1
|
Ramatla T, Mokgokong P, Lekota K, Thekisoe O. Antimicrobial resistance profiles of Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae strains isolated from broiler chickens. Food Microbiol 2024; 120:104476. [PMID: 38431322 DOI: 10.1016/j.fm.2024.104476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
Globally, the spread of multidrug-resistant Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae from food to humans poses a severe threat to public health. The aim of this study was to assess the co-occurrence of colistin and β-lactamase resistance genes in E. coli, K. pneumoniae, and P. aeruginosa strains isolated from faeces of abattoir broiler chickens. The E. coli, P. aeruginosa and K. pneumoniae isolates were successfully detected from faecal samples by polymerase chain reaction (PCR) at infection rates of 60.7%, 22.5% and 16.7% respectively. The isolates displayed the highest levels of antibiotic resistance (AR) against ampicillin (82.3%) and amoxicillin-clavulanic acid (74.2%) for E. coli, followed by cefoxitin (70.6%) for K. pneumoniae, whilst P. aeruginosa displayed 26.1% antibiotic resistance (AR) against both ampicillin and colistin sulphate. The colistin mcr-1 gene was harboured by 46.8%, 47.1% and 21.7%, E. coli, K. pneumonia and P. aeruginosa isolates respectively. Ten out of 62 (16.1%), 6/17 (35.3%), 4/23 (17.4%) isolates were phenotypically classified as ESBL E. coli, K. pneumoniae, and P. aeruginosa respectively. The ESBL-E. coli isolates respectively possessed blaCTX-M (60%), blaTEM (20%) and blaCTX-M-9 (10%) genes. The ESBL-K. pneumoniae harboured, blaCTX-M (50%), blaOXA (33%), blaCARB (17%), and blaCTX-M-9 (17%) genes respectively, whilst, P. aeruginosa isolates respectively carried blaTEM (75%), blaCTX-M (50%), blaOXA (25%) and blaCARB (25%) genes. Molecular analysis identified the blaCTX-Mβ-lactamase-encoding genes collectively from E. coli, P. aeruginosa, K. pneumoniae isolates. Colistin and β-lactamase genes were present in only 16.7%, 6.9%, and 2.9% of E. coli, K. pneumoniae, and P. aeruginosa isolates, respectively. A total of 17, 7 and 3 isolates for E. coli, K. pneumoniae and P. aeruginosa respectively carried both colistin and β-lactamase antibiotics resistant genes. This is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Data generated from this study will contribute to formulation of new strategies for combating spread of E. coli, K. pneumoniae, and P. aeruginosa isolates as well as prevention of their AR development.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa; Gastrointestinal Research Unit, Department of Surgery, School of Clinical Medicine, University of the Free State, Bloemfontein 9300, South Africa.
| | - Prudent Mokgokong
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| |
Collapse
|
2
|
Uhland FC, Li XZ, Mulvey MR, Reid-Smith R, Sherk LM, Ziraldo H, Jin G, Young KM, Reist M, Carson CA. Extended Spectrum β-Lactamase-Producing Enterobacterales of Shrimp and Salmon Available for Purchase by Consumers in Canada-A Risk Profile Using the Codex Framework. Antibiotics (Basel) 2023; 12:1412. [PMID: 37760708 PMCID: PMC10525137 DOI: 10.3390/antibiotics12091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The extended-spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-EB) encompass several important human pathogens and are found on the World Health Organization (WHO) priority pathogens list of antibiotic-resistant bacteria. They are a group of organisms which demonstrate resistance to third-generation cephalosporins (3GC) and their presence has been documented worldwide, including in aquaculture and the aquatic environment. This risk profile was developed following the Codex Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance with the objectives of describing the current state of knowledge of ESBL-EB in relation to retail shrimp and salmon available to consumers in Canada, the primary aquacultured species consumed in Canada. The risk profile found that Enterobacterales and ESBL-EB have been found in multiple aquatic environments, as well as multiple host species and production levels. Although the information available did not permit the conclusion as to whether there is a human health risk related to ESBLs in Enterobacterales in salmon and shrimp available for consumption by Canadians, ESBL-EB in imported seafood available at the retail level in Canada have been found. Surveillance activities to detect ESBL-EB in seafood are needed; salmon and shrimp could be used in initial surveillance activities, representing domestic and imported products.
Collapse
Affiliation(s)
- F. Carl Uhland
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Xian-Zhi Li
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Richard Reid-Smith
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Lauren M. Sherk
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Hilary Ziraldo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Grace Jin
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Kaitlin M. Young
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Mark Reist
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carolee A. Carson
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| |
Collapse
|
3
|
Pearce R, Conrady B, Guardabassi L. Prevalence and Types of Extended-Spectrum β-Lactamase-Producing Bacteria in Retail Seafood. Foods 2023; 12:3033. [PMID: 37628032 PMCID: PMC10453871 DOI: 10.3390/foods12163033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Objectives: To assess prevalence and types of extended-spectrum β-lactamase (ESBL)-producing bacteria in retail seafood. Methods: A literature review was completed according to international guidelines for systematic reviews, except for being performed by a single reviewer. Kruskal-Wallis and Dunn tests were used to determine statistical differences between continents or seafood types. Results: Among 12,277 hits, 42 publications from 2011 to 2023 were deemed relevant to the review's objectives. The median prevalence of ESBL-contaminated products was 19.4%. A significantly lower prevalence was observed in Europe (p = 0.006) and Africa (p = 0.004) compared to Asia. Amongst the 2053 isolates analyzed in the selected studies, 44.8% were ESBL-positive. The predominant type was CTX-M (93.6%), followed by TEM (6.7%) and SHV (5.0%). Only 32.6% and 18.5% of the CTX-M-positive isolates were typed to group and gene level, respectively. While group 1 (60.2%) was prevalent over group 9 (39.8%) among Enterobacterales, the opposite trend was observed in Vibrio spp. (60.0% vs. 40.0%). Information at gene level was limited to Enterobacterales, where CTX-M-15 was the most prevalent (79.2%). Conclusions: On average, one in five seafood products sold at retail globally is contaminated with ESBL-producing Enterobacterales of clinical relevance. Our findings highlight a potential risk for consumers of raw seafood, especially in Asia.
Collapse
Affiliation(s)
- Ryan Pearce
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK;
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| | - Beate Conrady
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| | - Luca Guardabassi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK;
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| |
Collapse
|
4
|
Xedzro C, Kimura T, Shimamoto T, Ahmed AM, Shimamoto T. Comparative molecular profiling of antimicrobial resistance and phylogenetic characterization of multidrug-resistant Escherichia coli isolated from meat sources in 2009 and 2021 in Japan. Int J Food Microbiol 2023; 391-393:110146. [PMID: 36842253 DOI: 10.1016/j.ijfoodmicro.2023.110146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
The global spread of antimicrobial resistance (AMR) is alarming. Escherichia coli is a Gram-negative bacterium that causes healthcare-associated infections and is a major threat to public health. Currently, no comprehensive antimicrobial surveillance of multidrug-resistant E. coli of diverse phylogroups along the meat value chain has been implemented in Higashihiroshima, Japan. Therefore, by employing the One Health approach, 1183 bacterial isolates, including 303 recovered from meat samples in 2009, were screened for the presence of antimicrobial resistance determinants using multiplex PCR and DNA sequencing techniques. Seventy-seven non-duplicate E. coli isolates that harbored AMR genes were subjected to antimicrobial susceptibility testing and the detection of integrons. Phylogenetic characterization, which has not been previously investigated, was used to assign E. coli to one of the eight phylogroups. Twenty-six out of 33 (78.8%) and 34 out of 44 (77.3%) E. coli isolates from 2009 and 2021 exhibited multidrug resistance (MDR) phenotypes, respectively. The most common clinical resistance was observed against ampicillin, tetracycline, kanamycin, sulfamethoxazole/trimethoprim, cefotaxime, and chloramphenicol. Overall, 22.1% (17/77) of the E. coli isolates carried extended-spectrum β-lactamase (ESBL)-encoding genes and showed the ESBL-resistant phenotypes. For the two isolation years, AmpC/ESBL prevalence decreased from 42.4% in 2009 to 20.5% in 2021. The identified AMR genes included blaCTX-M-1, blaCTX-M-2, blaCTX-M-14, blaCTX-M-15, and blaSHV-12 (ESBL-types); blaSHV-1, blaTEM-1, blaTEM-135, and blaTEM-176 (narrow-spectrum types); blaCMY-4, blaADC-32, blaADC-216, blaACT-48, and blaACT-51 (AmpC types); and integrons. All E. coli isolates were negative for carbapenemase-encoding genes, whereas one isolate from 2009 carried mcr-5.1 allele. Approximately 52% of E. coli isolates identified in 2009 were assigned to phylogroup A compared to the 20.5% in 2021. Notably, the highest proportions of E. coli phylogroups exhibiting MDR were groups A, B1, and F, suggesting that members of these groups are mostly associated with drug resistance. This study highlights the role of meat as a significant reservoir of MDR E. coli and potential source for transmission of AMR genes. Our findings emphasize the importance of continuous monitoring to track the changes in the spread of antimicrobial resistance in the food chain.
Collapse
Affiliation(s)
- Christian Xedzro
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Tomomi Kimura
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Toshi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Ashraf M Ahmed
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan.
| |
Collapse
|
5
|
Thaotumpitak V, Sripradite J, Atwill ER, Jeamsripong S. Emergence of colistin resistance and characterization of antimicrobial resistance and virulence factors of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from hybrid red tilapia cage culture. PeerJ 2023; 11:e14896. [PMID: 36855429 PMCID: PMC9968459 DOI: 10.7717/peerj.14896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Background Tilapia is a primary aquaculture fish in Thailand, but little is known about the occurrence of antimicrobial resistance (AMR) in Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae colonizing healthy tilapia intended for human consumption and the co-occurrence of these AMR bacteria in the cultivation water. Methods This study determined the phenotype and genotype of AMR, extended-spectrum β-lactamase (ESBL) production, and virulence factors of A. hydrophila, Salmonella spp., and V. cholerae isolated from hybrid red tilapia and cultivation water in Thailand. Standard culture methods such as USFDA's BAM or ISO procedures were used for the original isolation, with all isolates confirmed by biochemical tests, serotyping, and species-specific gene detection based on PCR. Results A total of 278 isolates consisting of 15 A. hydrophila, 188 Salmonella spp., and 75 V. cholerae isolates were retrieved from a previous study. All isolates of A. hydrophila and Salmonella isolates were resistance to at least one antimicrobial, with 26.7% and 72.3% of the isolates being multidrug resistant (MDR), respectively. All A. hydrophila isolates were resistant to ampicillin (100%), followed by oxytetracycline (26.7%), tetracycline (26.7%), trimethoprim (26.7%), and oxolinic acid (20.0%). The predominant resistance genes in A. hydrophila were mcr-3 (20.0%), followed by 13.3% of isolates having floR, qnrS, sul1, sul2, and dfrA1. Salmonella isolates also exhibited a high prevalence of resistance to ampicillin (79.3%), oxolinic acid (75.5%), oxytetracycline (71.8%), chloramphenicol (62.8%), and florfenicol (55.3%). The most common resistance genes in these Salmonella isolates were qnrS (65.4%), tetA (64.9%), bla TEM (63.8%), and floR (55.9%). All V. cholerae isolates were susceptible to all antimicrobials tested, while the most common resistance gene was sul1 (12.0%). One isolate of A. hydrophila was positive for int1, while all isolates of Salmonella and V. cholerae isolates were negative for integrons and int SXT. None of the bacterial isolates in this study were producing ESBL. The occurrence of mcr-3 (20.0%) in these isolates from tilapia aquaculture may signify a serious occupational and consumer health risk given that colistin is a last resort antimicrobial for treatment of Gram-negative bacteria infections. Conclusions Findings from this study on AMR bacteria in hybrid red tilapia suggest that aquaculture as practiced in Thailand can select for ubiquitous AMR pathogens, mobile genetic elements, and an emerging reservoir of mcr and colistin-resistant bacteria. Resistant and pathogenic bacteria, such as resistance to ampicillin and tetracycline, or MDR Salmonella circulating in aquaculture, together highlight the public health concerns and foodborne risks of zoonotic pathogens in humans from cultured freshwater fish.
Collapse
Affiliation(s)
- Varangkana Thaotumpitak
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jarukorn Sripradite
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Edward R. Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, United States of America
| | - Saharuetai Jeamsripong
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Kanaan MHG, Khalil ZK, Khashan HT, Ghasemian A. Occurrence of virulence factors and carbapenemase genes in Salmonella enterica serovar Enteritidis isolated from chicken meat and egg samples in Iraq. BMC Microbiol 2022; 22:279. [PMID: 36418940 PMCID: PMC9682753 DOI: 10.1186/s12866-022-02696-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Food-borne infections mainly due to Salmonella enterica serovar Enteritidis (S. Enteritidis) are major concerns worldwide. S. Enteritidis isolates may serve as reservoirs for spreading antimicrobial drug resistance genes including carbapenemases. This study aimed to screen the occurrence of virulence factors, carbapenemases, and antibiotic resistance genes in S. Enteritidis isolated from chicken meat and eggs in Iraq. RESULTS In total, 1000 non-duplicated chicken meat and 1000 egg samples were collected during 2019-2020. Presumptive S. Enteritidis isolates were initially identified by standard bacteriology tests and then were confirmed using polymerase chain reaction (PCR). Carbapenem resistance was detected using the disk diffusion method. Virulence and carbapenemase genes were screened using the PCR method. In total, 100 (5.0%) S. Enteritidis isolates were identified from 2000 samples collected using phenotypic and molecular methods. These isolates were identified from 4.9% chicken meat (n = 49/1000) and 5.1% egg (n = 51/1000) samples, respectively. The most and the least susceptibility was found to gentamicin and ceftazidime antibiotics, respectively. The prevalence of different virulence factors were as follows: phoP/Q (40.0%), traT (30.0%), stn (22.0%), slyA (11.0%), and sopB (9.0%). Among 20 carbapenem-resistant S. Enteritidis isolates, the most predominant carbapenemase gene was blaIMP (35.0%, n = 7), followed by blaOXA-48-like (25.0%, n = 5), and blaNDM (10.0%, n = 2), while the blaKPC and blaVIM genes were not detected. The coexistence of blaIMP, blaOXA-48-like, and blaNDM genes was determined in two isolates. The prevalence of different antibiotic resistance genes were as follows: tetA (87.1%), tetB (87.1%), dfrA1 (77.6%), and sul1 (83.6%). CONCLUSION Considering the existence of carbapenem-resistant S. Enteritidis harboring different virulence and antibiotic resistance genes in chicken meat and egg samples, adherence to proper hygienic conditions should be considered.
Collapse
Affiliation(s)
- Manal Hadi Ghaffoori Kanaan
- grid.510261.10000 0004 7474 9372Department of Agriculture, Technical Institute of Suwaria, Middle Technical University, Baghdad, Iraq
| | - Zena Kassem Khalil
- grid.510261.10000 0004 7474 9372Optometry Department, Medical Technical Institute Al-Mansor, Middle Technical University, Baghdad, Iraq
| | - Hawazin Thamir Khashan
- grid.411498.10000 0001 2108 8169Department of Veterinary Public Health, Food Hygiene, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Abdolmajid Ghasemian
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
7
|
Silver nanoparticle effect on Salmonella enterica isolated from Northern West Egypt food, poultry, and calves. Appl Microbiol Biotechnol 2022; 106:5701-5713. [PMID: 35945362 PMCID: PMC9418292 DOI: 10.1007/s00253-022-12102-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/11/2022] [Accepted: 07/23/2022] [Indexed: 11/03/2022]
Abstract
A total no. of 65 Salmonella enterica isolates recovered from food samples, feces of diarrheic calves, poultry, and hospital patient in large five cities at Northern West Egypt were obtained from the Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt. The 65 Salmonella enterica isolates had the invA gene were grouped into 11 Salmonella enterica serovars with dominance of S. Enteritidis and S. Kentucky serovars. Their resistance pattern were characterized by using 18 antibiotics from different classes. Approximately 80% of the isolates were multidrug resistant (MDR). Enterobacterial repetitive intergenic consequences polymerase chain reaction (ERIC-PCR) typing of 7 strains of S. Enteritidis showed 5 clusters with dissimilarity 25%. S. Enteritidis clusters in 2 main groups A and B. Group A have 2 human strain (HE2 and HE3) and one food origin (FE7) with a similarity 99%. Group B divided into B1 (FE2) and B2 (FE3) with a similarity ratio ≥ 93%, while ERIC-PCR analysis of 5 strains of S. Kentucky revealed 4 ERIC types, clustered in 2 main groups A and B with similarity 75%. We studied the effect of silver nanoparticles (Ag-NPs) on 10 antibiotic resistant strains of S. Enteritidis and S. Kentucky. The broth microdilution minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were detected. Evaluation of the affection using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed different ratios of Ag-NPs and microorganism as well as at different contact time ended finally with morphological alteration of the bacteria. We submitted new method in vivo to explore the activity of nanosilver in chicken. KEY POINTS: • Importance of ERIC-PCR to determine the relatedness between Salmonella isolates. • Effect of silver nanoparticles to confront the antibacterial resistance. • Studying the effect of silver nanoparticles in vivo on infected chicken with Salmonella.
Collapse
|
8
|
Sabeq I, Awad D, Hamad A, Nabil M, Aboubakr M, Abaza M, Fouad M, Hussein A, Shama S, Ramadan H, Edris S. Prevalence and molecular characterization of foodborne and human-derived Salmonella strains for resistance to critically important antibiotics. Transbound Emerg Dis 2022; 69:e2153-e2163. [PMID: 35396929 DOI: 10.1111/tbed.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022]
Abstract
The primary goals of this cross-sectional study were to screen various food/water, and human samples for the presence of Salmonella species, and to assess the phenotypic and genetic relationship between resistances found in food and human Salmonella isolates to critically important antibiotics. Between November 2019 and May 2021, 501 samples were randomly collected for Salmonella isolation and identification using standard culturing methods, biochemical, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and PCR techniques. Antimicrobial susceptibility testing was performed on confirmed Salmonella species, and PCR was used to investigate the genetic components that confer these resistance traits. Salmonella enterica subspecies enterica was confirmed in 35 (6.99%) of the samples (raw food = 23, ready-to-eat food/drink (REF/D) = 5, human = 7). Seventeen of them were antibiotic-resistant to at least one class, and eight were multidrug-resistant (MDR) isolates (raw food = 7, human = 1). All Salmonella isolates were susceptible to carbapenems, third and fourth-generation cephalosporins, and monobactam antibiotics. Resistance phenotypes to aminoglycosides (48.57%), β-lactams (20%), and tetracycline (17.14%), as well as associated genes such as aadA, blaTEM , blaZ , and tetA, as well as dfrA and sul1, were prevalent in Salmonella isolates. Colistin resistance genotype (mcr1) was detected in three (8.57 %) isolates recovered from egg, cattle mince, and rabbit meat, and the total incidence was 14.29 % when two isolates exhibited resistance phenotypes were considered. Furthermore, four (11.43%) MDR isolates shared the blaTEM and blaZ genes, and one (2.86%) isolate contained three extended spectrum β-lactams producing genes (ESBL), namely blaCTX , blaTEM , and blaZ . The gyrA gene was expressed by one of three foodborne Salmonella isolates (8.57%) with ciprofloxacin resistance phenotypes. To the best of our knowledge, this is the first report from Egypt identifying colistin resistance in Salmonella enterica recovered from cattle minced meat and rabbit meat. Overall, the highest incidence rate of Salmonella enterica was found in cattle-derived products, and it was slightly more prevalent in RTE/D foods than in raw foods. Resistance to critical and clinically important antibiotics, particularly in Salmonella from RTE/D food, suggests that these antibiotics are being abused in the investigated area's veterinary field, and raises the potential of these isolates being transmitted to high-risk humans, which would be a serious problem. Future research using whole-genome sequencing is needed to clarify Salmonella resistance mechanisms to critically important antimicrobial agents or those exhibiting multidrug resistance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Islam Sabeq
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Dina Awad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Ahmed Hamad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Mohamed Nabil
- Food Hygiene Department, Animal Health Research Institute (Benha Branch), ARC, Qalyubia, Benha, 13511, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Mohamed Abaza
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Mohammed Fouad
- Microbiology and immunology department, Faculty of Medicine, Benha University, Qalyubia, Benha, 13511, Egypt
| | - Amira Hussein
- Department of clinical pathology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Sanaa Shama
- Laboratory unit, Benha Fever Hospital, Qalyubia, Benha, 13511, Egypt
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa Edris
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| |
Collapse
|
9
|
Adel WA, Ahmed AM, Hegazy Y, Torky HA, Shimamoto T. High Prevalence of ESBL and Plasmid-Mediated Quinolone Resistance Genes in Salmonella enterica Isolated from Retail Meats and Slaughterhouses in Egypt. Antibiotics (Basel) 2021; 10:antibiotics10070881. [PMID: 34356803 PMCID: PMC8300843 DOI: 10.3390/antibiotics10070881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022] Open
Abstract
The emergence and spread of multidrug-resistant Salmonella enterica (S. enterica) to humans through food of animal origin are considered a major global public health concern. Currently, little is known about the prevalence of important antimicrobial resistance genes in S. enterica from retail food in Africa. Therefore, the screening and characterization of the extended-spectrum β-lactamase (ESBL) and plasmid-mediated quinolone resistance (PMQR) genes in S. enterica isolated from retail meats and slaughterhouses in Egypt were done by using PCR and DNA sequencing techniques. Twenty-eight out of thirty-four (82.4%) non-duplicate S. enterica isolates showed multidrug-resistance phenotypes to at least three classes of antimicrobials, and fourteen (41.2%) exhibited an ESBL-resistance phenotype and harbored at least one ESBL-encoding gene. The identified β-lactamase-encoding genes included blaCTX-M-1, blaCTX-M-3, blaCTX-M-13, blaCTX-M-14, blaCTX-M-15, and blaSHV-12 (ESBL types); blaCMY-2 (AmpC type); and blaTEM-1 and blaOXA-1 (narrow-spectrum types). PMQR genes (included qnrA, qnrB, qnrS, and aac(6′)-Ib-cr) were identified in 23 (67.6%) isolates. The presence of ESBL- and PMQR-producing S. enterica with a high prevalence rate in retail meats and slaughterhouses is considered a major threat to public health as these strains with resistance genes could be transmitted to humans through the food chain.
Collapse
Affiliation(s)
- Wesam A. Adel
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Ashraf M. Ahmed
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
- Correspondence: (A.M.A.); (T.S.); Tel.: +20-111-811-1488 (A.M.A.); +81-(82)-424-7897 (T.S.)
| | - Yamen Hegazy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Helmy A. Torky
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan
- Correspondence: (A.M.A.); (T.S.); Tel.: +20-111-811-1488 (A.M.A.); +81-(82)-424-7897 (T.S.)
| |
Collapse
|