1
|
Cangola J, Abagale FK, Cobbina SJ, Osei RA. Prevalence of antibiotic-resistant enterobacteriaceae in domestic wastewater and associated health risks in reuse practices. Int J Hyg Environ Health 2025; 263:114478. [PMID: 39369488 DOI: 10.1016/j.ijheh.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
The use of wastewater for non-potable purposes is an important alternative for addressing water scarcity, especially in developing regions. However, minimizing the risks, particularly those associated with emerging contaminants that may induce resistance among pathogens in wastewater, is crucial. This study assessed the occurrence of antibiotic-resistant bacteria in untreated wastewater used for agricultural purposes and evaluated the quantifiable health risks associated with this practice in Tamale, Ghana. The resistance of some Enterobacteriaceae, such as E. coli, Klebsiella, and Salmonella-Shigella, to four commonly used antibiotics in Ghana was assessed using a conventional microbiological culture approach and the Kirby Bauer disk diffusion method. A Quantitative Microbial Risk Assessment (QMRA) was performed to estimate the health risks associated with two distinct scenarios of wastewater reuse: (1) accidental ingestion of contaminated wastewater and soil, and (2) consumption of vegetables irrigated with wastewater. This approach applied a Monte Carlo simulation based on 10,000 interactions and identified E. coli O157:H7 as the reference pathogen. Among Enterobacteriaceae, Klebsiella pneumoniae, Salmonella-Shigella and E. coli were isolated, in concentrations exceeding the limit recommended by the World Health Organization (103 CFU/100 ml). All the isolated bacteria were resistant to metronidazole (5 μg). Thirty-three per cent of Klebsiella pneumoniae isolates were intermediate/moderately susceptible, and all other bacteria were resistant to amoxicillin (30 μg). All Klebsiella pneumoniae and the majority of Salmonella-Shigella (69.8 %) isolates were resistant to trimethoprim-sulfamethoxazole (25 μg) and tetracycline (30 μg). When assessing health risks, the mean annual probability of infection associated with consuming vegetables irrigated with wastewater varied between 5.14 × 10-2 and 9.79 × 10-1 per person per year. Conversely, for the accidental ingestion scenario, the probability was 1.00 per person per year. In these scenarios, the probability of illness ranged from 1.29 × 10-2 to 2.4 × 10-1 and 2.5 × 10-1 per person per year. The health risks posed by these findings surpass the maximum threshold prescribed by the World Health Organization, thereby emphasizing the need for prompt mitigation strategies.
Collapse
Affiliation(s)
- Jenita Cangola
- West African Centre for Water, Irrigation and Sustainable Agriculture (WACWISA), University for Development Studies, P. O. Box TL 1882, Tamale, Ghana; Department of Environment and Sustainability Sciences, University for Development Studies, Tamale, Ghana; Faculty of Environmental Engineering and Natural Resources, Zambezi University, Manica, Mozambique.
| | - Felix K Abagale
- West African Centre for Water, Irrigation and Sustainable Agriculture (WACWISA), University for Development Studies, P. O. Box TL 1882, Tamale, Ghana; Department of Agricultural Engineering, University for Development Studies, P. O. Box TL 1882, Tamale, Ghana
| | - Samuel J Cobbina
- West African Centre for Water, Irrigation and Sustainable Agriculture (WACWISA), University for Development Studies, P. O. Box TL 1882, Tamale, Ghana; Department of Environment and Sustainability Sciences, University for Development Studies, Tamale, Ghana
| | - Richard A Osei
- West African Centre for Water, Irrigation and Sustainable Agriculture (WACWISA), University for Development Studies, P. O. Box TL 1882, Tamale, Ghana; Department of Agricultural Engineering, University for Development Studies, P. O. Box TL 1882, Tamale, Ghana
| |
Collapse
|
2
|
Mira P, Guzman-Cole C, Meza JC. Understanding the effects of sub-inhibitory antibiotic concentrations on the development of β-lactamase resistance based on quantile regression analysis. J Appl Microbiol 2024; 135:lxae084. [PMID: 38544328 DOI: 10.1093/jambio/lxae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
AIMS Quantile regression is an alternate type of regression analysis that has been shown to have numerous advantages over standard linear regression. Unlike linear regression, which uses the mean to fit a linear model, quantile regression uses a data set's quantiles (or percentiles), which leads to a more comprehensive analysis of the data. However, while relatively common in other scientific fields such as economic and environmental modeling, it is infrequently used to understand biological and microbiological systems. METHODS AND RESULTS We analyzed a set of bacterial growth rates using quantile regression analysis to better understand the effects of antibiotics on bacterial fitness. Using a bacterial model system containing 16 variant genotypes of the TEM β-lactamase enzyme, we compared our quantile regression analysis to a previously published study that uses the Tukey's range test, or Tukey honestly significantly difference (HSD) test. We find that trends in the distribution of bacterial growth rate data, as viewed through the lens of quantile regression, can distinguish between novel genotypes and ones that have been clinically isolated from patients. Quantile regression also identified certain combinations of genotypes and antibiotics that resulted in bacterial populations growing faster as the antibiotic concentration increased-the opposite of what was expected. These analyses can provide new insights into the relationships between enzymatic efficacy and antibiotic concentration. CONCLUSIONS Quantile regression analysis enhances our understanding of the impacts of sublethal antibiotic concentrations on enzymatic (TEM β-lactamase) efficacy and bacterial fitness. We illustrate that quantile regression analysis can link patterns in growth rates with clinically relevant mutations and provides an understanding of how increasing sub-lethal antibiotic concentrations, like those found in our modern environment, can affect bacterial growth rates, and provide insight into the genetic basis for varied resistance.
Collapse
Affiliation(s)
- Portia Mira
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 90095, United States
| | - Candace Guzman-Cole
- Department of Cell and Molecular Biology, University of California, Merced, 95343, United States
| | - Juan C Meza
- Department of Applied Mathematics, University of California, Merced, 95343, United States
| |
Collapse
|
3
|
Siri Y, Bumyut A, Precha N, Sirikanchana K, Haramoto E, Makkaew P. Multidrug antibiotic resistance in hospital wastewater as a reflection of antibiotic prescription and infection cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168453. [PMID: 37956835 DOI: 10.1016/j.scitotenv.2023.168453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Antimicrobial resistance (AMR) is an escalating issue that can render illnesses more difficult to treat if effective antibiotics become resistant. Many studies have explored antibiotic resistance in bacteria (ARB) in wastewater, comparing results with clinical data to ascertain the public health risk. However, few investigations have linked the prevalence of ARB in hospital wastewater (HWW) with these outcomes. This study aimed to bridge this gap by assessing the prevalence of ARB in HWW and its receiving waters. Among the 144 isolates examined, 24 were obtained from each of the six sites (untreated wastewater, aeration tank, sedimentation tank, effluent after disinfection, upstream canal, and downstream canal). A significant portion (87.5 %) belonged to the Enterobacteriaceae family, with Klebsiella pneumoniae as the predominant species (47.9 %). The antimicrobial sensitivity testing (AST) showed that 57.6 % of the isolates were resistant to amoxicillin/clavulanic acid (AMX), the most prevalent antibiotic used within the studied hospital. The total resistance rate before and after treatment was 27.7 % and 28.0 %, respectively, with an overall multi-drug resistance (MDR) rate of 33.3 %. The multiple antibiotic resistance index (MARI) range varied between 0.0 and 0.9. The outpatient ward's three-day mean bacterial infection cases showed a significant association (Spearman's rho = 0.98) with the MARI in the sedimentation tank. Moreover, a strong correlation (Spearman's rho = 0.88) was found between hospital effluent's MARI and the seven-day mean inpatient ward case. These findings indicate that applying wastewater-based epidemiology (WBE) to hospital wastewater could provide valuable insights into understanding ARB contamination across human domains and water cycles. Future studies, including more comprehensive collection data on symptomatic patients and asymptomatic carriers, will be crucial in fully unravelling the complexities between human health and environmental impacts related to AMR.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Apirak Bumyut
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
4
|
Alghamdi M, Al-Judaibi E, Al-Rashede M, Al-Judaibi A. Comparative De Novo and Pan-Genome Analysis of MDR Nosocomial Bacteria Isolated from Hospitals in Jeddah, Saudi Arabia. Microorganisms 2023; 11:2432. [PMID: 37894090 PMCID: PMC10609288 DOI: 10.3390/microorganisms11102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria are one of the most serious threats to public health, and one of the most important types of MDR bacteria are those that are acquired in a hospital, known as nosocomial. This study aimed to isolate and identify MDR bacteria from selected hospitals in Jeddah and analyze their antibiotic-resistant genes. Bacteria were collected from different sources and wards of hospitals in Jeddah City. Phoenix BD was used to identify the strains and perform susceptibility testing. Identification of selected isolates showing MDR to more than three classes on antibiotics was based on 16S rRNA gene and whole genome sequencing. Genes conferring resistance were characterized using de novo and pan-genome analyses. In total, we isolated 108 bacterial strains, of which 75 (69.44%) were found to be MDR. Taxonomic identification revealed that 24 (32%) isolates were identified as Escherichia coli, 19 (25.3%) corresponded to Klebsiella pneumoniae, and 17 (22.67%) were methicillin-resistant Staphylococcus aureus (MRSA). Among the Gram-negative bacteria, K. pneumoniae isolates showed the highest resistance levels to most antibiotics. Of the Gram-positive bacteria, S. aureus (MRSA) strains were noticed to exhibit the uppermost degree of resistance to the tested antibiotics, which is higher than that observed for K. pneumoniae isolates. Taken together, our results illustrated that MDR Gram-negative bacteria are the most common cause of nosocomial infections, while MDR Gram-positive bacteria are characterized by a wider antibiotic resistance spectrum. Whole genome sequencing found the appearance of antibiotic resistance genes, including SHV, OXA, CTX-M, TEM-1, NDM-1, VIM-1, ere(A), ermA, ermB, ermC, msrA, qacA, qacB, and qacC.
Collapse
Affiliation(s)
- Molook Alghamdi
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Jeddah University, Jeddah 21959, Saudi Arabia; (M.A.); (E.A.-J.)
| | - Effat Al-Judaibi
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Jeddah University, Jeddah 21959, Saudi Arabia; (M.A.); (E.A.-J.)
| | | | - Awatif Al-Judaibi
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Jeddah University, Jeddah 21959, Saudi Arabia; (M.A.); (E.A.-J.)
| |
Collapse
|
5
|
Jones DC, LaMartina EL, Lewis JR, Dahl AJ, Nadig N, Szabo A, Newton RJ, Skwor TA. One Health and Global Health View of Antimicrobial Susceptibility through the "Eye" of Aeromonas: Systematic Review and Meta-Analysis. Int J Antimicrob Agents 2023; 62:106848. [PMID: 37201798 PMCID: PMC10524465 DOI: 10.1016/j.ijantimicag.2023.106848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Antimicrobial resistance (AMR) is one of the most pressing public health concerns; therefore, it is imperative to advance our understanding of the factors influencing AMR from Global and One Health perspectives. To address this, Aeromonas populations were identified using 16S rRNA gene libraries among human, agriculture, aquaculture, drinking water, surface water, and wastewater samples, supporting its use as indicator bacteria to study AMR. A systematic review and meta-analysis was then performed from Global and One Health perspectives, including data from 221 articles describing 15 891 isolates from 57 countries. The interconnectedness of different environments was evident as minimal differences were identified between sectors among 21 different antimicrobials. However, resistance to critically important antibiotics (aztreonam and cefepime) was significantly higher among wastewater populations compared with clinical isolates. Additionally, isolates from untreated wastewater typically exhibited increased AMR compared with those from treated wastewater. Furthermore, aquaculture was associated with increased AMR to ciprofloxacin and tetracycline compared with wild-caught seafood. Using the World Health Organization AWaRe classifications, countries with lower consumption of "Access" compared to "Watch" drugs from 2000 to 2015 demonstrated higher AMR levels. The current analysis revealed negative correlations between AMR and anthropogenic factors, such as environmental performance indices and socioeconomic standing. Environmental health and sanitation were two of the environmental factors most strongly correlated with AMR. The current analysis highlights the negative impacts of "Watch" drug overconsumption, anthropogenic activity, absence of wastewater infrastructure, and aquaculture on AMR, thus stressing the need for proper infrastructure and global regulations to combat this growing problem.
Collapse
Affiliation(s)
| | - Emily Lou LaMartina
- School of Freshwater Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Jenna Rachel Lewis
- Department of Biological Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Andrew James Dahl
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Nischala Nadig
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Troy A Skwor
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
6
|
Ameen F, Mostafazadeh R, Hamidian Y, Erk N, Sanati AL, Karaman C, Ayati A. Modeling of adsorptive removal of azithromycin from aquatic media by CoFe 2O 4/NiO anchored microalgae-derived nitrogen-doped porous activated carbon adsorbent and colorimetric quantifying of azithromycin in pharmaceutical products. CHEMOSPHERE 2023; 329:138635. [PMID: 37068612 DOI: 10.1016/j.chemosphere.2023.138635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Herein, it was aimed to optimize the removal process of Azithromycin (Azi) from the aquatic environment via CoFe2O4/NiO nanoparticles anchored onto the microalgae-derived nitrogen-doped porous activated carbon (N-PAC), besides developing a colorimetric method for the swift monitoring of Azi in pharmaceutical products. In this study, the Spirulina platensis (Sp) was used as a biomass resource for fabricating CoFe2O4/NiO@N-PAC adsorbent. The pores of N-PAC mainly entail mesoporous structures with a mean pore diameter of 21.546 nm and total cavity volume (Vtotal) of 0.033578 cm3. g-1. The adsorption studies offered that 98.5% of Azi in aqueous media could remove by CoFe2O4/NiO@N-PAC. For the cyclic stability analysis, the adsorbent was separated magnetically and assessed at the end of five adsorption-desorption cycles with a negligible decrease in adsorption. The kinetic modeling revealed that the adsorption of Azi onto the CoFe2O4/NiO@N-PAC was well-fitted to the second-order reaction kinetics, and the highest adsorption capacity was found as 2000 mg. g-1 at 25 °C based on the Langmuir adsorption isotherm model at 0.8 g. L-1 adsorbent concentration. The Freundlich isotherm model had the best agreement with the experimental data. Thermodynamic modeling indicated the spontaneous and exothermic nature of the adsorption process. Moreover, the effects of pH, temperature, and operating time were also optimized in the colorimetric Azi detection. The blue ion-pair complexes between Azi and Coomassie Brilliant Blue G-250 (CBBG-250) reagent followed Beer's law at wavelengths of 640 nm in the concentration range of 1.0 μM to 1.0 mM with a 0.94 μM limit of detection (LOD). In addition, the selectivity of Azi determination was verified in presence of various species. Furthermore, the applicability of CBBG-250 dye for quantifying Azi was evaluated in Azi capsules as real samples, which revealed the acceptable recovery percentage (98.72-101.27%). This work paves the way for engineering advanced nanomaterials for the removal and monitoring of Azi and assures the sustainability of environmental protection and public health.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Reza Mostafazadeh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Yasamin Hamidian
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal
| | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, 07070, Turkey.
| | - Ali Ayati
- ChemBio Cluster, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
7
|
Guan Z, Guo Y, Mo Z, Chen S, Liang J, Liao X, Zhang Y, Huang Z, Song W, Xu Y, Ou X, Sun S. High-efficiency treatment of electroless nickel plating effluent using core-shell MnFe 2O 4-C@Al 2O 3 combined with ozonation: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128768. [PMID: 35366442 DOI: 10.1016/j.jhazmat.2022.128768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Heterogeneous catalytic ozonation (HCO) has been widely applied for the treatment of wastewater. In order to maintain the structural stability and surface catalytic activity of heterogeneous catalysts during the HCO treatment of electroless nickel plating effluent (ENPE), a MnFe2O4-C@Al2O3 catalyst with a core-shell structure was synthesized. MnFe2O4-C@Al2O3 was characterized and applied in the removal of total nickel (TNi) and organic contaminants from actual ENPE, using a coupled system of HCO combined with a magnetic dithiocarbamate chelating resin (MnFe2O4-C@Al2O3/O3-MDCR). Results show that embedding Al2O3 with C and MnFe2O4 significantly increased the TNi removal efficiency (99.3%), enhanced the O3-utilization efficiency and improved the generation of reactive oxygen species (ROS). The reaction rate (k = 0.7641 min-1) and O3-utilization efficiency established for TNi removal (ΔTNi/ΔO3 =0.221) by the MnFe2O4-C@Al2O3/O3-MDCR system, were 220% and 140% higher than the Al2O3/O3-MDCR system, respectively. Catalytic mechanism analysis demonstrated that surface hydroxyl groups, oxygen vacancy, metals, the carbon surface and its functional groups, can all potentially serve as catalytic active sites, with 1O2 and •OH considered to the predominant ROS. Overall, these findings verify that the synthesized MnFe2O4-C@Al2O3 catalyst possesses excellent catalytic capabilities and outstanding structural stability, making it suitable for practical application in the treatment of wastewater effluent.
Collapse
Affiliation(s)
- Zhijie Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanping Guo
- Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Zhihua Mo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shaojin Chen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jialin Liang
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yumin Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenhua Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Weifeng Song
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuelian Ou
- Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
8
|
Abstract
Antibiotic resistance is a global concern for human, animal, and environmental health. Many studies have identified wastewater treatment plants and surface waters as major reservoirs of antibiotic resistant bacteria (ARB) and genes (ARGs). Yet their prevalence in urban karst groundwater systems remains largely unexplored. Considering the extent of karst groundwater use globally, and the growing urban areas in these regions, there is an urgent need to understand antibiotic resistance in karst systems to protect source water and human health. This study evaluated the prevalence of ARGs associated with resistance phenotypes at 10 urban karst features in Bowling Green, Kentucky weekly for 46 weeks. To expand the understanding of prevalence in urban karst, a spot sampling of 45 sites in the Tampa Bay Metropolitan area, Florida was also conducted. Specifically, this study considered tetracycline and extended spectrum beta-lactamase (ESBLs) producing, including third generation cephalosporin, resistant E. coli, and tetracycline and macrolide resistant Enterococcus spp. across the 443 Kentucky and 45 Florida samples. A consistent prevalence of clinically relevant and urban associated ARGs were found throughout the urban karst systems, regardless of varying urban development, karst geology, climate, or landuse. These findings indicate urban karst groundwater as a reservoir for antibiotic resistance, potentially threatening human health.
Collapse
|
9
|
Similarities in Virulence and Extended Spectrum Beta-Lactamase Gene Profiles among Cefotaxime-Resistant Escherichia coli Wastewater and Clinical Isolates. Antibiotics (Basel) 2022; 11:antibiotics11020260. [PMID: 35203862 PMCID: PMC8868091 DOI: 10.3390/antibiotics11020260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
The World Health Organization has identified antibiotic resistance as one of the largest threats to human health and food security. In this study, we compared antibiotic resistance patterns between ESBL-producing Escherichia coli from human clinical diseases and cefotaxime-resistant environmental strains, as well as their potential to be pathogenic. Antibiotic susceptibility was tested amongst clinical isolates (n = 11), hospital wastewater (n = 22), and urban wastewater (n = 36, both influent and treated effluents). Multi-drug resistance predominated (>70%) among hospitalwastewater and urban wastewater influent isolates. Interestingly, isolates from clinical and urban treated effluents showed similar multi-drug resistance rates (~50%). Most hospital wastewater isolates were Phylogroup A, while clinical isolates were predominately B2, with a more diverse phylogroup population in urban wastewater. ESBL characterization of cefotaxime-resistant populations identified blaCTX-M-1 subgroup as the most common, whereby blaKPC was more associated with ceftazidime and ertapenem resistance. Whole-genome sequencing of a carbapenemase-producing hospital wastewater E. coli strain revealed plasmid-mediated blaKPC-2. Among cefotaxime-resistant populations, over 60% of clinical and 30% of treated effluent E. coli encoded three or more virulence genes exhibiting a pathogenic potential. Together, the similarity among treated effluent E. coli populations and clinical strains suggest effluents could serve as a reservoir for future multi-drug resistant E. coli clinical infections.
Collapse
|
10
|
Persistence of Antibiotic-Resistant Escherichia coli Strains Belonging to the B2 Phylogroup in Municipal Wastewater under Aerobic Conditions. Antibiotics (Basel) 2022; 11:antibiotics11020202. [PMID: 35203805 PMCID: PMC8868233 DOI: 10.3390/antibiotics11020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli is classified into four major phylogenetic groups (A, B1, B2, and D) that are associated with antibiotic resistance genes. Although antibiotic-resistant E. coli is commonly detected in municipal wastewater, little is known about the relationship between the phylogenetic groups and antibiotic-resistant E. coli in wastewater. In this study, the survival of E. coli in wastewater and the changes to the relationships between each phylogroup and the antibiotic-resistant profiles of E. coli isolates from wastewater were investigated under aerobic conditions for 14 days. The isolates were classified into the phylogroups A, B1, B2, and D or others by multiplex PCR. In addition, the susceptibility of the isolates to 11 antibiotics was assessed with the minimum inhibitory concentration (MIC) assay. While E. coli counts decreased in the wastewater with time under aerobic conditions, the prevalence of phylogroup B2 had increased to 73% on day 14. Furthermore, the MIC assay revealed that the abundance of antibiotic-resistant E. coli also increased on day 14. After batch-mixing the experiments under aerobic conditions, the surviving antibiotic-resistant E. coli included mainly multidrug-resistant and beta-lactamase-producing isolates belonging to phylogroup B2. These results suggest that the phylogroup B2 isolates that have acquired antibiotic resistance had a high survivability in the treated wastewater.
Collapse
|