1
|
Sang X, Wang Y, Wang J, Cai Z, Zeng L, Deng W, Zhang J, Jiang Z. Effects of Gas Composition on the Lipid Oxidation and Fatty Acid Concentration of Tilapia Fillets Treated with In-Package Atmospheric Cold Plasma. Foods 2024; 13:165. [PMID: 38201193 PMCID: PMC10779136 DOI: 10.3390/foods13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Cold plasma (CP) is a non-thermal preservation technology that has been successfully used to decontaminate and extend the shelf life of aquatic products. However, the preservation effect of CP treatment is determined by several factors, including voltage, time, and gas compositions. Therefore, this study aimed to investigate the effects of gas composition (GasA: 10% O2, 50% N2, 40% CO2; GasB: air; GasC: 30% O2, 30% N2, 40% CO2) on the lipid oxidation of tilapia fillets treated after CP treatment. Changes in the lipid oxidation values, the percentages of fatty acids, and sensory scores were studied during 8 d of refrigerator storage. The results showed that the CP treatment significantly increased all the primary and secondary lipid oxidation values measured in this study, as well as the percentages of saturated fatty acids, but decreased the percentages of unsaturated fatty acids, especially polyunsaturated fatty acids. The lipid oxidation values were significantly increased in the GasC-CP group. After 8 d, clearly increased percentages of saturated fatty acids, a low level of major polyunsaturated fatty acids (especially linoleic (C18:2n-6)), and a decrease in the percentages of eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3) were found in GasC-CP; that is, the serious oxidation of lipids was found in the high O2 concentration group. In addition, the sensory score was also lower than that of the hypoxia CP group. Therefore, high O2 concentrations can enhance lipid oxidation and the changes in the fatty acid concentration. Controlling the O2 concentration is reasonable to limit the degree to which lipids are oxidized in tilapia after the in-package CP treatment.
Collapse
Affiliation(s)
- Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210014, China;
| | - Zhumao Jiang
- College of Life Sciences, Yantai University, Yantai 264005, China;
| |
Collapse
|
2
|
Elcik BE, Kirkin C. Quality and antioxidant activity of dandelion root infusions as affected by cold plasma pretreatment. Food Sci Nutr 2024; 12:526-533. [PMID: 38268864 PMCID: PMC10804085 DOI: 10.1002/fsn3.3791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 01/26/2024] Open
Abstract
Ground and unground dandelion roots were subjected to dielectric barrier discharge cold plasma (DBDCP) at 40 kV for 0 (control), 10, or 20 min. Then, infusions of the pretreated dandelion roots in water were prepared, and the changes in color, total phenolic content (TPC), antioxidant activity, and sensory properties were investigated. The 20-min pretreatment increased the b* value, TPC, antioxidant activity, and sage odor of the ground dandelion root infusions compared with the control, whereas decreases in the TPC, antioxidant activity, and sage odor were noted in the 10-min pretreated infusions of the unground roots. DBDCP pretreatment did not affect the overall likeliness of infusions of ground and unground roots. In addition, the TPC, antioxidant activity, and overall likeliness of infusions of the ground dandelion roots were higher than those of the unground samples. In conclusion, it can be said that the DBDCP pretreatment can be utilized to improve the TPC and antioxidant activity of ground dandelion roots.
Collapse
Affiliation(s)
- Berfin Eda Elcik
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Celale Kirkin
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| |
Collapse
|