1
|
Sun Y, Liang M, Zhao F, Su L. Research Progress on Biological Accumulation, Detection and Inactivation Technologies of Norovirus in Oysters. Foods 2023; 12:3891. [PMID: 37959010 PMCID: PMC10649127 DOI: 10.3390/foods12213891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Noroviruses (NoVs) are major foodborne pathogens that cause acute gastroenteritis. Oysters are significant carriers of this pathogen, and disease transmission from the consumption of NoVs-infected oysters occurs worldwide. The review discusses the mechanism of NoVs bioaccumulation in oysters, particularly the binding of histo-blood group antigen-like (HBGA-like) molecules to NoVs in oysters. The review explores the factors that influence NoVs bioaccumulation in oysters, including temperature, precipitation and water contamination. The review also discusses the detection methods of NoVs in live oysters and analyzes the inactivation effects of high hydrostatic pressure, irradiation treatment and plasma treatment on NoVs. These non-thermal processing treatments can remove NoVs efficiently while retaining the original flavor of oysters. However, further research is needed to reduce the cost of these technologies to achieve large-scale commercial applications. The review aims to provide novel insights to reduce the bioaccumulation of NoVs in oysters and serve as a reference for the development of new, rapid and effective methods for detecting and inactivating NoVs in live oysters.
Collapse
Affiliation(s)
- Yiqiang Sun
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
2
|
Soorneedi AR, Moore MD. Recent developments in norovirus interactions with bacteria. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Impact of Theaflavins-Enriched Tea Leaf Extract TY-1 against Surrogate Viruses of Human Norovirus: In Vitro Virucidal Study. Pathogens 2022; 11:pathogens11050533. [PMID: 35631054 PMCID: PMC9147082 DOI: 10.3390/pathogens11050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Using an effective natural virucidal substance may be a feasible approach for preventing food-borne viral contamination. Here, the virucidal efficacy of theaflavins (TFs)-enriched tea leaf extract (TY-1) against feline calicivirus (FCV) and murine norovirus (MNV), surrogates of human norovirus (HuNoV), was evaluated. The virus solutions were mixed with various dosages of TY-1 and incubated at 25 °C for different contact times. TY-1 reduced the viral titer of both surrogate viruses in a time- and dosage-dependent manner. A statistically significant reduction in the viral titer of FCV by 5.0 mg/mL TY-1 and MNV by 25.0 mg/mL TY-1 was observed in 10 s and 1 min, respectively. Furthermore, TY-1 reduced the viral titer of FCV and MNV on the dry surface in 10 min. The multiple compounds in TY-1, including TFs and catechins, contributed to its overall virucidal activity. Furthermore, the effect of TY-1 on viral proteins and genome was analyzed using Western blotting, RT-PCR, and transmission electron microscopy. TY-1 was found to promote the profound disruption of virion structures, including the capsid proteins and genome. Our finding demonstrates the potential of using TY-1 as a nature-derived disinfectant in food processing facilities and healthcare settings to reduce viral load and HuNoV transmission.
Collapse
|
4
|
Eshaghi Gorji M, Li D. Photoinactivation of bacteriophage MS2, Tulane virus and Vibrio parahaemolyticus in oysters by microencapsulated rose bengal. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Bivalve molluscan shellfish such as oysters are important vectors for the transmission of foodborne pathogens including both viruses and bacteria. Photoinactivation provides a cold-sterilization option against the contamination as excited photosensitizers could transfer electronic energy to oxygen molecules producing reactive oxygen species such as singlet oxygen, leading to oxidative damage and death of the pathogens. However, the efficacy of photoinactivation is very often compromised by the presence of food matrix due to the non-selective reactions of short-lived singlet oxygen with the organic matters other than the target pathogens.
Materials and Methods
In order to address this issue, we encapsulated a food grade photosensitizer rose bengal (RB) in alginate microbeads. An extra coating of chitosan effectively prevented the release of RB from the microbeads in seawater, and more importantly, enhanced the selectivity of the photoinactivation via the electrostatic interactions between cationic chitosan and anionic charge of the virus particles (bacteriophage MS2 and Tulane virus) and the gram-negative bacteria Vibrio parahaemolyticus.
Results
The treatment of oysters with microencapsulated RB resulted in significantly higher reductions of MS2 phage, Tulane virus and V. parahaemolyticus than free RB and non-RB carrying microbeads (P < 0.05) tested with both in vitro and in vivo experimental set-ups. (4)
Conclusions
This study demonstrated a new strategy in delivering comprehensively formulated biochemical sanitizers in bivalve shellfish through their natural filter feeding activity and thereby enhancing the mitigation efficiency of foodborne pathogen contamination.
Collapse
Affiliation(s)
- Mohamad Eshaghi Gorji
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
5
|
Xu Z, Liu Z, Chen J, Zou S, Jin Y, Zhang R, Sheng Y, Liao N, Hu B, Cheng D. Effect of Direct Viral-Bacterial Interactions on the Removal of Norovirus From Lettuce. Front Microbiol 2021; 12:731379. [PMID: 34557176 PMCID: PMC8453150 DOI: 10.3389/fmicb.2021.731379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Norovirus (NoV) is the main non-bacterial pathogen causing outbreaks of gastroenteritis and is considered to be the leading cause of foodborne illness. This study aims to determine whether lettuce-encapsulated bacteria can express histo-blood group antigen (HBGA)–like substances to bind to NoV and, if so, to explore its role in protecting NoV from disinfection practices. Fifteen bacterial strains (HBGA-SEBs) were isolated from the lettuce microbiome and studied as they were proved to have the ability to express HBGA-like substances through indirect ELISA detection. By using attachment assay, HBGA-SEBs showed great abilities in carrying NoVs regarding the evaluation of binding capacity, especially for the top four strains from genera Wautersiella, Sphingobacterium, and Brachybacterium, which could absorb more than 60% of free-flowing NoVs. Meanwhile, the direct viral–bacterial binding between HBGA-like substance-expressing bacteria (HBGA-SEB) and NoVs was observed by TEM. Subsequently, results of simulated environmental experiments showed that the binding of NoVs with HBGA-SEBs did have detrimental effects on NoV reduction, which were evident in short-time high-temperature treatment (90°C) and UV exposure. Finally, by considering the relative abundance of homologous microorganisms of HBGA-SEBs in the lettuce microbiome (ca. 36.49%) and the reduction of NoVs in the simulated environments, we suggested putting extra attention on the daily disinfection of foodborne-pathogen carriers to overcome the detrimental effects of direct viral–bacterial interactions on the reduction of NoVs.
Collapse
Affiliation(s)
- Zhangkai Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiang Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songyan Zou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Jin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ronghua Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yaqi Sheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ningbo Liao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Yang M, Zhao F, Tong L, Wang S, Zhou D. Contamination, bioaccumulation mechanism, detection, and control of human norovirus in bivalve shellfish: A review. Crit Rev Food Sci Nutr 2021; 62:8972-8985. [PMID: 34184956 DOI: 10.1080/10408398.2021.1937510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Human norovirus (HuNoV) is a major foodborne pathogen that causes acute viral gastroenteritis, and bivalve shellfish are one of the main carriers of HuNoV transmission. A comprehensive understanding of bivalve shellfish-related HuNoV outbreaks focusing on contamination factors, bioaccumulation mechanisms, and pre- and post-harvest interventions is essential for the development of effective strategies to prevent contamination of shellfish. This review comprehensively surveys the current knowledge on global contamination and non-thermal treatment of HuNoV in bivalve shellfish. HuNoV contamination in bivalve shellfish is significantly related to the season and water. While evaluating the water quality of shellfish-inhabited waters is a key intervention, the development of non-heat treatment technology to effectively inactivate the HuNoV in bivalve shellfish while maintaining the flavor and nutrition of the shellfish is also an important direction for further research. Additionally, this review explores the bioaccumulation mechanisms of HuNoV in bivalve shellfish, especially the mechanism underlying the binding of histo-blood group antigen-like molecules and HuNoV. The detection methods for infectious HuNoV are also discussed. The establishment of effective methods to rapidly detect infectious HuNoV and development of biological components to inactivate or prevent HuNoV contamination in shellfish also need to be studied further.
Collapse
Affiliation(s)
- Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Lihui Tong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|