1
|
Ramatla T, Motlhaping T, Ndlovu N, Mileng K, Howard J, Khasapane G, Ramaili T, Mokgokong P, Nkhebenyane J, Ndou R, Lekota K, Thekisoe O. Molecular Detection of Shiga Toxin-Producing Escherichia coli O177 Isolates, Their Antibiotic Resistance, and Virulence Profiles From Broiler Chickens. Int J Microbiol 2024; 2024:9778058. [PMID: 39665069 PMCID: PMC11634401 DOI: 10.1155/ijm/9778058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
The World Health Organization (WHO) describes Shiga toxin-producing Escherichia coli (STEC) as a bacterium that can cause severe food-borne diseases. Common sources of infection include undercooked meat products and faecal contamination in vegetables. This study aimed to isolate, identify and assess the virulence and antibiotic resistance profiles of STEC isolates from broiler chicken faeces. Faecal samples were cultured, and polymerase chain reaction (PCR) was utilized to identify the isolates. Subsequently, the confirmed isolates were screened for seven virulence markers using PCR. The antibiotic susceptibility of the isolates to 13 different antibiotics was determined using the disk diffusion method. PCR was also employed to screen for antibiotic resistance genes. The uidA gene, which encodes the beta-glucuronidase enzyme, was detected in 62 (64.6%) of the 91 presumptively identified E. coli isolates. Of these, 23 isolates (37.1%) were confirmed to be E. coli O177 serogroup through amplification of wzy gene. All E. coli O177 isolates possessed the virulence stx2 gene, while 65% carried the stx1 gene. Among the E. coli O177 isolates, three harboured a combination of vir + stx2 + stx1 + hlyA genes, while one isolate contained a combination of eaeA + stx2 + stx1 + hlyA genes. All E. coli O177 isolates carried one or more antimicrobial resistance (AMR) genes, with 17 isolates (73.7%) identified as multidrug resistance (MDR). This is the first study to report the presence of E. coli O177 serotype from broiler chickens in South Africa. The findings reveal that broiler chicken faeces are a significant reservoir for MDR E. coli O177 and a potential source of AMR genes. These results underscore the importance of continuous surveillance and monitoring of the spread of AMR infectious bacteria in food-producing animals and their environments. The study also emphasizes that monitoring and control of poultry meat should be considered a major public health concern.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
- Department of Life Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Tshepang Motlhaping
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Nkanyezenhle Ndlovu
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Kealeboga Mileng
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Jody Howard
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - George Khasapane
- Department of Life Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Taole Ramaili
- Department of Animal Health, School of Agriculture, North-West University, Mmabatho 2735, South Africa
| | - Prudent Mokgokong
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Jane Nkhebenyane
- Department of Life Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Rendani Ndou
- Department of Animal Health, School of Agriculture, North-West University, Mmabatho 2735, South Africa
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
2
|
Martins JCL, Gonçalves A, Fernandes C, Cabecinha E, Monteiro S, Guedes H, Almeida G, Garcia J, da Silva GJ, Varandas S, Saavedra MJ. Multidrug-Resistant Escherichia coli Accumulated by Freshwater Bivalves: An Underestimated Risk for Public Health? Pathogens 2024; 13:617. [PMID: 39204218 PMCID: PMC11357147 DOI: 10.3390/pathogens13080617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
As bioindicators, freshwater bivalves are crucial for the assessment of the contamination impact on different levels of biological integration. Escherichia coli is used as a bioindicator of water fecal contamination, representing a critical global concern, especially with the rise of multidrug-resistant (MDR) strains. Phylogenetic diversity, pathotypic characterization, and antibiotic resistance profiles of E. coli isolated from freshwater bivalves (Anodonta anatina) were assessed. Samples were collected from the Tua River in Northern Portugal, from two different sites, Chelas and Barcel, representing different degrees of contamination. Antimicrobial susceptibility testing was performed by the disk diffusion method, and characterizations of the phylogenetic groups and pathotypes were assessed by PCR-multiplex and real-time PCR-multiplex, respectively. Results showed that 60% of isolates were characterized as MDR, including resistance to carbapenems, considered the last resort against multidrug-resistant bacteria. Within this study, it was also possible to verify the antimicrobial resistance (AMR) profile differences between the two sampling sites, with bivalve isolates from the Chelas site showing a higher percentage of antibiotic resistance. Among the E. coli isolates, the highest prevalence (55%) was observed in group B1, followed by group D or E (15%), group A (10%), and group E or Clade I (10%). None of the isolates were classified as diarrheagenic E. coli (DEC). This work highlights the potential transmission of antimicrobial-resistant bacteria through bivalves in the food chain. The 'One Health' approach is crucial for combating antimicrobial resistance, namely in edible freshwater species, emphasizing active surveillance to protect human, animal, and environmental health against the spread of antibiotic-resistant bacteria in aquatic environments.
Collapse
Affiliation(s)
- Joana C. L. Martins
- AB2Unit—Antimicrobials, Biocides & Biofilms Unit, Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.C.L.M.); (A.G.); (C.F.); (E.C.); (S.M.); (S.V.)
- CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
- CECAV—Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- AquaValor—Centro de Valorização e Transferência de Tecnologia da Água, 5400-342 Chaves, Portugal
| | - Ana Gonçalves
- AB2Unit—Antimicrobials, Biocides & Biofilms Unit, Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.C.L.M.); (A.G.); (C.F.); (E.C.); (S.M.); (S.V.)
- CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
- CECAV—Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Conceição Fernandes
- AB2Unit—Antimicrobials, Biocides & Biofilms Unit, Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.C.L.M.); (A.G.); (C.F.); (E.C.); (S.M.); (S.V.)
- CIMO—Centro de Investigação de Montanha, SusTEC-Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha, IPB—Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Edna Cabecinha
- AB2Unit—Antimicrobials, Biocides & Biofilms Unit, Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.C.L.M.); (A.G.); (C.F.); (E.C.); (S.M.); (S.V.)
- CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661Vairão, Portugal
| | - Sandra Monteiro
- AB2Unit—Antimicrobials, Biocides & Biofilms Unit, Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.C.L.M.); (A.G.); (C.F.); (E.C.); (S.M.); (S.V.)
- CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
| | - Hugo Guedes
- National Institute for Agricultural and Veterinary Research I.P. (INIAV), Lugar da Madalena, 4485-655 Vila do Conde, Portugal; (H.G.); (G.A.)
| | - Gonçalo Almeida
- National Institute for Agricultural and Veterinary Research I.P. (INIAV), Lugar da Madalena, 4485-655 Vila do Conde, Portugal; (H.G.); (G.A.)
- Centre for Study in Animal Science (CECA-ICETA), Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Porto, 4099-002 Porto, Portugal
| | - Juliana Garcia
- CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
- AquaValor—Centro de Valorização e Transferência de Tecnologia da Água, 5400-342 Chaves, Portugal
| | - Gabriela J. da Silva
- Faculty of Pharmacy, Center for Neurosciences and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Simone Varandas
- AB2Unit—Antimicrobials, Biocides & Biofilms Unit, Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.C.L.M.); (A.G.); (C.F.); (E.C.); (S.M.); (S.V.)
- CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661Vairão, Portugal
| | - Maria J. Saavedra
- AB2Unit—Antimicrobials, Biocides & Biofilms Unit, Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.C.L.M.); (A.G.); (C.F.); (E.C.); (S.M.); (S.V.)
- CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
- CECAV—Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Cui S, Wei Y, Li C, Zhang J, Zhao Y, Peng X, Sun F. Visual Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid On-Site Detection of Escherichia coli O157: H7 in Milk Products. Foods 2024; 13:2143. [PMID: 38998648 PMCID: PMC11241362 DOI: 10.3390/foods13132143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: Rapid on-site testing is an effective method for the detection of Escherichia coli O157: H7(E. coli O157: H7) in food ingredients and the environment. (2) Methods: In this study, we developed colorimetric loop-mediated isothermal amplification (LAMP) and immunochromatographic test strips (ICTs) for the rapid and visual detection of E. coli O157: H7. This study designed new specific LAMP primers for E. coli O157: H7 virulence island genes. After the LAMP amplification, the double-stranded DNA target sequence labeled with digoxin and fluorescein isothiocyanate (FITC) at both ends was bound to the anti-digoxin antibody on the gold nanoparticles. Subsequently, it was further bound to the anti-FITC antibody at the T line of the ICTs, forming a positive test result. Hydroxynaphthyl blue dye was directly added to the LAMP amplification product. A blue color indicated positive results, while a purple color indicated negative results. (3) Results: Two visualization methods showed high specificity for the target strains. The visualization tests had sensitivities of 5.7 CFU mL-1, and the detection limit of the Escherichia coli O157: H7 in artificially contaminated milk samples was 5.7 × 102 CFU mL-1, which was consistent with the results of the standard method (LAMP-electrophoresis method) used in commercial inspection. (4) Conclusions: Both methods could be useful in remote and under-resourced areas.
Collapse
Affiliation(s)
- Shuangshuang Cui
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yong Wei
- Xinjiang Tianrun Dairy Co., Ltd., Wuchang Road No. 2702, Urumqi 830000, China
| | - Can Li
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yunfeng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xiayu Peng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Fengxia Sun
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
4
|
Xedzro C, Shimamoto T, Shimamoto T. Predominance of Multidrug-Resistant Gram-Negative Bacteria Isolated from Supermarket Retail Seafood in Japan. Microorganisms 2023; 11:2935. [PMID: 38138079 PMCID: PMC10745518 DOI: 10.3390/microorganisms11122935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Reports have documented antimicrobial usage in aquaculture, and the aquatic ecosystem can be considered a genetic storage site for antibiotic-resistant bacteria. This study assessed the prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria recovered from retail seafood in Hiroshima, Japan. A total of 412 bacteria were isolated and screened for the presence of β-lactamases, acquired carbapenemases, and mobile colistin-resistance (mcr) genes. Forty-five (10.9%) isolates were dominated by Morganella (28%), Proteus (22%), Aeromonas (14%), Citrobacter (8%), and Escherichia (8%) and carried AMR genes. The identified AMR genes included those encoded in integrons (19), aac(6՛)-Ib (11), blaTEM-1 (7), blaCTX-M-like (12), blaCTX-M-65 (2), blaSHV-12 (1), blaSHV-27 (1), blaOXA-10 (1), blaOXA-2 (1), and mcr (2). The most common clinical resistances were against ampicillin, colistin, sulfamethoxazole/trimethoprim, tetracycline, and ciprofloxacin. Multidrug resistance (MDR) occurred in 27 (60%) AMR isolates, and multiple antibiotic resistance indices ranged from 0.2 to 0.8. A conjugation experiment showed that 10 of the 11 selected MDR strains harbored conjugable plasmids, although PCR-based replicon typing described seven strains as untypable. IncF replicon was identified in MDR extended-spectrum β-lactamase-producing Escherichia coli of the pathogenic B2 phylogroup. Our findings suggest that retail seafood harbors MDR bacteria of human interest that require strict resistance surveillance in the seafood production continuum.
Collapse
Affiliation(s)
| | | | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan; (C.X.); (T.S.)
| |
Collapse
|
5
|
Brătfelan DO, Tabaran A, Colobatiu L, Mihaiu R, Mihaiu M. Prevalence and Antimicrobial Resistance of Escherichia coli Isolates from Chicken Meat in Romania. Animals (Basel) 2023; 13:3488. [PMID: 38003106 PMCID: PMC10668644 DOI: 10.3390/ani13223488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
The current study was conducted in order to analyze the prevalence of Escherichia coli (E. coli) in samples of chicken meat (100 chicken meat samples), as well as to evaluate the antimicrobial susceptibility of these isolates. A total of 30 samples were positive for E. coli among the collected chicken samples. Most isolates proved to be highly resistant to tetracycline (80%), ampicillin (80%), sulfamethoxazole (73.33%), chloramphenicol (70%) and nalidixic acid (60%). Strong resistance to ciprofloxacin (56.66%), trimethoprim (50%), cefotaxime (46.66%), ceftazidime (43.33%) and gentamicin (40%) was also observed. Notably, one E. coli strain also proved to be resistant to colistin. The antimicrobial resistance determinants detected among the E. coli isolates recovered in our study were consistent with their resistance phenotypes. Most of the isolates harbored the tetA (53.33%), tetB (46.66%), blaTEM (36.66%) and sul1 (26.66%) genes, but also aadA1 (23.33%), blaCTX (16.66%), blaOXA (16.66%), qnrA (16.66%) and aac (10%). In conclusion, to the best of our knowledge, this is among the first studies analyzing the prevalence and antimicrobial resistance of E. coli strains isolated from chicken meat in Romania and probably the first study reporting colistin resistance in E. coli isolates recovered from food sources in our country.
Collapse
Affiliation(s)
- Dariana Olivia Brătfelan
- Department of Animal Breeding and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania; (D.O.B.); (A.T.); (M.M.)
| | - Alexandra Tabaran
- Department of Animal Breeding and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania; (D.O.B.); (A.T.); (M.M.)
| | - Liora Colobatiu
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street No. 8, 400012 Cluj-Napoca, Romania
| | - Romolica Mihaiu
- Department of Management, Faculty of Economic Sciences and Business Administration, Babes Bolyai University, Mihail Kogalniceanu Street No.1, 400084 Cluj-Napoca, Romania;
| | - Marian Mihaiu
- Department of Animal Breeding and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania; (D.O.B.); (A.T.); (M.M.)
| |
Collapse
|