1
|
Pu Y, Peng K, Sun J, Meng Q, Zhao F, Sang Y. Synthesis of dextran of different molecular weights by recombinant dextransucrase DsrB. Int J Biol Macromol 2024; 277:134094. [PMID: 39059525 DOI: 10.1016/j.ijbiomac.2024.134094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Leuconostoc citreum JZ-002 was extracted from artisanal orange wine. This strain was used to synthesize dextran with a purification extraction of 27.9 g/L. The resulting dextran had a molecular weight of 2.45 × 106 Da. A significant portion, amounting to 64 % of the structure, is constituted by the main chain, with α-(1,6) glycosidic bonds acting as the linkages. In contrast, the branched chain, comprising 34 % of the entire molecule, is characterized by the presence of α-(1,3) glycosidic bonds. The dextransucrase DsrB, believed to be accountable for the formation of the dextran backbone, was successfully cloned into the pET-28a-AcmA vector. The recombinant expression of the enzyme was achieved. Purified recombinant enzymes and immobilized in a single go using the gram-positive enhancer matrix (GEM). The maximum yield of dextran produced by suchimmobilized enzyme was 191.9 g/L. The composition featured a dextran connected via α-(1,6) glycosidic linkages. Molecular weight controlled synthesis was achieved with sucrose concentrations of 100-2000 mM and enzyme concentrations of 320-1280 U. The Mw of the synthesized dextran extended from 4680 to 1,320,000 Da. By controlling the ratio between enzyme concentration and sucrose concentration, dextrans with diverse Mw can be enzymatically generated.
Collapse
Affiliation(s)
- Yuanhao Pu
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071000, PR China
| | - Kaige Peng
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071000, PR China
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071000, PR China
| | - Qingyong Meng
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071000, PR China
| | - Fangkun Zhao
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071000, PR China.
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071000, PR China.
| |
Collapse
|
2
|
Roșca MF, Păucean A, Man SM, Chiș MS, Pop CR, Pop A, Fărcaș AC. Leuconostoc citreum: A Promising Sourdough Fermenting Starter for Low-Sugar-Content Baked Goods. Foods 2023; 13:96. [PMID: 38201124 PMCID: PMC10778755 DOI: 10.3390/foods13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
This review highlights Leuconostoc citreum's promising possibilities as a proficient mannitol producer and its potential implications for sugar reduction, with a focus on its use in sourdough-based baked good products. Mannitol, a naturally occurring sugar alcohol, has gained popularity in food items due to its low calorie content and unique beneficial qualities. This study summarizes recent research findings and investigates the metabolic pathways and culture conditions that favor increased mannitol production by Leuconostoc citreum. Furthermore, it investigates the several applications of mannitol in baked goods, such as its function in increasing texture, flavor and shelf life while lowering the sugar content. Sourdough-based products provide an attractive niche for mannitol integration, as customer demand for healthier and reduced-sugar options increases.
Collapse
Affiliation(s)
| | - Adriana Păucean
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary, 400372 Cluj-Napoca, Romania; (M.-F.R.); (S.M.M.); (M.S.C.); (C.R.P.); (A.P.); (A.C.F.)
| | | | | | | | | | | |
Collapse
|
3
|
Yuan Y, Yang Y, Xiao L, Qu L, Zhang X, Wei Y. Advancing Insights into Probiotics during Vegetable Fermentation. Foods 2023; 12:3789. [PMID: 37893682 PMCID: PMC10606808 DOI: 10.3390/foods12203789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Fermented vegetables have a long history and are enjoyed worldwide for their unique flavors and health benefits. The process of fermentation improves the nutritional value, taste, and shelf life of foods. Microorganisms play a crucial role in this process through the production of metabolites. The flavors of fermented vegetables are closely related to the evaluation and succession of microbiota. Lactic acid bacteria (LABs) are typically the dominant bacteria in fermented vegetables, and they help inhibit the growth of spoilage bacteria and maintain a healthy gut microbiota in humans. However, homemade and small-scale artisanal products rely on spontaneous fermentation using bacteria naturally present on fresh vegetables or from aged brine, which may introduce external microorganisms and lead to spoilage and substandard products. Hence, understanding the role of LABs and other probiotics in maintaining the quality and safety of fermented vegetables is essential. Additionally, selecting probiotic fermentation microbiota and isolating beneficial probiotics from fermented vegetables can facilitate the use of safe and healthy starter cultures for large-scale industrial production. This review provides insights into the traditional fermentation process of making fermented vegetables, explains the mechanisms involved, and discusses the use of modern microbiome technologies to regulate fermentation microorganisms and create probiotic fermentation microbiota for the production of highly effective, wholesome, safe, and healthy fermented vegetable foods.
Collapse
Affiliation(s)
- Yingzi Yuan
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| | - Yutong Yang
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| | - Lele Xiao
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| | - Lingbo Qu
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
- Food Laboratory of Zhongyuan, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoling Zhang
- Food Laboratory of Zhongyuan, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wei
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| |
Collapse
|
4
|
Li J, He Z, Yan L, He Y, Yang J. Analysis of the microbial community structure and flavor components succession during salt-reducing pickling process of zhacai (preserved mustard tuber). Food Sci Nutr 2023; 11:3154-3170. [PMID: 37324844 PMCID: PMC10261794 DOI: 10.1002/fsn3.3297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/17/2023] Open
Abstract
The salt-reducing pickling method has been applied to the industrial production of zhacai. In order to reveal the succession of the microbial community structure and flavor components during the pickling process, this study used PacBio Sequel to sequence the full length of 16S rRNA (bacteria, 1400 bp) and ITS (fungi, 1200 bp) genes, and detected flavor components simultaneously, including organic acids, volatile flavor components (VFC), monosaccharides, and amino acids. Eleven phyla and 148 genera were identified in the bacterial community, and 2 phyla and 60 genera in the fungal community. During the four stages of pickling, the dominant bacterial genera were Leuconostoc, Lactobacillus, Leuconostoc, and Lactobacillus, while the dominant fungal genera were Aspergillus, Kazachstania, Debaryomyces, and Debaryomyces, respectively. There were 32 main flavor components (5 organic acids, 19 VFCs, 3 monosaccharides, and 5 amino acids). Correlation heat mapping and bidirectional orthogonal partial least squares (O2PLS) analysis showed that the flora having close relation to flavor components included 14 genera of bacteria (Leuconostoc, Clostridium, Devosia, Lactococcus, Pectobacterium, Sphingobacterium, Serratia, Stenotrophomonas, Halanaerobium, Tetragenococcus, Chromohalobacter, Klebsiella, Acidovorax, and Acinetobacter) and 3 genera of fungi (Filobasidium, Malassezia, and Aspergillus). This study provides detailed data regarding the microbial community and flavor components during the salt-reducing pickling process of zhacai, which can be used as a reference for the development and improvement of salt-reducing pickling methods.
Collapse
Affiliation(s)
- Jing Li
- College of Food ScienceSouthwest UniversityChongqingChina
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and ChongqingChongqingChina
| | - Zhifei He
- College of Food ScienceSouthwest UniversityChongqingChina
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and ChongqingChongqingChina
| | - Lixiu Yan
- Chongqing Academy of Metrology and Quality InspectionChongqingChina
| | - Yunchuan He
- Chongqing Fuling Zhacai Group Co. LTD. Er Du Village First GroupChongqingChina
| | - Jixia Yang
- College of Food ScienceSouthwest UniversityChongqingChina
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and ChongqingChongqingChina
| |
Collapse
|
5
|
Neylon E, Nyhan L, Zannini E, Sahin AW, Arendt EK. From Waste to Taste: Application of Fermented Spent Rootlet Ingredients in a Bread System. Foods 2023; 12:foods12071549. [PMID: 37048370 PMCID: PMC10094320 DOI: 10.3390/foods12071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
The process of upcycling and incorporating food by-products into food systems as functional ingredients has become a central focus of research. Barley rootlets (BR) are a by-product of the malting and brewing industries that can be valorised using lactic acid bacteria fermentation. This research investigates the effects of the inclusion of unfermented (BR-UnF), heat-sterilised (BR-Ster), and five fermented BR ingredients (using Weissella cibaria MG1 (BR-MG1), Leuconostoc citreum TR116 (BR-TR116), Lactiplantibacillus plantarum FST1.7 (BR-FST1.7), Lactobacillus amylovorus FST2.11 (BR-FST2.11), and Limosilactobacillus reuteri R29 (BR-R29) in bread. The antifungal compounds in BR ingredients and the impact of BR on dough rheology, gluten development, and dough mixing properties were analysed. Additionally, their effects on the techno-functional characteristics, in vitro starch digestibility, and sensory quality of bread were determined. BR-UnF showed dough viscoelastic properties and bread quality comparable to the baker's flour (BF). BR-MG1 inclusion ameliorated bread specific volume and reduced crumb hardness. Breads containing BR-TR116 had comparable bread quality to BF, while the inclusion of BR-R29 substantially slowed microbial spoilage. Formulations containing BR-FST2.11 and BR-FST1.7 significantly reduced the amounts of sugar released from breads during a simulated digestion and resulted in a sourdough-like flavour profile. This study highlights how BR fermentation can be tailored to achieve desired bread characteristics.
Collapse
Affiliation(s)
- Emma Neylon
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
| | - Laura Nyhan
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
- Department of Environmental Biology, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Aylin W Sahin
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
- APC Microbiome Ireland, University College Cork, Western Road, T12K8AF Cork, Ireland
| |
Collapse
|
6
|
Boeck T, Ispiryan L, Hoehnel A, Sahin AW, Coffey A, Zannini E, Arendt EK. Lentil-Based Yogurt Alternatives Fermented with Multifunctional Strains of Lactic Acid Bacteria-Techno-Functional, Microbiological, and Sensory Characteristics. Foods 2022; 11:2013. [PMID: 35885256 PMCID: PMC9317967 DOI: 10.3390/foods11142013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
A milk-alternative produced from lentil protein isolate was fermented with three multifunctional strains of lactic acid bacteria, Leuconostoc citreum TR116, Leuconostoc pseudomesenteroides MP070, and Lacticaseibacillus paracasei FST 6.1. As a control, a commercial starter culture containing Streptococcus thermophilus was used. The metabolic performance of these strains and the techno-functional properties of the resulting yogurt alternatives (YA) were studied. Microbial growth was evaluated by cell counts, acidification, and carbohydrate metabolization. The structure of the YA was investigated by textural and rheological analyses and confocal laser scanning microscopy (CLSM). Production of antifungal compounds, the influence of fermentation on the content of FODMAPs, and typical metabolites were analyzed, and a sensory analysis was performed. The results revealed an exponential microbial growth in the lentil base substrate supported by typical acidification, which indicates a suitable environment for the selected strains. The resulting YA showed a gel-like texture typical for non-stirred yogurts, and high water holding capacity. The tested strains produced much higher levels of antifungal phenolic compounds than the commercial control and are therefore promising candidates as adjunct cultures for shelf-life extension. The Leuconostoc strains produced mannitol from fructose and could thus be applied in sugar-reduced YA. Preliminary sensory analysis showed high acceptance for YA produced with Lacticaseibacillus paracasei FST 6.1, and a yogurt-like flavor not statistically different to that produced by the control. Overall, each tested strain possessed promising functionalities with great potential for application in fermented plant-based dairy-alternatives.
Collapse
Affiliation(s)
- Theresa Boeck
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (T.B.); (L.I.); (A.H.); (A.W.S.); (E.K.A.)
| | - Lilit Ispiryan
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (T.B.); (L.I.); (A.H.); (A.W.S.); (E.K.A.)
| | - Andrea Hoehnel
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (T.B.); (L.I.); (A.H.); (A.W.S.); (E.K.A.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (T.B.); (L.I.); (A.H.); (A.W.S.); (E.K.A.)
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (T.B.); (L.I.); (A.H.); (A.W.S.); (E.K.A.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (T.B.); (L.I.); (A.H.); (A.W.S.); (E.K.A.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|