1
|
Villanova V, Andreolli M, Lampis S, Panighel A, Flamini R, Forte V, Zapparoli G. Enhancing the volatile organic compound and biomass production by three biocontrol potential bacteria in corn steep liquor growth medium and development of cell freeze-drying process. J Appl Microbiol 2024; 135:lxae270. [PMID: 39444062 DOI: 10.1093/jambio/lxae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
AIMS This study investigates the traits of three plant growth-promoting (PGP) and antagonistic bacteria, Pseudomonas protegens MP12, Bacillus sp. 3R4, and Bacillus sp. T22, to assess their potential application as biocontrol agents by using the ecofriendly and low-cost substrate Corn Steep Liquor (CSL) medium. Analyses of antagonism through volatile organic compounds (VOCs) production, biofilm formation, and growth performance were carried out. METHODS AND RESULTS Dual antagonism assay showed that all strains displayed significant antagonistic activity against Botrytis cinerea through VOCs. Gas chromatography demonstrated that strains in the CSL exhibited higher VOCs production than nutrient medium. Moreover, enhanced biofilm formation analysed by Calgary Biofilm Device, growth, and biomass were noted in CSL cultures. Pseudomonas protegens MP12, which showed higher cell concentration and biomass yield, was selected for freeze-drying treatments. Storage cell viability assays evidenced that it can be effectively preserved for nearly 7 months at 4°C. CONCLUSION The results here obtained showed that CLS medium enhanced VOCs production, biofilm formation, growth, and biomass of the antagonistic bacteria of the three strains. Eventually, the more effective strain P. protegens MP12 can be stored for nearly 7 months at 4°C.
Collapse
Affiliation(s)
- Valeria Villanova
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze edificio 16, 90128, Palermo, Italy
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Marco Andreolli
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
- VUCC-DBT Verona University Culture Collection, Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
- VUCC-DBT Verona University Culture Collection, Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Annarita Panighel
- Council for Agricultural Research and Economics, Research Center for Viticulture & Enology CREA-VE, Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Riccardo Flamini
- Council for Agricultural Research and Economics, Research Center for Viticulture & Enology CREA-VE, Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Vally Forte
- Council for Agricultural Research and Economics, Research Center for Viticulture & Enology CREA-VE, Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Giacomo Zapparoli
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| |
Collapse
|
2
|
Aragno J, Fernandez-Valle P, Thiriet A, Grondin C, Legras JL, Camarasa C, Bloem A. Two-Stage Screening of Metschnikowia spp. Bioprotective Properties: From Grape Juice to Fermented Must by Saccharomyces cerevisiae. Microorganisms 2024; 12:1659. [PMID: 39203501 PMCID: PMC11356803 DOI: 10.3390/microorganisms12081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Gluconobacter oxydans (Go) and Brettanomyces bruxellensis (Bb) are detrimental micro-organisms compromising wine quality through the production of acetic acid and undesirable aromas. Non-Saccharomyces yeasts, like Metschnikowia species, offer a bioprotective approach to control spoilage micro-organisms growth. Antagonist effects of forty-six Metschnikowia strains in a co-culture with Go or Bb in commercial grape juice were assessed. Three profiles were observed against Go: no effect, complete growth inhibition, and intermediate bioprotection. In contrast, Metschnikowia strains exhibited two profiles against Bb: no effect and moderate inhibition. These findings indicate a stronger antagonistic capacity against Go compared to Bb. Four promising Metschnikowia strains were selected and their bioprotective impact was investigated at lower temperatures in Chardonnay must. The antagonistic effect against Go was stronger at 16 °C compared to 20 °C, while no significant impact on Bb growth was observed. The bioprotection impact on Saccharomyces cerevisiae fermentation has been assessed. Metschnikowia strains' presence did not affect the fermentation time, but lowered the fermentation rate of S. cerevisiae. An analysis of central carbon metabolism and volatile organic compounds revealed a strain-dependent enhancement in the production of metabolites, including glycerol, acetate esters, medium-chain fatty acids, and ethyl esters. These findings suggest Metschnikowia species' potential for bioprotection in winemaking and wine quality through targeted strain selection.
Collapse
Affiliation(s)
- Julie Aragno
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
| | - Pascale Fernandez-Valle
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
| | - Angèle Thiriet
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
- Microbial Research Infrastructure, 4710-057 Braga, Portugal
| | - Cécile Grondin
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
- Microbial Research Infrastructure, 4710-057 Braga, Portugal
| | - Jean-Luc Legras
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
- Microbial Research Infrastructure, 4710-057 Braga, Portugal
| | - Carole Camarasa
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
| | - Audrey Bloem
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
| |
Collapse
|
3
|
Todorov SD, Alves VF, Popov I, Weeks R, Pinto UM, Petrov N, Ivanova IV, Chikindas ML. Antimicrobial Compounds in Wine. Probiotics Antimicrob Proteins 2024; 16:763-783. [PMID: 37855943 DOI: 10.1007/s12602-023-10177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Ipsum vinum est potestas et possession (wine itself is power and possession). Wine is a complex system that triggers multisensory cognitive stimuli. Wine and its consumption are thoroughly intertwined with the development of human society. The beverage was appreciated in many ancient mythologies and plays an essential part in Christianity and rituals to this day. Wine has been said to enlighten and inspire artists and has even been prohibited by law and some religions, but has nevertheless played a role in human civilizations since the beginning. Winemaking is also a prospering and economically important industry and a longtime symbol of status and luxury. In winemaking, the formation of the final product is influenced by several factors that contribute to the chemical and sensory complexity often associated with quality vintages. Factors such as terroir, climatic conditions, variety of the grape, all aspects of the winemaking process to the smallest details, including metabolic processes carried out by yeast and malolactic bacteria, and the conditions for the maturation and storage of the final product, up to, and even beyond the point of deciding to open the bottle and enjoy the wine. In conjunction with the empiric and scientific process of winemaking, different molecules with antibacterial activity can be identified in wine during the production process, and several of them are clearly present in the final product. Some of these antibacterial components are phytochemicals, such as flavonoids and phenolic compounds, that may be delivered to the final product (wine) as a part of the grape, a variety of potential additive compounds, or from the oak barrels or clay amphoras used during the maturation process. Others are produced by yeasts and malolactic bacteria and play a role not only in the moderation of the fermentation process but contributing to the microbiological safety and beneficial properties spectra of the final product. Lactic acid bacteria, responsible for conducting malolactic fermentation, contribute to the final balance of the wine but are also directly involved in the production of different compounds exhibiting antibacterial activity. Some examples of these compounds include bacteriocins (antibacterial peptides), diacetyl, organic acids, reuterin, hydrogen peroxide, and carbon dioxide. Major aspects of these different beneficial metabolites are the subject of discussion in this review with the aim of highlighting their beneficial functions.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
- Food Research Center (FoRC), Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
- CISAS- Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347, Viana do Castelo, Portugal.
| | - Virginia Farias Alves
- Faculdade de Farmácia, Universidade Federal de Goiás (UFG), 74605-170, Goiânia, GO, Brazil
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, 344000, Gagarina Sq., 1, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Olimpijskij av., 1, 354340, Federal Territory Sirius, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, 08901, New Brunswick, NJ, USA
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Nikolay Petrov
- Laboratory of Virology, New Bulgarian University, Montevideo str. 21, 1618, Sofia, Bulgaria
| | - Iskra Vitanova Ivanova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8, Bul. Dragan Tzankov, 1164, Sofia, Bulgaria
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, 344000, Gagarina Sq., 1, Rostov-On-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, 08901, New Brunswick, NJ, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| |
Collapse
|
4
|
Englezos V, Di Gianvito P, Serafino G, Giacosa S, Cocolin L, Rantsiou K. Strain specific Starmerella bacillaris and Saccharomyces cerevisiae interactions in mixed fermentations. J Appl Microbiol 2024; 135:lxae085. [PMID: 38549426 DOI: 10.1093/jambio/lxae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/30/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
AIMS Yeast interactions have a key role in the definition of the chemical profile of the wines. For this reason, winemakers are increasingly interested in mixed fermentations, employing Saccharomyces cerevisiae and non-Saccharomyces strains. However, the outcome of mixed fermentations is often contradictory because there is a great variability among strains within species. Previously, it was demonstrated that the loss of culturability of Starmerella bacillaris in mixed fermentations with S. cerevisiae was due to the physical contact between cells. Therefore, to further explore previous observations, the interaction mechanisms among different strains of Starm. bacillaris and S. cerevisiae during mixed fermentations were investigated. METHODS AND RESULTS Fermentations were conducted under conditions that allow physical contact between cells (flasks) but also using a double-compartment fermentation system in which cells of both species were kept separate. The role of competition for nutrients and antimicrobial compounds production on yeast-yeast interaction mechanisms was also investigated. Three Starm. bacillaris and three S. cerevisiae strains were used to investigate if interaction mechanisms are modulated in a strain-specific way. Both species populations were affected by physical contact, particularly Starm. bacillaris that lost its culturability during fermentation. In addition, loss of culturability of Starm. bacillaris strains was observed earlier in flasks than in the double-compartment system. The phenomena observed occurred in a strain couple-dependent way. Starm. bacillaris disappearance seemed to be independent of nutrient depletion or the presence of inhibitory compounds (which were not measured in this study). CONCLUSION Overall, the results of the present study reveal that cell-to-cell contact plays a role in the early death of non-Saccharomyces but the extent to which it is observed depends greatly on the Starm. bacillaris/S. cerevisiae strains tested.
Collapse
Affiliation(s)
- Vasileios Englezos
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Paola Di Gianvito
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Gabriele Serafino
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Simone Giacosa
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Cocolin
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Kalliopi Rantsiou
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
5
|
He Y, Degraeve P, Oulahal N. Bioprotective yeasts: Potential to limit postharvest spoilage and to extend shelf life or improve microbial safety of processed foods. Heliyon 2024; 10:e24929. [PMID: 38318029 PMCID: PMC10839994 DOI: 10.1016/j.heliyon.2024.e24929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Yeasts are a widespread group of microorganisms that are receiving increasing attention from scientists and industry. Their diverse biological activities and broad-spectrum antifungal activity make them promising candidates for application, especially in postharvest biocontrol of fruits and vegetables and food biopreservation. The present review focuses on recent knowledge of the mechanisms by which yeasts inhibit pathogenic fungi and/or spoilage fungi and bacteria. The main mechanisms of action of bioprotective yeasts include competition for nutrients and space, synthesis and secretion of antibacterial compounds, mycoparasitism and the secretion of lytic enzymes, biofilm formation, quorum sensing, induced systemic resistance of fruit host, as well as the production of reactive oxygen species. Preadaptation of yeasts to abiotic stresses such as cold acclimatization and sublethal oxidative stress can improve the effectiveness of antagonistic yeasts and thus more effectively play biocontrol roles under a wider range of environmental conditions, thereby reducing economic losses. Combined application with other antimicrobial substances can effectively improve the efficacy of yeasts as biocontrol agents. Yeasts show great potential as substitute for chemical additives in various food fields, but their commercialization is still limited. Hence, additional investigation is required to explore the prospective advancements of yeasts in the field of biopreservation for food.
Collapse
Affiliation(s)
- Yan He
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| | - Pascal Degraeve
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| | - Nadia Oulahal
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| |
Collapse
|
6
|
Sipiczki M. Identification of antagonistic yeasts as potential biocontrol agents: Diverse criteria and strategies. Int J Food Microbiol 2023; 406:110360. [PMID: 37591131 DOI: 10.1016/j.ijfoodmicro.2023.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Plant pathogenic and food spoilage microorganisms cause serious losses in crop production and severe damage during food manufacturing, transportation and storage. Synthetic antimicrobial agents are commonly used to control their propagation and harmful activities. However, the recent trend is shifting from chemicals towards safer and more eco-friendly alternatives. The use of antagonistic microorganisms as biological antimicrobial agents is becoming popular throughout the world to replace chemical agents. High numbers of microorganisms have turned out to exert adverse/inhibitory effects on other microorganisms including pathogens and spoiling strains. However, most of them are only active under laboratory conditions and their activity is sensitive to environmental changes. Only a small number of them can be used to manufacture biological protective products on an industrial scale. Therefore, there is a great need to identify additional antagonists. Yeasts have come to the forefront of attention because antimicrobial antagonism is fairly widespread among them. In the recent years, numerous excellent review articles covered various aspects of the phenomenon of antimicrobial antagonism of yeasts. However, none of them dealt with how antagonistic yeasts can be sought and identified, despite the high number and diverse efficiency of screening and identification procedures. As researchers working in different laboratories use different criteria and different experimental set-ups, a yeast strain found antagonistic in one laboratory may prove to be non-antagonistic in another laboratory. This review aims to provide a comprehensive and partially critical overview of the wide diversity of identification criteria and procedures to help researchers choose appropriate screening and identification strategies.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
7
|
Binati RL, Maule M, Luzzini G, Martelli F, Felis GE, Ugliano M, Torriani S. From bioprotective effects to diversification of wine aroma: Expanding the knowledge on Metschnikowia pulcherrima oenological potential. Food Res Int 2023; 174:113550. [PMID: 37986429 DOI: 10.1016/j.foodres.2023.113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
Microbial diseases are of major concern in vitiviniculture as they cause grape losses and wine alterations, but the prevention with chemical substances represents a risk to human health and agricultural ecosystem. A promising alternative is the biocontrol and bioprotection activity of non-Saccharomyces yeasts, such as Metschnikowia pulcherrima, which also presents positive oenological traits when used in multistarter fermentations. The aim of this study was to assess the impact of a selected M. pulcherrima strain in the post-harvest withering and vinification of Garganega grapes to produce the sweet 'passito' wine Recioto di Gambellara DOCG (Italy). M. pulcherrima was firstly inoculated on grape at the beginning of the withering process, and afterwards in must for multistarter sequential microfermentation trials with Saccharomyces cerevisiae. Microbiological, chemical, and sensory analyses were carried out to monitor the vinification of treated and control grapes. Grape bunches during withering were a suitable environment for the colonization by M. pulcherrima, which effectively prevented growth of molds. Differences in grape must composition were observed, and the diverse inoculation strategies caused noticeable variations of fermentation kinetics, main oenological parameters, wine aroma profile, and sensory perception. M. pulcherrima proved effective to protect grapes against fungal infections during withering and contribute to alcoholic fermentation generating wine with distinguished aromatic characteristics.
Collapse
Affiliation(s)
- Renato L Binati
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy
| | - Marzia Maule
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy
| | - Giovanni Luzzini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy
| | - Francesco Martelli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy; VUCC-DBT, Verona University Culture Collection - Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy
| | - Maurizio Ugliano
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy.
| |
Collapse
|
8
|
Windholtz S, Nioi C, Coulon J, Masneuf-Pomarede I. Bioprotection by non-Saccharomyces yeasts in oenology: Evaluation of O 2 consumption and impact on acetic acid bacteria. Int J Food Microbiol 2023; 405:110338. [PMID: 37506548 DOI: 10.1016/j.ijfoodmicro.2023.110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Bioprotection by yeast addition is increasingly used in oenology as an alternative to sulfur dioxide (SO2). Recent studies have also shown that it is likely to consume dissolved O2. This ability could limit O2 for other microorganisms and the early oxidation of the grape must. However, the ability of yeasts to consume O2 in a context of bioprotection was poorly studied so far considering the high genetic diversity of non-Saccharomyces. The first aim of the present study was to perform an O2 consumption rate (OCR) screening of strains from a large multi species collection found in oenology. The results demonstrate significant inter and intra species diversity with regard to O2 consumption. In the must M. pulcherrima consumes O2 faster than Saccharomyces cerevisiae and then other studied non-Saccharomyces species. The O2 consumption was also evaluate in the context of a yeast mix used as industrial bioprotection (Metschnikowia pulcherrima and Torulaspora delbrueckii) in red must. These non-Saccharomyces yeasts were then showed to limit the growth of acetic acid bacteria, with a bioprotective effect comparable to that of the addition of sulfur dioxide. Laboratory experiment confirmed the negative impact of the non-Saccharomyces yeasts on Gluconobacter oxydans that may be related to O2 consumption. This study sheds new lights on the use of bioprotection as an alternative to SO2 and suggest the possibility to use O2 consumption measurements as a new criteria for non-Saccharomyces strain selection in a context of bioprotection application for the wine industry.
Collapse
Affiliation(s)
- Sara Windholtz
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France.
| | - Claudia Nioi
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
| | - Joana Coulon
- BioLaffort, 11 Rue Aristide Bergès, 33270 Floirac, France
| | - Isabelle Masneuf-Pomarede
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
| |
Collapse
|
9
|
Lebleux M, Alexandre H, Romanet R, Ballester J, David-Vaizant V, Adrian M, Tourdot-Maréchal R, Rouiller-Gall C. Must protection, sulfites versus bioprotection: A metabolomic study. Food Res Int 2023; 173:113383. [PMID: 37803722 DOI: 10.1016/j.foodres.2023.113383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
The reduction of chemical inputs in wine has become one of the main challenges of the wine industry. One of the alternatives to sulfites developed is bioprotection, which consists in using non-Saccharomyces strains to prevent microbial deviation. However, the impact of substituting sulfites by bioprotection on the final wine remains poorly studied. For the first time, we characterized this impact on Chardonnay wine through an integrative approach. Interestingly, physico-chemical analysis did not reveal any difference between both treatments regarding classical oenological parameters. Nevertheless, bioprotection did not seem to provide as much protection against oxidation as sulfites, as observed through phenolic compound analysis. At a deeper level, untargeted metabolomic analyses revealed substantial changes in wine composition according to must treatment. In particular, the specific footprint of each treatment revealed an impact on nitrogen-containing compounds. This observation could be related to modifications in S. cerevisiae metabolism, in particular amino acid biosynthesis and tryptophan metabolism pathways. Thus, the type of must treatment seemed to impact metabolic fluxes of yeast differently, leading to the production of different compounds. For example, we observed glutathione and melatonin, compounds with antioxidant properties, which were enhanced with sulfites, but not with bioprotection. However, despite substantial modifications in wines regarding their chemical composition, the change in must treatment did not seem to impact the sensory profile of wine. This integrative approach has provided relevant new insights on the impact of sulfite substitution by bioprotection on Chardonnay wines.
Collapse
Affiliation(s)
- Manon Lebleux
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, Univ. Bourgogne Franche-Comté, 21000 Dijon, France.
| | - Hervé Alexandre
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, Univ. Bourgogne Franche-Comté, 21000 Dijon, France.
| | - Rémy Romanet
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, Univ. Bourgogne Franche-Comté, 21000 Dijon, France.
| | - Jordi Ballester
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, 21000 Dijon, France.
| | - Vanessa David-Vaizant
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, Univ. Bourgogne Franche-Comté, 21000 Dijon, France.
| | - Marielle Adrian
- Agroécologie, Institut Agro Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.
| | - Raphaëlle Tourdot-Maréchal
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, Univ. Bourgogne Franche-Comté, 21000 Dijon, France.
| | - Chloé Rouiller-Gall
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, Univ. Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
10
|
Puyo M, Mas P, Roullier-Gall C, Romanet R, Lebleux M, Klein G, Alexandre H, Tourdot-Maréchal R. Bioprotection Efficiency of Metschnikowia Strains in Synthetic Must: Comparative Study and Metabolomic Investigation of the Mechanisms Involved. Foods 2023; 12:3927. [PMID: 37959046 PMCID: PMC10649255 DOI: 10.3390/foods12213927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Three Metschnikowia strains marketed as bioprotection yeasts were studied to compare their antimicrobial effect on a mixture of two Hanseniaspora yeast strains in synthetic must at 12 °C, mimicking pre-fermentative maceration by combining different approaches. The growth of the different strains was monitored, their nitrogen and oxygen requirements were characterised, and their metabolomic footprint in single and co-cultures studied. Only the M. fructicola strain and one M. pulcherrima strains colonised the must and induced the rapid decline of Hanseniaspora. The efficiency of these two strains followed different inhibition kinetics. Furthermore, the initial ratio between Metschnikowia and Hanseniaspora was an important factor to ensure optimal bioprotection. Nutrient consumption kinetics showed that apiculate yeasts competed with Metschnikowia strains for nutrient accessibility. However, this competition did not explain the observed bioprotective effect, because of the considerable nitrogen content remaining on the single and co-cultures. The antagonistic effect of Metschnikowia on Hanseniaspora probably implied another form of amensalism. For the first time, metabolomic analyses of the interaction in a bioprotection context were performed after the pre-fermentative maceration step. A specific footprint of the interaction was observed, showing the strong impact of the interaction on the metabolic modulation of the yeasts, especially on the nitrogen and vitamin pathways.
Collapse
Affiliation(s)
- Maëlys Puyo
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Perrine Mas
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Chloé Roullier-Gall
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Rémy Romanet
- DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR A 02.102, IUVV, 2 Rue Claude Ladrey, 21000 Dijon, France;
| | - Manon Lebleux
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Géraldine Klein
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| |
Collapse
|
11
|
Comuzzo P, del Fresno JM, Voce S, Loira I, Morata A. Emerging biotechnologies and non-thermal technologies for winemaking in a context of global warming. Front Microbiol 2023; 14:1273940. [PMID: 37869658 PMCID: PMC10588647 DOI: 10.3389/fmicb.2023.1273940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
In the current situation, wine areas are affected by several problems in a context of global warming: asymmetric maturities, pH increasing, high alcohol degree and flat wines with low freshness and poor aroma profile. The use of emerging biotechnologies allows to control or manage such problems. Emerging non-Saccharomyces as Lachancea thermotolerans are very useful for controlling pH by the formation of stable lactic acid from sugars with a slight concomitant alcohol reduction. Lower pH improves freshness increasing simultaneously microbiological stability. The use of Hanseniaspora spp. (specially H. vineae and H. opuntiae) or Metschnikowia pulcherrima promotes a better aroma complexity and improves wine sensory profile by the expression of a more complex metabolic pattern and the release of extracellular enzymes. Some of them are also compatible or synergic with the acidification by L. thermotolerans, and M. pulcherrima is an interesting biotool for reductive winemaking and bioprotection. The use of bioprotection is a powerful tool in this context, allowing oxidation control by oxygen depletion, the inhibition of some wild microorganisms, improving the implantation of some starters and limiting SO2. This can be complemented with the use of reductive yeast derivatives with high contents of reducing peptides and relevant compounds such as glutathione that also are interesting to reduce SO2. Finally, the use of emerging non-thermal technologies as Ultra High-Pressure Homogenization (UHPH) and Pulsed Light (PL) increases wine stability by microbial control and inactivation of oxidative enzymes, improving the implantation of emerging non-Saccharomyces and lowering SO2 additions. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Piergiorgio Comuzzo
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | | | - Sabrina Voce
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Iris Loira
- enotecUPM, Universidad Politécnica de Madrid, Madrid, Spain
| | - Antonio Morata
- enotecUPM, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Comitini F, Canonico L, Agarbati A, Ciani M. Biocontrol and Probiotic Function of Non- Saccharomyces Yeasts: New Insights in Agri-Food Industry. Microorganisms 2023; 11:1450. [PMID: 37374952 DOI: 10.3390/microorganisms11061450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Fermented food matrices, including beverages, can be defined as the result of the activity of complex microbial ecosystems where different microorganisms interact according to different biotic and abiotic factors. Certainly, in industrial production, the technological processes aim to control the fermentation to place safe foods on the market. Therefore, if food safety is the essential prerogative, consumers are increasingly oriented towards a healthy and conscious diet driving the production and consequently the applied research towards natural processes. In this regard, the aim to guarantee the safety, quality and diversity of products should be reached limiting or avoiding the addition of antimicrobials or synthetic additives using the biological approach. In this paper, the recent re-evaluation of non-Saccharomyces yeasts (NSYs) has been reviewed in terms of bio-protectant and biocontrol activity with a particular focus on their antimicrobial power using different application modalities including biopackaging, probiotic features and promoting functional aspects. In this review, the authors underline the contribution of NSYs in the food production chain and their role in the technological and fermentative features for their practical and useful use as a biocontrol agent in food preparations.
Collapse
Affiliation(s)
- Francesca Comitini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Laura Canonico
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alice Agarbati
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maurizio Ciani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
13
|
Derivatization Strategies in Flavor Analysis: An Overview over the Wine and Beer Scenario. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wine and beer are the most appreciated and consumed beverages in the world. This success is mainly due to their characteristic taste, smell, and aroma, which can delight consumer’s palates. These olfactory characteristics are produced from specific classes of volatile compounds called “volatile odor-active compounds” linked to different factors such as age and production. Given the vast market of drinking beverages, the characterization of these odor compounds is increasingly important. However, the chemical complexity of these beverages has led the scientific community to develop several analytical techniques for extracting and quantifying these molecules. Even though the recent “green-oriented” trend is directed towards direct preparation-free procedures, for some class of analytes a conventional step like derivatization is unavoidable. This review is a snapshot of the most used derivatization strategies developed in the last 15 years for VOAs’ determination in wine and beer, the most consumed fermented beverages worldwide and among the most complex ones. A comprehensive overview is provided for every method, whereas pros and cons are critically analyzed and discussed. Emphasis was given to miniaturized methods which are more consistent with the principles of “green analytical chemistry”.
Collapse
|
14
|
Assessment of chitosan antimicrobial effect on wine microbes. Int J Food Microbiol 2022; 381:109907. [DOI: 10.1016/j.ijfoodmicro.2022.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
|
15
|
Bioprotective Effect of a Torulaspora delbrueckii/Lachancea thermotolerans-Mixed Inoculum in Red Winemaking. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms. In this work, the bioprotective effect of a mixed inoculum formed by Torulaspora delbrueckii/Lachancea thermotolerans during fermentation was evaluated. For this purpose, fermentations were carried out using this mixed inoculum and the populations of yeasts, lactic bacteria and acetic bacteria, and the physical–chemical parameters of the wines obtained were studied. The results were compared with those obtained in spontaneous fermentation with and without SO2. The different fermentation strategies caused a differentiation in the yeast species present during fermentation. Regarding populations of lactic acid bacteria, results showed that the effect of the addition of the mixed inoculum was comparable to that exerted by SO2. On the other hand, due to the high sensitivity of acetic acid bacteria to SO2, the sulfite vinifications showed a lower population of acetic acid bacteria in the early stages of fermentation, followed by the vinifications with the mixed inoculum.
Collapse
|
16
|
Exploring Use of the Metschnikowia pulcherrima Clade to Improve Properties of Fruit Wines. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mixed fermentation using Saccharomyces cerevisiae and non-Saccharomyces yeasts as starter cultures is well known to improve the complexity of wines and accentuate their characteristics. This study examines the use of controlled mixed fermentations with the Metschnikowia pulcherrima clade, Saccharomyces cerevisiae Tokay, and non-conventional yeasts: Wickerhamomyces anomalus and Dekkera bruxellensis. We investigated the assimilation profiles, enzyme fingerprinting, and metabolic profiles of yeast species, both individually and in mixed systems. The chemical complexity of apple wines was improved using the M. pulcherrima clade as co-starters. M. pulcherrima with S. cerevisiae produced a wine with a lower ethanol content, similar glycerol level, and a higher level of volatilome. However, inoculation with the Dekkera and Wickerhamomyces strains may slightly reduce this effect. The final beneficial effect of co-fermentation with M. pulcherrima may also depend on the type of fruit must.
Collapse
|
17
|
Mas A, Portillo MC. Strategies for microbiological control of the alcoholic fermentation in wines by exploiting the microbial terroir complexity: A mini-review. Int J Food Microbiol 2022; 367:109592. [DOI: 10.1016/j.ijfoodmicro.2022.109592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
|