1
|
Abraham R, Allison HS, Lee T, Pavic A, Chia R, Hewson K, Lee ZZ, Hampson DJ, Jordan D, Abraham S. A national study confirms that Escherichia coli from Australian commercial layer hens remain susceptible to critically important antimicrobials. PLoS One 2023; 18:e0281848. [PMID: 37418382 PMCID: PMC10328298 DOI: 10.1371/journal.pone.0281848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Controlling the use of the most critically important antimicrobials (CIAs) in food animals has been identified as one of the key measures required to curb the transmission of antimicrobial resistant bacteria from animals to humans. Expanding the evidence demonstrating the effectiveness of restricting CIA usage for preventing the emergence of resistance to key drugs amongst commensal organisms in animal production would do much to strengthen international efforts to control antimicrobial resistance (AMR). As Australia has strict controls on antimicrobial use in layer hens, and internationally comparatively low levels of poultry disease due to strict national biosecurity measures, we investigated whether these circumstances have resulted in curtailing development of critical forms of AMR. The work comprised a cross-sectional national survey of 62 commercial layer farms with each assessed for AMR in Escherichia coli isolates recovered from faeces. Minimum inhibitory concentration analysis using a panel of 13 antimicrobials was performed on 296 isolates, with those exhibiting phenotypic resistance to fluoroquinolones (a CIA) or multi-class drug resistance (MCR) subjected to whole genome sequencing. Overall, 53.0% of isolates were susceptible to all antimicrobials tested, and all isolates were susceptible to cefoxitin, ceftiofur, ceftriaxone, chloramphenicol and colistin. Resistance was observed for amoxicillin-clavulanate (9.1%), ampicillin (16.2%), ciprofloxacin (2.7%), florfenicol (2.4%), gentamicin (1.0%), streptomycin (4.7%), tetracycline (37.8%) and trimethoprim/sulfamethoxazole (9.5%). MCR was observed in 21 isolates (7.0%), with two isolates exhibiting resistance to four antimicrobial classes. Whole genome sequencing revealed that ciprofloxacin-resistant (fluoroquinolone) isolates were devoid of both known chromosomal mutations in the quinolone resistance determinant regions and plasmid-mediated quinolone resistance genes (qnr)-other than in one isolate (ST155) which carried the qnrS gene. Two MCR E. coli isolates with ciprofloxacin-resistance were found to be carrying known resistance genes including aadA1, dfrA1, strA, strB, sul1, sul2, tet(A), blaTEM-1B, qnrS1 and tet(A). Overall, this study found that E. coli from layer hens in Australia have low rates of AMR, likely due to strict control on antimicrobial usage achieved by the sum of regulation and voluntary measures.
Collapse
Affiliation(s)
- Rebecca Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Hui San Allison
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Terence Lee
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Anthony Pavic
- Birling Avian Laboratories, Bringelly, New South Wales, Australia
| | - Raymond Chia
- Australian Eggs, North Sydney, New South Wales, Australia
| | - Kylie Hewson
- Sativus Pty Ltd, Beenleigh, Queensland, Australia
| | - Zheng Zhou Lee
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - David J Hampson
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - David Jordan
- New South Wales Department of Primary industries, Wollongbar, New South Wales, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
2
|
Comparison of Antimicrobial Resistance among Commensal Escherichia coli Isolated from Retail Table Eggs Produced by Laying Hens from the Cage and Non-Cage Housing Systems in Western Australia. Antibiotics (Basel) 2023; 12:antibiotics12030588. [PMID: 36978454 PMCID: PMC10044583 DOI: 10.3390/antibiotics12030588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Antimicrobial resistance (AMR) has become a global public health concern in recent decades. Although several investigations evaluated AMR in commensal and pathogenic bacteria from different foods of animal origin in Australia, there is a lack of studies that compared AMR in commensal E. coli isolated from retail table eggs obtained from different laying hen housing systems. This study aimed to determine AMR and differences in AMR patterns among E. coli isolates recovered from retail table eggs sourced from caged and non-caged housing systems in Western Australia. Commensal E. coli isolates were tested for susceptibility to 14 antimicrobials using a broth microdilution method. Clustering analyses and logistic regression models were applied to identify patterns and differences in AMR. Overall, there were moderate to high frequencies of resistance to the antimicrobials of lower importance used in Australian human medicine (tetracycline, ampicillin, trimethoprim, and sulfamethoxazole) in the isolates sourced from the eggs of two production systems. All E. coli isolates were susceptible to all critically important antimicrobials except the very low level of resistance to ciprofloxacin. E. coli isolates from eggs of non-caged systems had higher odds of resistance to tetracycline (OR = 5.76, p < 0.001) and ampicillin (OR = 3.42, p ≤ 0.01) compared to the isolates from eggs of caged systems. Moreover, the number of antimicrobials to which an E. coli isolate was resistant was significantly higher in table eggs from non-caged systems than isolates from caged systems’ eggs. Considering the conservative approach in using antimicrobials in the Australian layer flocks, our findings highlight the potential role of the environment or human-related factors in the dissemination and emergence of AMR in commensal E. coli, particularly in retail table eggs of non-cage system origin. Further comprehensive epidemiological studies are required to better understand the role of different egg production systems in the emergence and dissemination of AMR in commensal E. coli.
Collapse
|
3
|
Sodagari HR, Shrestha RD, Agunos A, Gow SP, Varga C. Comparison of antimicrobial resistance among Salmonella enterica serovars isolated from Canadian turkey flocks, 2013-2021. Poult Sci 2023; 102:102655. [PMID: 37030258 PMCID: PMC10113892 DOI: 10.1016/j.psj.2023.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) in Salmonella from turkeys has raised a food safety concern in Canada as certain serovars have been implicated in human salmonellosis outbreaks in recent years. While several studies evaluated AMR in broiler chickens in Canada, there are limited studies that assess AMR in turkey flocks. This study analyzed data collected between 2013 and 2021 by the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) farm turkey surveillance program to determine the prevalence of AMR and differences in resistance patterns among Salmonella serovars recovered from turkey flocks. Salmonella isolates were tested for susceptibility to 14 antimicrobials using a microbroth dilution method. Hierarchical clustering dendrograms were constructed to compare the individual AMR status of Salmonella serovars. Differences in the probability of resistance between Salmonella serovars were determined using generalized estimating equation logistic regression models to account for farm-level clustering. Of the 1,367 Salmonella isolates detected, 55.3% were resistant to at least one antimicrobial and 25.3% were multidrug resistant (MDR) (resistant to ≥3 antimicrobial classes). The Salmonella isolates exhibited high resistance to tetracycline (43.3%), streptomycin (47.2%), and sulfisoxazole (29.1%). The 3 most frequently occurring serovars were S. Uganda (22.9%), S. Hadar (13.5%), and S. Reading (12.0%). Streptomycin-sulfisoxazole-tetracycline (n = 204) was the most frequent MDR pattern identified. Heatmaps showed that S. Reading exhibited coresistance to the quinolone class antimicrobials, ciprofloxacin, and nalidixic acid; S. Heidelberg to gentamicin and sulfisoxazole; and S. Agona to ampicillin and ceftriaxone. Salmonella Hadar isolates had higher odds of resistance to tetracycline (OR: 152.1, 95% CI: 70.6-327.4) while the probability of being resistant to gentamicin and ampicillin was significantly higher in S. Senftenberg than in all the other serovars. Moreover, S. Uganda had the highest odds of being MDR (OR: 4.7, 95% CI: 3.7-6.1). The high resistance observed warrants a reassessment of the drivers for AMR, including AMU strategies and other production factors. Differences in AMR patterns highlight the need to implement serovar-specific mitigation strategies.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rima D Shrestha
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Agnes Agunos
- Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Sheryl P Gow
- Public Health Agency of Canada, Saskatoon, Saskatchewan, Canada
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2021; 46:6382128. [PMID: 34612488 PMCID: PMC8829026 DOI: 10.1093/femsre/fuab049] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
The dramatic global rise of MDR and XDR Enterobacterales in human medicine forced clinicians to the reintroduction of colistin as last-resort drug. Meanwhile, colistin is used in the veterinary medicine since its discovery, leading to a steadily increasing prevalence of resistant isolates in the livestock and meat-based food sector. Consequently, transmission of resistant isolates from animals to humans, acquisition via food and exposure to colistin in the clinic are reasons for the increased prevalence of colistin-resistant Enterobacterales in humans in the last decades. Initially, resistance mechanisms were caused by mutations in chromosomal genes. However, since the discovery in 2015, the focus has shifted exclusively to mobile colistin resistances (mcr). This review will advance the understanding of chromosomal-mediated resistance mechanisms in Enterobacterales. We provide an overview about genes involved in colistin resistance and the current global situation of colistin-resistant Enterobacterales. A comparison of the global colistin use in veterinary and human medicine highlights the effort to reduce colistin sales in veterinary medicine under the One Health approach. In contrast, it uncovers the alarming rise in colistin consumption in human medicine due to the emergence of MDR Enterobacterales, which might be an important driver for the increasing emergence of chromosome-mediated colistin resistance.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
5
|
Zhang K, Ge H, He J, Hu M, Xu Z, Jiao X, Chen X. Salmonella Typhimurium ST34 Isolate Was More Resistant than the ST19 Isolate in China, 2007 - 2019. Foodborne Pathog Dis 2021; 19:62-69. [PMID: 34520252 DOI: 10.1089/fpd.2021.0047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To disclose the antimicrobial susceptibility and wide adaptability of commonly occurring genotypes of Salmonella enterica serovar Typhimurium, the antimicrobial resistance and multilocus sequence typing (MLST) profiles of 196 Salmonella Typhimurium isolates (136 from food-producing animals, 19 from environments, 15 from markets, and 26 from humans) in China between 2007 and 2019 were analyzed. Tests of susceptibility to 19 antimicrobial agents using the broth microdilution method showed that 84.7% of the isolates were resistant to at least one antimicrobial. Antimicrobial susceptibility analysis demonstrated that 66.8% of the isolates were multidrug-resistant (MDR) strains, with resistance to three or more antimicrobials. The highest antidrug resistance was to ampicillin, amoxicillin/clavulanic acid, and tetracycline. Three MLST types were detected, and sequence type (ST) 19 was the most common ST. However, ST34 was associated with a higher MDR rate and more complex MDR patterns, than ST19 and ST99, although the exact mechanism has not been reported. Our study highlights the variation of drug resistance and STs from different sources and the association between STs and drug resistance, providing useful information for epidemiological research and developing a public health strategy.
Collapse
Affiliation(s)
- Kai Zhang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Haojie Ge
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jingjing He
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Maozhi Hu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|