1
|
Dhanasekaran S, Liang L, Gurusamy S, Yang Q, Zhang H. Chitosan stabilized lemon essential oil nanoemulsion controls black mold rot and maintains quality of table grapes. Int J Biol Macromol 2024; 277:134251. [PMID: 39084429 DOI: 10.1016/j.ijbiomac.2024.134251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Aspergillus carbonarius infection leads to black mold rot in table grapes, causes grape decay, reduces fruit quality and marketability, which produces significant economic losses. This study investigated the antifungal efficacy of chitosan-stabilized lemon essential oil nanoemulsion (LO-CNE) against A. carbonarius and black mold rot of table grapes. LO-CNE was prepared with a mean diameter of 130.01 ± 8.34 nm. LO-CNE exhibited superior antifungal activity, reduced spore germination and germ tube elongation, decreased the antioxidant enzyme activities in A. carbonarius; the minimal inhibitory concentration of LO-CNE was determined to be 30 mg/mL. LO-CNE reduced the occurrence of black mold rot by 63 % and lesion diameter by 56.78 % in table grapes compared to the control. At their peak activity level, the grapes treated with LO-CNE exhibited significantly enhanced antioxidant and defense-related enzyme activities. Specifically, polyphenol oxidase activity increased by 2.27-fold, peroxidase activity by 2.22-fold, superoxide dismutase activity by 0.68-fold, catalase activity by 1.61-fold, phenylalanine ammonia-lyase activity by 3.38-fold, and ascorbate peroxidase activity by 2.36-fold. The LO-CNE application reduced natural decay by 95 %, weight loss by 15 % compared to the control, and effectively maintained the quality parameters of table grapes. Therefore, LO-CNE can be considered an alternative disease-control agent for grape preservation.
Collapse
Affiliation(s)
- Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Lisha Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Sivaprakash Gurusamy
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Torres-Palazzolo C, Ferreyra S, Hugalde IP, Kuhn Y, Combina M, Ponsone ML. Recent advances in biocontrol and other alternative strategies for the management of postharvest decay in table grapes. Int J Food Microbiol 2024; 420:110766. [PMID: 38815343 DOI: 10.1016/j.ijfoodmicro.2024.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
During postharvest, table grapes are often spoiled by molds. Aspergillus sp., Alternaria sp., Botrytis sp., Cladosporium sp. and Penicillium sp. are different mold genera frequently related to table grape rot. Fungal spoilage affects nutritional value and organoleptic properties while also producing health hazards, such as mycotoxins. Traditionally, synthetic fungicides have been employed to control fungal diseases. However, possible negative effects on health and the environment are a serious concern for consumers and government entities. This review summarized data on innovative strategies proposed to diminish postharvest losses and extend table grape shelf life. Among physical, chemical, and biological strategies, either alone or in combination, the integrated management of fungal diseases is a sustainable alternative to synthetic fungicides. However, to date, only a few alternative technologies have succeeded on a commercial scale. Recent research aimed at increasing the competitiveness of alternative technologies has led to the development of integrated management strategies to prevent postharvest decay and increase the safety and quality of table grapes.
Collapse
Affiliation(s)
- Carolina Torres-Palazzolo
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA), San Martín 3853, Mayor Drummond, Luján de Cuyo, M5507 Mendoza, Argentina; Centro Regional Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-Mendoza CONICET), Avenida Ruiz Leal s/n, Parque General San Martín, M5500 Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (FCA UNCuyo), Almirante Brown 500, Chacras de Coria, M5528 Mendoza, Argentina
| | - Susana Ferreyra
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA), San Martín 3853, Mayor Drummond, Luján de Cuyo, M5507 Mendoza, Argentina; Centro Regional Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-Mendoza CONICET), Avenida Ruiz Leal s/n, Parque General San Martín, M5500 Mendoza, Argentina
| | - Ines P Hugalde
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA), San Martín 3853, Mayor Drummond, Luján de Cuyo, M5507 Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (FCA UNCuyo), Almirante Brown 500, Chacras de Coria, M5528 Mendoza, Argentina
| | - Yamila Kuhn
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA), San Martín 3853, Mayor Drummond, Luján de Cuyo, M5507 Mendoza, Argentina
| | - Mariana Combina
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA), San Martín 3853, Mayor Drummond, Luján de Cuyo, M5507 Mendoza, Argentina; Centro Regional Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-Mendoza CONICET), Avenida Ruiz Leal s/n, Parque General San Martín, M5500 Mendoza, Argentina
| | - Maria Lorena Ponsone
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA), San Martín 3853, Mayor Drummond, Luján de Cuyo, M5507 Mendoza, Argentina; Centro Regional Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-Mendoza CONICET), Avenida Ruiz Leal s/n, Parque General San Martín, M5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (FCEN UNCuyo), Padre Jorge Contreras 1300, Parque General San Martín, M5502 Mendoza, Argentina.
| |
Collapse
|
3
|
Graziosi S, Puliga F, Iotti M, Amicucci A, Zambonelli A. In vitro interactions between Bradyrhizobium spp. and Tuber magnatum mycelium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13271. [PMID: 38692852 PMCID: PMC11062863 DOI: 10.1111/1758-2229.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Tuber magnatum is the most expensive truffle, but its large-scale cultivation is still a challenge compared to other valuable Tuber species. T. magnatum mycelium has never been grown profitably until now, which has led to difficulties to studying it in vitro. This study describes beneficial interactions between T. magnatum mycelium and never before described bradyrhizobia, which allows the in vitro growth of T. magnatum mycelium. Three T. magnatum strains were co-isolated on modified Woody Plant Medium (mWPM) with aerobic bacteria and characterised through microscopic observations. The difficulties of growing alone both partners, bacteria and T. magnatum mycelium, on mWPM demonstrated the reciprocal dependency. Three bacterial isolates for each T. magnatum strain were obtained and molecularly characterised by sequencing the 16S rRNA, glnII, recA and nifH genes. Phylogenetic analyses showed that all nine bacterial strains were distributed among five subclades included in a new monophyletic lineage belonging to the Bradyrhizobium genus within the Bradyrhizobium jicamae supergroup. The nifH genes were detected in all bacterial isolates, suggesting nitrogen-fixing capacities. This is the first report of consistent T. magnatum mycelium growth in vitro conditions. It has important implications for the development of new technologies in white truffle cultivation and for further studies on T. magnatum biology and genetics.
Collapse
Affiliation(s)
- Simone Graziosi
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Federico Puliga
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Mirco Iotti
- Department of Life, Health and Environmental ScienceUniversity of L'AquilaL'AquilaItaly
| | | | | |
Collapse
|
4
|
Rahimi D, Sadeghi A, Kashaninejad M, Ebrahimi M. Postbiotic characterization of a potential probiotic yeast isolate, and its microencapsulation in alginate beads coated layer-by-layer with chitosan. Heliyon 2024; 10:e28452. [PMID: 38560170 PMCID: PMC10979270 DOI: 10.1016/j.heliyon.2024.e28452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Considering biosafety concerns and survivability limitations of probiotics (PRO) under different stresses, application of postbiotics and encapsulated PRO has received considerable attentions. Accordingly, the objective of the present study was to investigate the postbiotic capabilities of a potential PRO yeast isolate and the effect of encapsulation with alginate (Alg) and chitosan (Ch) on its survival under SGI conditions. Sequencing results of the PCR products led to the identification of Saccharomyces cerevisiae as the selected potential PRO yeast isolated from wheat germ sourdough. High survival of the isolate under simulated gastrointestinal (SGI) conditions (95.74%), its proper adhesion abilities, as well as its potent inhibitory activity against Listeria monocytogenes (75.84%) and Aspergillus niger (77.35%) were approved. Interestingly, the yeast cell-free supernatant (CFS) showed the highest antioxidant (84.35%) and phytate-degrading (56.19%) activities compared to the viable and heat-dead cells of the isolate. According to the results of the HPLC-based assay, anti-ochratoxin A (OTA) capability of the dead cells was also significantly (P < 0.05) higher than that of the viable cell. Meanwhile, the yeast CFS had no anti-OTA and antimicrobial activities against the foodborne bacteria and fungi tested. Further, microencapsulation of the yeast isolate in Alg beads coated layer-by-layer with Ch (with 77.02% encapsulation efficacy and diameter of 1059 μm based on the field emission scanning electron microscopy analysis) significantly enhanced its survivability under SGI conditions in comparison with the free cells. In addition, electrostatic cross-linking between negatively charged carboxylic groups of Alg and positively charged amino groups of Ch was verified in accordance with Fourier transform infrared and zeta potential data. Human and/or industrial food trials in future are needed for practical applications of these emerging ingredients.
Collapse
Affiliation(s)
- Delasa Rahimi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdi Kashaninejad
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Ebrahimi
- Food, Drug and Natural Products Health Research Center, Golestan University of Medical Science, Gorgan, Iran
| |
Collapse
|
5
|
Sipiczki M. Identification of antagonistic yeasts as potential biocontrol agents: Diverse criteria and strategies. Int J Food Microbiol 2023; 406:110360. [PMID: 37591131 DOI: 10.1016/j.ijfoodmicro.2023.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Plant pathogenic and food spoilage microorganisms cause serious losses in crop production and severe damage during food manufacturing, transportation and storage. Synthetic antimicrobial agents are commonly used to control their propagation and harmful activities. However, the recent trend is shifting from chemicals towards safer and more eco-friendly alternatives. The use of antagonistic microorganisms as biological antimicrobial agents is becoming popular throughout the world to replace chemical agents. High numbers of microorganisms have turned out to exert adverse/inhibitory effects on other microorganisms including pathogens and spoiling strains. However, most of them are only active under laboratory conditions and their activity is sensitive to environmental changes. Only a small number of them can be used to manufacture biological protective products on an industrial scale. Therefore, there is a great need to identify additional antagonists. Yeasts have come to the forefront of attention because antimicrobial antagonism is fairly widespread among them. In the recent years, numerous excellent review articles covered various aspects of the phenomenon of antimicrobial antagonism of yeasts. However, none of them dealt with how antagonistic yeasts can be sought and identified, despite the high number and diverse efficiency of screening and identification procedures. As researchers working in different laboratories use different criteria and different experimental set-ups, a yeast strain found antagonistic in one laboratory may prove to be non-antagonistic in another laboratory. This review aims to provide a comprehensive and partially critical overview of the wide diversity of identification criteria and procedures to help researchers choose appropriate screening and identification strategies.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
6
|
Natarajan S, Balachandar D, Paranidharan V. Inhibitory effects of epiphytic Kluyveromyces marxianus from Indian senna (Cassia angustifolia Vahl.) on growth and aflatoxin production of Aspergillus flavus. Int J Food Microbiol 2023; 406:110368. [PMID: 37639733 DOI: 10.1016/j.ijfoodmicro.2023.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Aspergillus flavus infection and subsequent aflatoxin contamination are considered the major constraints in senna (Cassia angustifolia Vahl.) export. Using native epiphytic yeast to control phytopathogens is a successful strategy for managing plant diseases. In the present investigation, we exploited the antagonistic potential of epiphytic yeast isolates obtained from senna against A. flavus growth and aflatoxin B1 (AFB1) production. Four Kluyveromyces marxianus strains (YSL3, YSL16, YSP12, and YSF9) exhibited vigorous antagonistic activity with a maximum inhibition of 64 %. In vivo evaluation of senna pods showed that K. marxianus strains effectively reduced A. flavus colonization with a population range of 5.87 to 7.08 log10 CFU/g. In contrast, the untreated senna pods were found to have severe fungal colonization with a population of 7.84 log10 CFU/g. In addition, HPLC analysis showed that aflatoxin B1 in senna pods was drastically reduced upon yeast treatment up to 14 DAI. Furthermore, we demonstrated the antifungal action mechanisms of K. marxianus, such as surface colonizing ability on pods, production of antifungal volatiles (VOCs), siderophores, extracellular lytic enzymes, and cell wall binding ability to AFB1. All four strains of K. marxianus showed rapid colonization on the senna pod, and YSP12 reached the maximum population of 7.18 log10 CFU/pod at 9 days after inoculation (DAI). The exposure of A. flavus to K. marxianus VOCs significantly reduced the growth by up to 99 and 93.2 % at 7 and 14 DAI, respectively. Scanning electron microscopic images demonstrated severe mycelial damage and hyphal deformities of A. flavus. In addition, yeast VOCs can reduce aflatoxin biosynthesis in A. flavus by up to 99 and 93.2 % at 7 and 14 DAI, respectively. Gas chromatography-mass spectrometry analysis confirmed the presence of antimicrobial compounds such as dimethyl trisulfide, ethyl acetate, ethanol, 3-methyl butanal, 2-methyl-1-butanol, and 3-methyl-1-butanol in the volatiles. K. marxianus strains produced siderophores and hydrolytic enzymes such as chitinase and β-1,3-glucanase. A higher AFB1 binding ability was observed in the heat-killed cells (47.5 to 70.65 %) than in the viable cells (43.16 to 60.98 %) of K. marxianus. The current study demonstrated that epiphytic K. marxianus isolated from senna could be a successful biocontrol source to reduce aflatoxin contamination in senna pods.
Collapse
Affiliation(s)
- Subramani Natarajan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; School of Biology and Environment Science, Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Vaikuntavasan Paranidharan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India.
| |
Collapse
|
7
|
Ding L, Han M, Wang X, Guo Y. Ochratoxin A: Overview of Prevention, Removal, and Detoxification Methods. Toxins (Basel) 2023; 15:565. [PMID: 37755991 PMCID: PMC10534725 DOI: 10.3390/toxins15090565] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Ochratoxins are the secondary metabolites of Penicillium and Aspergillus, among which ochratoxin A (OTA) is the most toxic molecule. OTA is widely found in food and agricultural products. Due to its severe nephrotoxicity, immunotoxicity, neurotoxicity, and teratogenic mutagenesis, it is essential to develop effective, economical, and environmentally friendly methods for OTA decontamination and detoxification. This review mainly summarizes the application of technology in OTA prevention, removal, and detoxification from physical, chemical, and biological aspects, depending on the properties of OTA, and describes the advantages and disadvantages of each method from an objective perspective. Overall, biological methods have the greatest potential to degrade OTA. This review provides some ideas for searching for new strains and degrading enzymes.
Collapse
Affiliation(s)
| | | | | | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (L.D.); (M.H.); (X.W.)
| |
Collapse
|
8
|
Dikmetas DN, Özer H, Karbancıoglu-Guler F. Biocontrol Potential of Antagonistic Yeasts on In Vitro and In Vivo Aspergillus Growth and Its AFB 1 Production. Toxins (Basel) 2023; 15:402. [PMID: 37368702 DOI: 10.3390/toxins15060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Aspergillus flavus is a major aflatoxin B1, posing significant health concerns to humans, crops, and producer fungi. Due to the undesirable consequences of the usage of synthetic fungicides, biological control using yeasts has gained more attention. In this study, eight isolates of epiphytic yeasts belonging to Moesziomyces sp., Meyerozyma sp. and Metschnikowia sp., which have been identified as antagonists, were isolated from different plants, including grapes, blueberries, hawthorns, hoşkıran, beans and grape leaf. While volatile organic compounds (VOCs) produced by Moesziomyces bullatus DN-FY, Metschnikowia aff. pulcherrima DN-MP and Metschnikowia aff. pulcherrima 32-AMM reduced in vitro A. flavus mycelial growth and sporulation, only VOCs produced by Metschnikowia aff. fructicola 1-UDM were found to be effective at reducing in vitro AFB1 production. All yeasts reduced the mycelial growth of A. flavus by 76-91%, while AFB1 production reduced to 1.26-10.15 ng/g and the control plates' growth was 1773 ng/g. The most effective yeast, Metschnikowia aff. Pulcherrima DN-HS, reduced Aspergillus flavus growth and aflatoxin B1 production on hazelnuts. The AFB1 content on hazelnuts reduced to 333.01 ng/g from 536.74 ng/g. To our knowledge, this is the first report of yeasts isolated from plants being tested as potential biological control agents to reduce AFB1 production on hazelnuts.
Collapse
Affiliation(s)
- Dilara Nur Dikmetas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| | - Hayrettin Özer
- The Scientific and Technological Research Council of Türkiye (TÜBİTAK), Marmara Research Center (MRC), 41470 Gebze, Türkiye
| | - Funda Karbancıoglu-Guler
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| |
Collapse
|
9
|
Volatiles of antagonistic soil yeasts inhibit growth and aflatoxin production of Aspergillus flavus. Microbiol Res 2022; 263:127150. [DOI: 10.1016/j.micres.2022.127150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022]
|
10
|
Shruthi B, Deepa N, Somashekaraiah R, Adithi G, Divyashree S, Sreenivasa MY. Exploring biotechnological and functional characteristics of probiotic yeasts: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00716. [PMID: 35257004 PMCID: PMC8897636 DOI: 10.1016/j.btre.2022.e00716] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/11/2022] [Accepted: 02/27/2022] [Indexed: 01/17/2023]
Abstract
In this review, the probiotic attributes of yeasts other than Saccharomyces boulardii and the various applications of probiotic yeast in biotechnology have been explored. This review comprises of the probiotic attributes, antagonistic activity against pathogens, plant growth promoting attributes, industrial application and their biotherapeutic potentials. Advanced and additional studies on non-Saccharomyces yeasts are necessary prior to administer these yeasts as potential probiotics for health and wellbeing.
Probiotics are vital and beneficial organisms which offers the health benefits to the host organisms. The fungal probiotic field is one of the developing fields nowadays. Yeast has an enormous and diverse group of microorganisms that is attracting and expanding the attention from researchers and industries. Saccharomyces boulardii, the only patented strain belonging to yeast genera for the human use, has been broadly evaluated for its probiotic effect. Yeasts belonging to the genera Debaryomyces, Pichia, Yarrowia, Meyerozyma, Kluyveromyces etc.., have attained more interest because of their beneficial and probable probiotic features. These yeast probiotics produce VOCs (Volatile organic compounds), mycocins and antimicrobials which shows the antagonistic effect against pathogenic fungi and bacteria. Additionally, those yeasts have been recorded as good plant growth promoting microorganisms. Yeast has an important role in environmental applications such as bioremediation and removal of metals like chromium, mercury, lead etc., from waste water. Probiotic yeasts with their promising antimicrobial, antioxidant, anticancer properties, cholesterol assimilation and immunomodulatory effects can also be utilized as biotherapeutics. In this review article we have made an attempt to address important yeast probiotic attributes.
Collapse
|
11
|
Dopazo V, Luz C, Quiles JM, Calpe J, Romano R, Mañes J, Meca G. Potential application of lactic acid bacteria in the biopreservation of red grape from mycotoxigenic fungi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:898-907. [PMID: 34240436 DOI: 10.1002/jsfa.11422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Filamentous fungi are the main contamination agent in the viticultural sector. Use of synthetic fungicides is the regular answer to these contaminations. Nevertheless, because of several problems associated with the use of synthetic compounds, the industry demands new and safer methods. In the present work, the biopreservation potential of four lactic acid bacteria (LAB) strains was studied against the principal grape contaminant fungi. RESULTS Agar diffusion test evidenced that all four culture-free supernatant (CFS) had antifungal properties against all tested fungi. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) test values evidenced that media fermented by the Lactobacillus plantarum E3 and Lactobacillus plantarum E4 strains showed the highest antifungal activity, resulting in an MFC from 6.3 to 100 g L-1 . Analysis of CFS evidenced the presence of different antifungal compounds, such as lactic acid, phenyllactic acid and pyrazines. In tests on red grapes, an average reduction of 1.32 log10 of the spores per gram of fruit was achieved by all CFS in grapes inoculated with Aspergillus ochraceus and by 0.94 log10 for L. plantarum E3 CFS against Botrytis cinerea. CONCLUSION The antifungal activity of the fermented CFS by L. plantarum E3 reduced the growth of B. cinerea and A. ochraceus in grapes, which are the main contaminant and main producer of ochratoxin A in these crops, respectively. Therefore, based on the results obtained in this work, use of the strain L. plantarum E3 could be an interesting option for the biopreservation of grapes. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Victor Dopazo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Carlos Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Juan M Quiles
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Jorge Calpe
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Raffaele Romano
- Department of Agriculture, University of Napoli Federico II, Portici, Italy
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
12
|
Solairaj D, Yang Q, Guillaume Legrand NN, Routledge MN, Zhang H. Molecular explication of grape berry-fungal infections and their potential application in recent postharvest infection control strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Neves TTD, Brandão RM, Barbosa RB, Cardoso MDG, Batista LR, Silva CF. Simulation of coffee beans contamination by Aspergillus species under different environmental conditions and the biocontrol effect by Saccharomyces cerevisiae. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Di Canito A, Mateo-Vargas MA, Mazzieri M, Cantoral J, Foschino R, Cordero-Bueso G, Vigentini I. The Role of Yeasts as Biocontrol Agents for Pathogenic Fungi on Postharvest Grapes: A Review. Foods 2021; 10:1650. [PMID: 34359520 PMCID: PMC8306029 DOI: 10.3390/foods10071650] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
In view of the growing concern about the impact of synthetic fungicides on human health and the environment, several government bodies have decided to ban them. As a result, a great number of studies have been carried out in recent decades with the aim of finding a biological alternative to inhibit the growth of fungal pathogens. In order to avoid the large losses of fruit and vegetables that these pathogens cause every year, the biological alternative's efficacy should be the same as that of a chemical pesticide. In this review, the main studies discussed concern Saccharomyces and non-Saccharomyces yeasts as potential antagonists against phytopathogenic fungi of the genera Penicillium and Aspergillus and the species Botrytis cinerea on table grapes, wine grapes, and raisins.
Collapse
Affiliation(s)
- Alessandra Di Canito
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.D.C.); (M.M.); (R.F.)
| | - María Alejandra Mateo-Vargas
- Department of Biomedicine, Biotechnology and Public Health, Universidad de Cádiz, Av. República Saharaui s/n, 11510 Cádiz, Spain; (M.A.M.-V.); (J.C.)
| | - Monica Mazzieri
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.D.C.); (M.M.); (R.F.)
| | - Jesús Cantoral
- Department of Biomedicine, Biotechnology and Public Health, Universidad de Cádiz, Av. República Saharaui s/n, 11510 Cádiz, Spain; (M.A.M.-V.); (J.C.)
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.D.C.); (M.M.); (R.F.)
| | - Gustavo Cordero-Bueso
- Department of Biomedicine, Biotechnology and Public Health, Universidad de Cádiz, Av. República Saharaui s/n, 11510 Cádiz, Spain; (M.A.M.-V.); (J.C.)
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.D.C.); (M.M.); (R.F.)
| |
Collapse
|
15
|
Liu X, Li Y, Zhao H, Yu Z, Huang M. Oenological property analysis of selected Hanseniaspora uvarum isolated from Rosa roxburghii Tratt. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2020-0331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Oenological yeasts play a crucial role in the winemaking process by converting sugar into ethanol, carbon dioxide and flavor substances that contribute to the wine aroma profile. Eighty strains of yeast were isolated from Rosa roxburghii Tratt. Three of the indigenous yeast strains (numbered as C26, C31 and F110) were selected based on having the strongest fruity-aroma producing ability to further evaluate theirs oenological properties, and they were identified as Hanseniaspora uvarum based on morphological and molecular analyses. Strains tolerance results showed that the selected strains have glucose, citric acid and sulfur dioxide tolerances that are comparable to commercial Saccharomyces cerevisiae X16, but they are ethanol sensitive. Additionally, the H. uvarum strains had similar β-glucosidase production abilities to the control, but they do not produce hydrogen sulfide. Moreover, the selected H. uvarum strains reduced the acidity and increased the volatile aroma richness and complexity of R. roxburghii wine during laboratory-scale fermentation. Thus, the selected H. uvarum strains (C26, C31 and F110) show potential in the production of unique R. roxburghii wine.
Collapse
Affiliation(s)
- Xiaozhu Liu
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| | - Yinfeng Li
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| | - Hubing Zhao
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| | - Zhihai Yu
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| | - Mingzheng Huang
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| |
Collapse
|
16
|
Tryfinopoulou P, Skarlatos L, Kaplani P, Panagou EZ. Antifungal activity of Saccharomyces cerevisiae and assessment of ochratoxigenic load on currants by means of Real Time PCR. Int J Food Microbiol 2021; 344:109111. [PMID: 33676331 DOI: 10.1016/j.ijfoodmicro.2021.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Currants are prone to contamination by ochratoxin during cultivation, processing and storage conditions. Saccharomyces cerevisiae is considered to be among the main species of grape yeast flora able to control antagonistic fungi. In this study, the potential of S. cerevisiae Y33 was investigated to inhibit the growth of several fungal species indigenous to the microbiota of grapes. Moreover, the efficacy of this yeast species was investigated to inhibit OTA by toxin producing fungi both in vitro and in situ. For this purpose thirty-five different fungal species, belonging to the genera Aspergillus, Penicillium, Cladosporium, Fusarium and Alternaria interacted in vitro with S. cerevisiae on Malt Extract agar plates, stored at 25 °C for 14 days. Results showed that the highest OTA producer A. carbonarius F71 was inhibited more than 99% from day 7, in contrast to A. niger strains that presented enhanced OTA production at day 14 due to interaction with S. cerevisiae Y33. Additionally, the antifungal potential of the selected yeast was also studied in situ on currants subjected to different treatments and stored at 25 °C for 28 days. Microbiological analysis was undertaken for the enumeration of the bacterial and fungal flora, together with OTA determination at 7 and 21 days. To quantify A. carbonarius on all treated currant samples, molecular analysis with Real Time PCR was employed. A standard curve was prepared with A. carbonarius DNA. The efficiency of the curve was estimated to 10.416, the slope to -3.312 and the range of haploid genome that could be estimated was from 1.05 to 105∙105. The amount of A. carbonarius DNA in all treated currants samples, where the fungus was positively detected, ranged from as low as 0.08 to 562 ng DNA/g currants. The antifungal activity of S. cerevisiae Y33 was observed in all studied cases, causing inhibition of fungal growth and OTA production.
Collapse
Affiliation(s)
- Paschalitsa Tryfinopoulou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855, Greece
| | - Leonidas Skarlatos
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855, Greece
| | - Paraskevi Kaplani
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855, Greece
| | - Efstathios Z Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855, Greece.
| |
Collapse
|
17
|
Li L, Yang B, Humza M, Geng H, Wang G, Zhang C, Gao S, Xing F, Liu Y. A novel strain Lactobacillus brevis 8-2B inhibiting Aspergillus carbonarius growth and ochratoxin a production. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Zhang H, Wang L, Tan Y, Wang H, Yang F, Chen L, Hao F, Lv X, Du H, Xu Y. Effect of Pichia on shaping the fermentation microbial community of sauce-flavor Baijiu. Int J Food Microbiol 2020; 336:108898. [PMID: 33129005 DOI: 10.1016/j.ijfoodmicro.2020.108898] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022]
Abstract
In spontaneous food fermentation processes, environmental microbiota affects the yield and quality of the fermentation productions. Although the importance of environmental microbiota has been highlighted, the ecological processes that how the environmental microbiota affects the fermentation microbial community are poorly understood. To study the effect of the environmental microbiota on community assembly, the sources of microbiota and the ecological processes of the fermentation were characterized in sauce-flavor Baijiu. Results showed that the process of sauce-flavor Baijiu making could be divided into three phases according to fermentation parameters. Heap fermentation (phase I) was an important period for rapid temperature rise, substrate utilization and production accumulation. The microbial community of heap fermentation was characterized by decrease of diversity and rapid succession of community structure. Virgibacillus, Kroppenstedtia, Bacillus and Oceanobacillus were predominant in the initial heap fermentation, while Lactobacillus was predominant during the later stage. Pichia was the predominant fungal genus during the whole fermentation process. Then, SourceTracker results showed that Daqu provided 95.6% of the bacterial community and 28.10% of the fungal community to heap fermentation, whereas the environments (indoor ground and tools) provided 71.9% of the fungal communities (mainly Pichia) to heap fermentation. Next, the results revealed that the temperature, ethanol and microbial interaction of Pichia synergistically drove the dynamic of the microbial community during the heap fermentation process. Pichia was proved to be the heat-resistant fungi and strong competitor based on growth in different temperature and competition assays in vitro. Finally, the quick succession of heap fermentation microbiota increased the enrichment of volatile flavors such as acids and esters. Our comprehensive methods shows that Pichia, which mainly comes from the environment, can construct the microbial community of Baijiu fermentation, and highlights the importance of environmental microbiota in attempts to control and promote the formation of Baijiu fermentation microbial community. This systematic study of environmental microbiota is valuable for quality control and management during spontaneous fermentation.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Li Wang
- Kweichow Moutai Distillery Co. Ltd, Guizhou 564501, China
| | - Yuwei Tan
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Heyu Wang
- Kweichow Moutai Distillery Co. Ltd, Guizhou 564501, China
| | - Fan Yang
- Kweichow Moutai Distillery Co. Ltd, Guizhou 564501, China
| | | | - Fei Hao
- Kweichow Moutai Distillery Co. Ltd, Guizhou 564501, China
| | - Xibin Lv
- Kweichow Moutai Distillery Co. Ltd, Guizhou 564501, China
| | - Hai Du
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
19
|
Characterizing the Fungal Microbiome in Date ( Phoenix dactylifera) Fruit Pulp and Peel from Early Development to Harvest. Microorganisms 2020; 8:microorganisms8050641. [PMID: 32354087 PMCID: PMC7284588 DOI: 10.3390/microorganisms8050641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Date palm (Phoenix dactylifera) is considered to be a highly important food crop in several African and Middle Eastern countries due to its nutritional value and health-promoting properties. Microbial contamination of dates has been of concern to consumers, but very few works have analyzed in detail the microbial load of the different parts of date fruit. In the present work, we characterized the fungal communities of date fruit using a metagenomic approach, analyzing the data for differences between microbial populations residing in the pulp and peel of “Medjool” dates at the different stages of fruit development. The results revealed that Penicillium, Cladosporium, Aspergillus, and Alternaria were the most abundant genera in both parts of the fruit, however, the distribution of taxa among the time points and tissue types (peel vs. pulp) was very diverse. Penicillium was more abundant in the pulp at the green developmental stage (Kimri), while Aspergillus was more frequent in the peel at the brown developmental stage (Tamer). The highest abundance of Alternaria was detected at the earliest sampled stage of fruit development (Hababauk stage). Cladosporium had a high level of abundance in peel tissues at the Hababauk and yellow (Khalal) stages. Regarding the yeast community, the abundance of Candida remained stable up until the Khalal stage, but exhibited a dramatic increase in abundance at the Tamer stage in peel tissues, while the level of Metschnikowia, a genus containing several species with postharvest biocontrol activity, exhibited no significant differences between the two tissue types or stages of fruit development. This work constitutes a comprehensive metagenomic analysis of the fungal microbiome of date fruits, and has identified changes in the composition of the fungal microbiome in peel and pulp tissues at the different stages of fruit development. Notably, this study has also characterized the endophytic fungal microbiome present in pulp tissues of dates.
Collapse
|