1
|
König AM, Pöschke A, Mahnken AH. Health risks for medical personnel due to magnetic fields in magnetic resonance imaging. ROFO-FORTSCHR RONTG 2024. [PMID: 39029511 DOI: 10.1055/a-2296-3860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The current state of medical and scientific knowledge on the effects of exposure to electromagnetic fields on workers in the field of clinical magnetic resonance imaging (MRI) is summarized here.A systematic literature search was conducted to analyze the health risks to medical personnel from magnetic fields in MRI. A total of 7273 sources were identified, with 7139 being excluded after screening of the title and abstract. After full-text screening, 34 sources remained and were included in this paper.There are a number of scientific publications on the occurrence of short-term sensory effects such as vertigo, metallic taste, phosphenes as well as on the occurrence of neurocognitive and neurobehavioral effects. For example, short-term exposure to clinical magnetic fields has been reported to result in a 4% reduction in speed and precision and a 16% reduction in visual contrast sensitivity at close range. Both eye-hand precision and coordination speed are affected. The long-term studies concern, among other things, the influence of magnetic fields on sleep quality, which could be linked to an increased risk of accidents. The data on the exposure of healthcare workers to magnetic fields during pregnancy is consistently outdated. However, it has been concluded that there are no particular deviations with regard to the duration of pregnancy, premature births, miscarriages, and birth weight. Epidemiological studies are lacking. With a focus on healthcare personnel, there is a considerable need for high-quality data, particularly on the consequences of long-term exposure to electromagnetic fields from clinical MRI and the effects on pregnancy. · Short-term sensory effects such as vertigo, metallic taste, phosphenes as well as neurocognitive and neurological behavioral effects may occur upon exposure to magnetic fields.. · Long-term effects mainly concern quality of sleep, which can be associated with an increased risk of accidents.. · When pregnant women were exposed to magnetic fields, no particular deviations were found with regard to the duration of pregnancy, premature births, miscarriages, and birth weight.. · König AM, Pöschke A, Mahnken AH. Health risks for medical personnel due to magnetic fields in magnetic resonance imaging. Fortschr Röntgenstr 2024; DOI 10.1055/a-2296-3860.
Collapse
Affiliation(s)
- Alexander Marc König
- Diagnostic and Interventional Radiology, Philipps University of Marburg, Marburg, Germany
| | - Antje Pöschke
- Diagnostic and Interventional Radiology, Philipps University of Marburg, Marburg, Germany
| | - Andreas H Mahnken
- Diagnostic and Interventional Radiology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
2
|
Oh S, Hong SE, Choi HD. Proposed Safety Guidelines for Patient Assistants in an Open MRI Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15185. [PMID: 36429902 PMCID: PMC9690638 DOI: 10.3390/ijerph192215185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The wide-open side of an open magnetic resonance imaging (MRI) system allows a patient to easily contact the patient assistant during MRI scans. A wide-open-shaped magnet is highly effective when interventional procedures are necessary. Patient assistants can provide comfort by holding a part of the patient's body. Because current regulations or guidelines are concerned with only patient radio frequency (RF) safety, investigations on the safety of patient assistants exposed to high-magnetic field MRI (up to 1.2 T) are required. In this study, five different poses of patient assistants were numerically simulated at a 1.2 T open MRI system to determine the impact of poses on the RF exposure level. The 10-g averaged specific absorption rate (SAR) levels were analyzed for the poses of each patient assistant wearing gloves. Compared with the patient, up to 29.8% of the patient SAR was observed in the patient assistant. When the patient assistant wore latex gloves, a 63.7% reduction in the 10-g averaged SAR level was observed, which could be a remedy to minimize possible RF hazards. To prevent possible RF hazards during MRI scans, certain clauses regarding the patient assistant's poses or wearing gloves must be added to the existing MRI screening forms.
Collapse
Affiliation(s)
- Sukhoon Oh
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Seon-Eui Hong
- Radio & Satellite Research Division, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Hyung-Do Choi
- Radio & Satellite Research Division, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| |
Collapse
|
3
|
Hartwig V, Virgili G, Mattei FE, Biagini C, Romeo S, Zeni O, Scarfì MR, Massa R, Campanella F, Landini L, Gobba F, Modenese A, Giovannetti G. Occupational exposure to electromagnetic fields in magnetic resonance environment: an update on regulation, exposure assessment techniques, health risk evaluation, and surveillance. Med Biol Eng Comput 2021; 60:297-320. [PMID: 34586563 DOI: 10.1007/s11517-021-02435-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/27/2021] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most-used diagnostic imaging methods worldwide. There are ∼50,000 MRI scanners worldwide each of which involves a minimum of five workers from different disciplines who spend their working days around MRI scanners. This review analyzes the state of the art of literature about the several aspects of the occupational exposure to electromagnetic fields (EMF) in MRI: regulations, literature studies on biological effects, and health surveillance are addressed here in detail, along with a summary of the main approaches for exposure assessment. The original research papers published from 2013 to 2021 in international peer-reviewed journals, in the English language, are analyzed, together with documents published by legislative bodies. The key points for each topic are identified and described together with useful tips for precise safeguarding of MRI operators, in terms of exposure assessment, studies on biological effects, and health surveillance.
Collapse
Affiliation(s)
- Valentina Hartwig
- Institute of Clinical Physiology (IFC), Italian National Research Council (CNR), Via G. Moruzzi 1, 56124, Pisa, San Cataldo, Italy.
| | - Giorgio Virgili
- Virgili Giorgio, Via G. Pastore 2, 26040, Crespina-Lorenzana, Italy
| | - F Ederica Mattei
- West Systems S.R.L, Via Don Mazzolari 25, 56025, Pontedera, PI, Italy
| | - Cristiano Biagini
- Associazione Italiana Tecnici Dell'Imaging in Risonanza Magnetica, AITIRM, Via XX Settembre 76, 50129, Florence, Italy
| | - Stefania Romeo
- Institute for Electromagnetic Sensing of the Environment (IREA) , Italian National Research Council (CNR), Via Diocleziano 328, 80124, Naples, Italy
| | - Olga Zeni
- Institute for Electromagnetic Sensing of the Environment (IREA) , Italian National Research Council (CNR), Via Diocleziano 328, 80124, Naples, Italy
| | - Maria Rosaria Scarfì
- Institute for Electromagnetic Sensing of the Environment (IREA) , Italian National Research Council (CNR), Via Diocleziano 328, 80124, Naples, Italy
| | - Rita Massa
- Institute for Electromagnetic Sensing of the Environment (IREA) , Italian National Research Council (CNR), Via Diocleziano 328, 80124, Naples, Italy.,Department of Physics, University Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - Francesco Campanella
- Dipartimento di medicina, epidemiologia, Igiene del Lavoro E Ambientale, Inail, Via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Luigi Landini
- Fondazione Toscana "G. Monasterio", Via G. Moruzzi 1, 56124, Pisa, San Cataldo, Italy
| | - Fabriziomaria Gobba
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Giulio Giovannetti
- Institute of Clinical Physiology (IFC), Italian National Research Council (CNR), Via G. Moruzzi 1, 56124, Pisa, San Cataldo, Italy
| |
Collapse
|