19.7% (n = 49) were colistin resistant mcr-1-positive and ESBL-producing isolates, respectively. All mcr-1-positive isolates that produced ESBLs also carried the blaCTX-M-15 gene and belonged to phylogroup-A. Most mcr-1 and blaCTX-M-15 genes were located on conjugative plasmids (IncP and IncF, respectively) that were successfully transferred to transconjugants in conjugation experiments. All mcr-1-positive E. coli isolates were multidrug resistant, exhibiting resistance to common antimicrobials. Multilocus sequence typing of these mcr-1-carrying E. coli isolates revealed four sequence types, reflecting substantial diversity. Multilocus sequence analysis detected evolutionary connection of mcr-1 carrying isolates with our recently reported ESBL-producing E. coli isolates, raising concerns regarding fast dissemination between bacteria. To our knowledge, this was the first nation-wide report describing isolates of E. coli from mastitic milk samples collected on large dairy farms in China, carrying mcr-1 and blaCTX-M-15 genes on conjugative plasmids. We concluded that dairy cattle are a potential source of mcr-1-carrying and ESBL-producing E. coli.
Collapse
Affiliation(s)
- Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Tariq Ali
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
- Center of Microbiology and Biotechnology, Veterinary Research Institute Peshawar, Peshawar, Pakistan
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Dan Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Wenlin Huo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Yuxiang Shi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, P.R. China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
27
|
Gharaibeh MH, Shatnawi SQ. An overview of colistin resistance, mobilized colistin resistance genes dissemination, global responses, and the alternatives to colistin: A review. Vet World 2019; 12:1735-1746. [PMID: 32009752 PMCID: PMC6925059 DOI: 10.14202/vetworld.2019.1735-1746] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
Colistin, also known as polymyxin E, is an antimicrobial agent that is effective against a variety of Gram-negative bacilli, especially the Enterobacteriaceae family. Recently, the wide dissemination of colistin-resistance has brought strong attention to the scientific society because of its importance as the last resort for the treatment of carbapenem-resistant Enterobacteriaceae infections and its possible horizontal transmission. The mobilized colistin resistance (mcr) gene was identified as the gene responsible for unique colistin resistance. Indeed, despite many studies that have revealed a pan variation in the existence of this gene, not only for the mcr genes main group but also for its many subgroups, the problem is growing and worsening day after day. In this regard, this review paper is set to review the updated data that has been published up to the end of 2019 third quarter, especially when related to colistin resistance by the mcr genes. It will include the present status of colistin resistance worldwide, the mcr gene dissemination in different sectors, the discovery of the mcr variants, and the global plan to deal with the threat of antimicrobial resistance. In line with global awareness, and to stop antibiotic misuse and overuse, especially in agricultural animals, the study will further discuss in detail the latest alternatives to colistin use in animals, which may contribute to the elimination of inappropriate antibiotic use and to the help in preventing infections. This review will advance our understanding of colistin resistance, while supporting the efforts toward better stewardship, for the proper usage of antimicrobial drugs in humans, animals, and in the environment.
Collapse
Affiliation(s)
- Mohammad H Gharaibeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| | - Shoroq Q Shatnawi
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| |
Collapse
|
28
|
Wood TM, Martin NI. The calcium-dependent lipopeptide antibiotics: structure, mechanism, & medicinal chemistry. MEDCHEMCOMM 2019; 10:634-646. [PMID: 31191855 PMCID: PMC6533798 DOI: 10.1039/c9md00126c] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
Abstract
To push back the growing tide of antibacterial resistance the discovery and development of new antibiotics is a must. In recent years the calcium-dependent lipopeptide antibiotics (CDAs) have emerged as a potential source of new antibacterial agents rich in structural and mechanistic diversity. All CDAs share a common lipidated cyclic peptide motif containing amino acid side chains that specifically chelate calcium. It is only in the calcium bound state that the CDAs achieve their potent antibacterial activities. Interestingly, despite their common structural features, the mechanisms by which different CDAs target bacteria can vary dramatically. This review provides both a historic context for the CDAs while also addressing the state of the art with regards to their discovery, optimization, and antibacterial mechanisms.
Collapse
Affiliation(s)
- Thomas M Wood
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
- Biological Chemistry Group , Institute of Biology Leiden , Leiden University , Sylvius Laboratories , Sylviusweg 72 , 2333 BE Leiden , The Netherlands . ; Tel: +31 (0)6 1878 5274
| | - Nathaniel I Martin
- Biological Chemistry Group , Institute of Biology Leiden , Leiden University , Sylvius Laboratories , Sylviusweg 72 , 2333 BE Leiden , The Netherlands . ; Tel: +31 (0)6 1878 5274
| |
Collapse
|