1
|
Mwapasa T, Chidziwisano K, Mphasa M, Cocker D, Rimella L, Amos S, Feasey N, Morse T. Key environmental exposure pathways to antimicrobial resistant bacteria in southern Malawi: A SaniPath approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174142. [PMID: 38906299 PMCID: PMC11234251 DOI: 10.1016/j.scitotenv.2024.174142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Antimicrobial resistance (AMR) poses a severe global health threat, yet the transmission pathways of AMR within communal public environments, where humans and animals interact, remain poorly explored. This study investigated AMR risk pathways, prevalence, and seasonality of extended-spectrum β-lactamase (ESBL) producing E. coli and K. pneumoniae, and observed practices contributing to environmental contamination within urban, peri-urban, and rural Malawi. Using the SaniPath tool, in August 2020, transect walks across three Malawian study sites identified potential AMR exposure pathways, including drains, standing water, soil, and areas of communal hand contact. Subsequently, from September-2020 to August-2021, 1440 environmental samples were collected at critical points along exposure routes (n = 40/month from each site). These underwent microbiological analysis using chromogenic agar techniques to detect the presence of ESBL E. coli and ESBL K. pneumoniae. Results showed the highest ESBL prevalence in urban environments (68.1 %, 95%CI = 0.64-0.72, p < 0.001) with a higher ESBL presence seen in drains (58.8 %, 95%CI = 055-0.62, p < 0.001) and soil (54.1 %, 95%CI = 0.46-0.62, p < 0.001) compared to other pathways. Environmental contamination was attributed to unavailability and poor condition of sanitation and hygiene infrastructure based on key informant interviews with community leaders (n = 9) and confirmed by independent observation. ESBL prevalence varied between seasons (χ2 (2,N = 1440) = 10.89, p = 0.004), with the highest in the hot-dry period (55.8 % (n = 201)). Prevalence also increased with increased rainfall (for ESBL E.coli). We highlight that community environments are likely to be a crucial component in AMR transmission, evident in the abundance of ESBL bacteria in identified exposure pathways. Additionally, poor sanitation infrastructure and practices coupled with seasonal dynamics further affect the presence of ESBLs in communal environments. Therefore, a context appropriate whole system approach that tackles infrastructure and behavioural factors, supported by effective surveillance is required to impact AMR and a range of aligned development challenges in these settings.
Collapse
Affiliation(s)
- Taonga Mwapasa
- Centre for Water, Sanitation, Health, and Appropriate Technology Development (WASHTED), Malawi University of Business and Applied Sciences, Blantyre, Malawi.
| | - Kondwani Chidziwisano
- Centre for Water, Sanitation, Health, and Appropriate Technology Development (WASHTED), Malawi University of Business and Applied Sciences, Blantyre, Malawi; Department of Environmental Health, Malawi University of Business and Applied Sciences, Blantyre, Malawi
| | - Madalitso Mphasa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Derek Cocker
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; David Price Evans Global Health and Infectious Disease Group, University of Liverpool, Liverpool, United Kingdom
| | - Lorenzo Rimella
- Department of Mathematics and Statistics, University of Lancaster, Lancaster, United Kingdom
| | - Stevie Amos
- Centre for Water, Sanitation, Health, and Appropriate Technology Development (WASHTED), Malawi University of Business and Applied Sciences, Blantyre, Malawi
| | - Nicholas Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tracy Morse
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
2
|
Rzymski P, Gwenzi W, Poniedziałek B, Mangul S, Fal A. Climate warming, environmental degradation and pollution as drivers of antibiotic resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123649. [PMID: 38402936 DOI: 10.1016/j.envpol.2024.123649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Antibiotic resistance is a major challenge to public health, but human-caused environmental changes have not been widely recognized as its drivers. Here, we provide a comprehensive overview of the relationships between environmental degradation and antibiotic resistance, demonstrating that the former can potentially fuel the latter with significant public health outcomes. We describe that (i) global warming favors horizontal gene transfer, bacterial infections, the spread of drug-resistant pathogens due to water scarcity, and the release of resistance genes with wastewater; (ii) pesticide and metal pollution act as co-selectors of antibiotic resistance mechanisms; (iii) microplastics create conditions promoting and spreading antibiotic resistance and resistant bacteria; (iv) changes in land use, deforestation, and environmental pollution reduce microbial diversity, a natural barrier to antibiotic resistance spread. We argue that management of antibiotic resistance must integrate environmental goals, including mitigation of further increases in the Earth's surface temperature, better qualitative and quantitative protection of water resources, strengthening of sewage infrastructure and improving wastewater treatment, counteracting the microbial diversity loss, reduction of pesticide and metal emissions, and plastic use, and improving waste recycling. These actions should be accompanied by restricting antibiotic use only to clinically justified situations, developing novel treatments, and promoting prophylaxis. It is pivotal for health authorities and the medical community to adopt the protection of environmental quality as a part of public health measures, also in the context of antibiotic resistance management.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Serghei Mangul
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Andrzej Fal
- Department of Allergy, Lung Diseases and Internal Medicine Central Clinical Hospital, Ministry of Interior, Warsaw, Poland; Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszyński University, Warsaw, Poland
| |
Collapse
|
3
|
Gwenzi W, Marumure J, Makuvara Z, Simbanegavi TT, Njomou-Ngounou EL, Nya EL, Kaetzl K, Noubactep C, Rzymski P. The pit latrine paradox in low-income settings: A sanitation technology of choice or a pollution hotspot? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163179. [PMID: 37003330 DOI: 10.1016/j.scitotenv.2023.163179] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Pit latrines are widely promoted to improve sanitation in low-income settings, but their pollution and health risks receive cursory attention. The present narrative review presents the pit latrine paradox; (1) the pit latrine is considered a sanitation technology of choice to safeguard human health, and (2) conversely, pit latrines are pollution and health risk hotspots. Evidence shows that the pit latrine is a 'catch-all' receptacle for household disposal of hazardous waste, including; (1) medical wastes (COVID-19 PPE, pharmaceuticals, placenta, used condoms), (2) pesticides and pesticide containers, (3) menstrual hygiene wastes (e.g., sanitary pads), and (4) electronic wastes (batteries). Pit latrines serve as hotspot reservoirs that receive, harbour, and then transmit the following into the environment; (1) conventional contaminants (nitrates, phosphates, pesticides), (2) emerging contaminants (pharmaceuticals and personal care products, antibiotic resistance), and (3) indicator organisms, and human bacterial and viral pathogens, and disease vectors (rodents, houseflies, bats). As greenhouse gas emission hotspots, pit latrines contribute 3.3 to 9.4 Tg/year of methane, but this could be an under-estimation. Contaminants in pit latrines may migrate into surface water, and groundwater systems serving as drinking water sources and pose human health risks. In turn, this culminates into the pit latrine-groundwater-human continuum or connectivity, mediated via water and contaminant migration. Human health risks of pit latrines, a critique of current evidence, and current and emerging mitigation measures are presented, including isolation distance, hydraulic liners/ barriers, ecological sanitation, and the concept of a circular bioeconomy. Finally, future research directions on the epidemiology and fate of contaminants in pit latrines are presented. The pit latrine paradox is not meant to downplay pit latrines' role or promote open defaecation. Rather, it seeks to stimulate discussion and research to refine the technology to enhance its functionality while mitigating pollution and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Sciences, School of Natural Sciences, Great Zimbabwe University, Off Old Great Zimbabwe Road, P.O. Box 1235, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Sciences, School of Natural Sciences, Great Zimbabwe University, Off Old Great Zimbabwe Road, P.O. Box 1235, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP 167, Zimbabwe
| | | | - Esther Laurentine Nya
- Faculty of Arts, Letters and Social Sciences, University of Maroua, P.O. Box 644, Maroua, Cameroon
| | - Korbinian Kaetzl
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany.
| | - Chicgoua Noubactep
- Centre for Modern Indian Studies (CeMIS), University of Göttingen, Waldweg 26, 37073 Göttingen, Germany; Department of Applied Geology, University of Göttingen, Goldschmidtstraße 3, D-37077 Göttingen, Germany; School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, 211100 Nanjing, PR China.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland.
| |
Collapse
|
4
|
Sun G, Zhang Q, Dong Z, Dong D, Fang H, Wang C, Dong Y, Wu J, Tan X, Zhu P, Wan Y. Antibiotic resistant bacteria: A bibliometric review of literature. Front Public Health 2022; 10:1002015. [PMID: 36466520 PMCID: PMC9713414 DOI: 10.3389/fpubh.2022.1002015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.
Collapse
Affiliation(s)
- Guojun Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Yichen Dong
- Department of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jiezhou Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanzhe Tan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peiyao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Omulo S, Mugoh M, Obiya J, Alando M, Call DR. Estimating the population-level prevalence of antimicrobial-resistant enteric bacteria from latrine samples. Antimicrob Resist Infect Control 2022; 11:106. [PMID: 35987780 PMCID: PMC9392229 DOI: 10.1186/s13756-022-01145-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Logistical and economic barriers hamper community-level surveillance for antimicrobial-resistant bacteria in low-income countries. Latrines are commonly used in these settings and offer a low-cost source of surveillance samples. It is unclear, however, whether antimicrobial resistance prevalence estimates from latrine samples reflect estimates generated from randomly sampled people.
Methods
We compared the prevalence of antimicrobial-resistant enteric bacteria from stool samples of people residing in randomly selected households within Kibera—an informal urban settlement in Kenya—to estimates from latrine samples within the same community. Fecal samples were collected between November 2015 and Jan 2016. Presumptive Escherichia coli isolates were collected from each household stool sample (n = 24) and each latrine sample (n = 48), resulting in 8935 and 8210 isolates, respectively. Isolates were tested for resistance to nine antibiotics using the replica-plating technique. Correlation- and Kolmogorov–Smirnov (K–S) tests were used to compare results.
Results
Overall, the prevalence values obtained from latrine samples closely reflected those from stool samples, particularly for low-prevalence (< 15%) resistance phenotypes. Similarly, the distribution of resistance phenotypes was similar between latrine and household samples (r > 0.6; K–S p-values > 0.05).
Conclusions
Although latrine samples did not perfectly estimate household antimicrobial resistance prevalence, they were highly correlated and thus could be employed as low-cost samples to monitor trends in antimicrobial resistance, detect the emergence of new resistance phenotypes and assess the impact of community interventions.
Collapse
|
6
|
A bottom-up view of antimicrobial resistance transmission in developing countries. Nat Microbiol 2022; 7:757-765. [PMID: 35637328 DOI: 10.1038/s41564-022-01124-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
Antimicrobial resistance (AMR) is tracked most closely in clinical settings and high-income countries. However, resistant organisms thrive globally and are transmitted to and from healthy humans, animals and the environment, particularly in many low- and middle-income settings. The overall public health and clinical significance of these transmission opportunities remain to be completely clarified. There is thus considerable global interest in promoting a One Health view of AMR to enable a more realistic understanding of its ecology. In reality, AMR surveillance outside hospitals remains insufficient and it has been very challenging to convincingly document transmission at the interfaces between clinical specimens and other niches. In this Review, we describe AMR and its transmission in low- and middle-income-country settings, emphasizing high-risk transmission points such as urban settings and food-animal handling. In urban and food production settings, top-down and infrastructure-dependent interventions against AMR that require strong regulatory oversight are less likely to curtail transmission when used alone and should be combined with bottom-up AMR-containment approaches. We observe that the power of genomics to expose transmission channels and hotspots is largely unharnessed, and that existing and upcoming technological innovations need to be exploited towards containing AMR in low- and middle-income settings.
Collapse
|
7
|
Beukes LS, Schmidt S. Manual emptying of ventilated improved pit latrines and hygiene challenges - a baseline survey in a peri-urban community in KwaZulu-Natal, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1043-1054. [PMID: 32962416 DOI: 10.1080/09603123.2020.1823334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The presence of Escherichia coli and Staphylococcus spp. was determined on the skin, personal protective equipment, the municipal vehicle, and various surfaces at ten households in a peri-urban community (KwaZulu-Natal, South Africa) before and after manual emptying of ventilated improved pit latrines. Surface samples (n = 14) were collected using sterile wet wipes, and target bacteria were detected using standard procedures. Additionally, E. coli was enumerated in soil samples from an area of open defecation (log10 3.7 MPN/g) and areas where geophagia occurred (log10 2.7 - log10 3.3 MPN/g), using a most probable number (MPN) method. The detection frequency for the target bacteria on household surfaces (e.g., the walkway between the pit latrine and the municipal vehicle) and on municipal workers' hands (which were frequently contaminated before pit emptying), occasionally increased after the pits were emptied, indicating that manual pit emptying might pose a potential health risk to workers and community members.
Collapse
Affiliation(s)
- Lorika S Beukes
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
8
|
Guo S, Zhou X, Simha P, Mercado LFP, Lv Y, Li Z. Poor awareness and attitudes to sanitation servicing can impede China's Rural Toilet Revolution: Evidence from Western China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148660. [PMID: 34218147 PMCID: PMC8434418 DOI: 10.1016/j.scitotenv.2021.148660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The ongoing Toilet Revolution in China offers an opportunity to improve sanitation in rural areas by introducing new approaches, such as urine source separation, that can contribute to achieving SDG6. However, few studies have systematically assessed the social acceptability of managing human excreta collected in new sanitation systems. Therefore, in this study we performed face-to-face interviews with 414 local residents from 13 villages across three provinces in western China, to analyze the current situation and attitudes to possible changes in the rural sanitation service chain. We found that the sanitation chain was predominantly pit latrine-based, with 86.2% of households surveyed collecting their excreta in a simple pit, 82% manually emptying their pits, and 80.2% reusing excreta in agriculture without adequate pre-treatment. A majority (72%) of the households had a generally positive attitude to production of human excreta-derived fertilizer, but only 24% agreed that urine and feces should be collected separately. Multivariate logistic regression indicated that three factors (level of education, number of permanent household residents, perceived social acceptability) significantly influenced respondents' attitudes to reuse of excreta, although only perceived social acceptability had a high strength of association. Overall, our survey revealed that rural households often misuse toilet systems, fail to comply with government-specified sanitation guidelines, have low awareness of alternative solutions, and are over-reliant on the government to fix problems in the service chain. Thus while new sanitation technologies should be developed and implemented, information campaigns that encourage rural households to manage their excreta safely are also important.
Collapse
Affiliation(s)
- Shaomin Guo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiaoqin Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Prithvi Simha
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, SE-750 07 Uppsala, Sweden.
| | - Luis Fernando Perez Mercado
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, SE-750 07 Uppsala, Sweden; Center for Water and Environmental Sanitation (Centro de Aguas y Saneamiento Ambiental, CASA), Universidad Mayor de San Simon, Calle Sucre y Parque Latorre, Cochabamba, Bolivia
| | - Yaping Lv
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zifu Li
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
9
|
Gwenzi W. Dangerous liaisons? As the COVID-19 wave hits Africa with potential for novel transmission dynamics: a perspective. ZEITSCHRIFT FUR GESUNDHEITSWISSENSCHAFTEN = JOURNAL OF PUBLIC HEALTH 2021; 30:1353-1366. [PMID: 33425657 PMCID: PMC7778499 DOI: 10.1007/s10389-020-01467-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/15/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| |
Collapse
|
10
|
Reducing Groundwater Contamination from On-Site Sanitation in Peri-Urban Sub-Saharan Africa: Reviewing Transition Management Attributes towards Implementation of Water Safety Plans. SUSTAINABILITY 2020. [DOI: 10.3390/su12104210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
High urbanization in Sub-Saharan Africa (SSA) has resulted in increased peri-urban groundwater contamination by on-site sanitation. The World Health Organization introduced Water Safety Plans (WSP) towards the elimination of contamination risks to water supply systems; however, their application to peri-urban groundwater sources has been limited. Focusing on Uganda, Ghana, and Tanzania, this paper reviews limitations of the existing water regime in addressing peri-urban groundwater contamination through WSPs and normative attributes of Transition Management (TM) towards a sustainable solution. Microbial and nutrient contamination remain prevalent hazards in peri-urban SSA, arising from on-site sanitation within a water regime following Integrated Water Resources Management (IWRM) principles. Limitations to implementation of WSPs for peri-urban groundwater protection include policy diversity, with low focus on groundwater; institutional incoherence; highly techno-centric management tools; and limited regard for socio-cultural and urban-poor aspects. In contrast, TM postulates a prescriptive approach promoted by community-led frontrunners, with flexible and multi-domain actors, experimenting through socio-technical tools towards a shared vision. Thus, a unified risk-based management framework, harnessing attributes of TM and IWRM, is proposed towards improved WSP implementation. The framework could assist peri-urban communities and policymakers in formulating sustainable strategies to reduce groundwater contamination, thereby contributing to improved access to safe water.
Collapse
|
11
|
Vikesland P, Garner E, Gupta S, Kang S, Maile-Moskowitz A, Zhu N. Differential Drivers of Antimicrobial Resistance across the World. Acc Chem Res 2019; 52:916-924. [PMID: 30848890 DOI: 10.1021/acs.accounts.8b00643] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats faced by humankind. The development of resistance in clinical and hospital settings has been well documented ever since the initial discovery of penicillin and the subsequent introduction of sulfonamides as clinical antibiotics. In contrast, the environmental (i.e., community-acquired) dimensions of resistance dissemination have been only more recently delineated. The global spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) between air, water, soil, and food is now well documented, while the factors that affect ARB and ARG dissemination (e.g., water and air quality, antibiotic fluxes, urbanization, sanitation practices) in these and other environmental matrices are just now beginning to be more fully appreciated. In this Account, we discuss how the global perpetuation of resistance is dictated by highly interconnected socioeconomic risk factors and illustrate that development status should be more fully considered when developing global strategies to address AMR. We first differentiate low to middle income countries (LMICs) and high-income countries (HICs), then we summarize the modes of action of commercially available antibiotics, and then discuss the four primary mechanisms by which bacteria develop resistance to those antibiotics. Resistance is disseminated via both vertical gene transfer (VGT; parent to offspring) as well as by horizontal gene transfer (HGT; cell to cell transference of genetic material). A key challenge hindering attempts to control resistance dissemination is the presence of native, environmental bacteria that can harbor ARGs. Such environmental "resistomes" have potential to transfer resistance to pathogens via HGT. Of particular concern is the development of resistance to antibiotics of last-resort such as the cephalosporins, carbapenems, and polymyxins. We then illustrate how antibiotic use differs in LMICs relative to HICs in terms of the volumes of antibiotics used and their fate within local environments. Antibiotic use in HICs has remained flat over the past 15 years, while in LMICs use over the same period has increased substantially as a result of economic improvements and changes in diet. These use and fate differences impact local citizens and thus the local dissemination of AMR. Various physical, social, and economic circumstances within LMICs potentially favor AMR dissemination. We focus on three physical factors: changing population density, sanitation infrastructure, and solid-waste disposal. We show that high population densities in cities within LMICs that suffer from poor sanitation and solid-waste disposal can potentially impact the dissemination of resistance. In the final section, we discuss potential monitoring approaches to quantify the spread of resistance both within LMICs as well as in HICs. We posit that culture-based approaches, molecular approaches, and cutting-edge nanotechnology-based methods for monitoring ARB and ARGs should be considered both within HICs and, as appropriate, within LMICs.
Collapse
Affiliation(s)
- Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Global Change Center and Virginia Tech Institute of Critical Technology and Applied Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Emily Garner
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Suraj Gupta
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Seju Kang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ayella Maile-Moskowitz
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ni Zhu
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
12
|
Screening of tropical estuarine water in south-west coast of India reveals emergence of ARGs-harboring hypervirulent Escherichia coli of global significance. Int J Hyg Environ Health 2018; 222:235-248. [PMID: 30497989 DOI: 10.1016/j.ijheh.2018.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 11/23/2022]
Abstract
The goal of this study was to investigate the involvement of a tropical Indian estuary in the emergence of antibiotic resistance genes (ARGs)-harboring hypervirulent E. coli of global significance. A total of 300 E. coli isolates was tested for antibiotic susceptibility to β-lactams, aminoglycosides, chloramphenicol, quinolones, sulphonamides, tetracyclines, and trimethoprim. The E. coli isolates were screened for the presence of antibiotic resistance genes (blaTEM, blaCTX-M, tetA, tetB, sul1, sul2, strA, aphA2, catI, dhfr1, and dhfr7), integrase (int1, int2, and int3), Shiga toxin genes (stx1 and stx2) and extraintestinal virulence genes (papAH, papC, sfa/focDE, kpsMT II, and iutA). The highest prevalence of antibiotic resistance was observed for ampicillin, followed by tetracycline, and nalidixic acid. Among E. coli isolates, 64% were resistant to at least one of the 15 antibiotics tested, and approximately 40% were multiple antibiotic-resistant (MAR). More than 40% (n = 122) of E. coli isolates had ARGs. Integrase 1 (int1) was found in 7.6% of E. coli isolates. Among E. coli isolates, 16.3% (n = 49) were extraintestinal pathogenic E. coli (ExPEC), and approximately 34.6% (n = 17) of ExPEC had ARGs. A hypervirulent ARGs-harboring STEC was isolated. The prevalence of Shiga toxin-producing E. coli (STEC) was low (n = 1). The prevalence of ARGs-harboring pathogenic E. coli isolates was higher in stations close to the City (urban area), than that of other stations. ERIC-PCR (enterobacterial repetitive intergenic consensus sequence polymerase chain reaction) analysis revealed a high degree of genetic diversity among the ARGs-harboring E. coli isolates. The results demonstrate a high prevalence of ARGs-harboring E. coli in estuarine water and confirm the need for a better wastewater treatment facility and proper control measures to reduce the discharge of sewage and wastewater into the aquatic environments.
Collapse
|
13
|
Beukes LS, Schmidt S. Antibiotic resistance profiles of coagulase-positive and coagulase-negative staphylococci from pit latrine fecal sludge in a peri-urban South African community. Folia Microbiol (Praha) 2018; 63:645-651. [PMID: 29663126 DOI: 10.1007/s12223-018-0605-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
The aim of this study was to assess pit latrine samples from a peri-urban community in KwaZulu-Natal (South Africa) for the presence of multidrug-resistant (MDR) Staphylococcus spp. Standard procedures were used to isolate Staphylococcus spp. from pit latrine fecal sludge samples, with confirmation at genus level by polymerase chain reaction (PCR). Sixty-eight randomly selected pit latrine Staphylococcus spp. isolates were further characterized by using established disk diffusion procedures. An average Staphylococcus spp. count of 2.1 × 105 CFU per g fecal material was established using two randomly selected pit latrine samples. Of the 68-selected Staphylococcus spp. pit latrine isolates, 49% were identified as coagulase positive, 51% as coagulase negative and 65% (12 coagulase positive, 32 coagulase negative isolates) were categorized as MDR. The majority (66/68) of Staphylococcus spp. isolates displayed resistance to fusidic acid while only 5/68 isolates displayed resistance to chloramphenicol. The pit latrine samples analyzed in this study are a source of MDR Staphylococcus spp., highlighting the need for proper hygiene and sanitation regimes in rural communities using these facilities.
Collapse
Affiliation(s)
- Lorika S Beukes
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
14
|
Herindrainy P, Rabenandrasana MAN, Andrianirina ZZ, Rakotoarimanana FMJ, Padget M, de Lauzanne A, Ndir A, Kermorvant-Duchemin E, Garin B, Piola P, Collard JM, Guillemot D, Huynh BT, Delarocque-Astagneau E. Acquisition of extended spectrum beta-lactamase-producing enterobacteriaceae in neonates: A community based cohort in Madagascar. PLoS One 2018; 13:e0193325. [PMID: 29494706 PMCID: PMC5832238 DOI: 10.1371/journal.pone.0193325] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/08/2018] [Indexed: 01/09/2023] Open
Abstract
In low and middle income countries (LMICs), where the burden of neonatal sepsis is the highest, the spread of extended spectrum beta-lactamase-producing enterobacteriaceae (ESBL-PE) in the community, potentially contributing to the neonatal mortality, is a public health concern. Data regarding the acquisition of ESBL-PE during the neonatal period are scarce. The routes of transmission are not well defined and particularly the possible key role played by pregnant women. This study aimed to understand the neonatal acquisition of ESBL-PE in the community in Madagascar. The study was conducted in urban and semi-rural areas. Newborns were included at birth and followed-up during their first month of life. Maternal stool samples at delivery and six stool samples in each infant were collected to screen for ESBL-PE. A Cox proportional hazards model was performed to identify factors associated with the first ESBL-PE acquisition. The incidence rate of ESBL-PE acquisition was 10.4 cases/1000 newborn-days [95% CI: 8.0–13.4 cases per 1000 newborn-days]. Of the 83 ESBL-PE isolates identified, Escherichia coli was the most frequent species (n = 28, 34.1%), followed by Klebsiella pneumoniae (n = 20, 24.4%). Cox multivariate analysis showed that independent risk factors for ESBL-PE acquisition were low birth weight (adjusted Hazard-ratio (aHR) = 2.7, 95% CI [1.2; 5.9]), cesarean-section, (aHR = 3.4, 95% CI [1.7; 7.1]) and maternal use of antibiotics at delivery (aHR = 2.2, 95% CI [1.1; 4.5]). Our results confirm that mothers play a significant role in the neonatal acquisition of ESBL-PE. In LMICs, public health interventions during pregnancy should be reinforced to avoid unnecessary caesarean section, unnecessary antibiotic use at delivery and low birth weight newborns.
Collapse
Affiliation(s)
| | | | | | | | - Michael Padget
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases Unit, Institut Pasteur, INSERM, UVSQ, Paris, France
| | - Agathe de Lauzanne
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Awa Ndir
- Epidemiology and Infectious Diseases Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Elsa Kermorvant-Duchemin
- Paris Descartes University and AP-HP, Necker-Enfants Malades University Hospital, Department of Neonatology, Paris, France
| | - Benoit Garin
- Experimental Bacteriology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Patrice Piola
- Epidemiology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Jean-Marc Collard
- Experimental Bacteriology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Didier Guillemot
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases Unit, Institut Pasteur, INSERM, UVSQ, Paris, France
| | - Bich-Tram Huynh
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases Unit, Institut Pasteur, INSERM, UVSQ, Paris, France
- * E-mail:
| | - Elisabeth Delarocque-Astagneau
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases Unit, Institut Pasteur, INSERM, UVSQ, Paris, France
| | | |
Collapse
|