1
|
Leopold M, Mass-Sanchez PB, Krizanac M, Štancl P, Karlić R, Prabutzki P, Parafianczuk V, Schiller J, Asimakopoulos A, Engel KM, Weiskirchen R. How the liver transcriptome and lipid composition influence the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma in a murine model. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159574. [PMID: 39510374 DOI: 10.1016/j.bbalip.2024.159574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) has been steadily increasing in Western society in recent years and has been recognized as a risk factor for the development of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying the progression from NAFLD to HCC are still unclear, despite the use of suitable mouse models. To identify the transcriptional and lipid profiles of livers from mice with NAFLD-HCC, we induced both NAFLD and NAFLD-HCC pathologies in C57BL/6J mice and performed RNA-sequencing (RNA-seq) and targeted lipidomic analysis. Our RNA-seq analysis revealed that the transcriptional signature of NAFLD in mice is characterized by changes in inflammatory response and fatty acid metabolism. Moreover, the signature of NAFLD-HCC is characterized by processes typically observed in cancer, such as epithelial to mesenchymal transition, angiogenesis and inflammatory responses. Furthermore, we found that the diet used in this study inhibited cholesterol synthesis in both models. The analysis of lipid composition also showed a significant impact of the provided diet. Therefore, our study supports the idea that a Western diet (WD) affects metabolic processes and hepatic lipid composition. Additionally, the combination of a WD with the administration of a carcinogen drives the progression from NAFLD to HCC.
Collapse
Affiliation(s)
- Marvin Leopold
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany; Klinik für Neurologie, Sana Klinikum Borna, 04552 Borna, Germany.
| | - Paola Berenice Mass-Sanchez
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Patricia Prabutzki
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany.
| | - Victoria Parafianczuk
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany.
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Kathrin M Engel
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany.
| |
Collapse
|
2
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. Virus infection and sphingolipid metabolism. Antiviral Res 2024; 228:105942. [PMID: 38908521 DOI: 10.1016/j.antiviral.2024.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Cellular sphingolipids have vital roles in human virus replication and spread as they are exploited by viruses for cell entry, membrane fusion, genome replication, assembly, budding, and propagation. Intracellular sphingolipid biosynthesis triggers conformational changes in viral receptors and facilitates endosomal escape. However, our current understanding of how sphingolipids precisely regulate viral replication is limited, and further research is required to comprehensively understand the relationships between viral replication and endogenous sphingolipid species. Emerging evidence now suggests that targeting and manipulating sphingolipid metabolism enzymes in host cells is a promising strategy to effectively combat viral infections. Additionally, serum sphingolipid species and concentrations could function as potential serum biomarkers to help monitor viral infection status in different patients. In this work, we comprehensively review the literature to clarify how viruses exploit host sphingolipid metabolism to accommodate viral replication and disrupt host innate immune responses. We also provide valuable insights on the development and use of antiviral drugs in this area.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China
| | - Yiyi Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Wang Y, Li Y, Nong Q, Zhang G, Liu N, Guo H, He Q, Liu L, Qu G, He B, Hu L, Jiang G. Zinc-associated phospholipid metabolic alterations and their impacts on ALT levels in workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173152. [PMID: 38735327 DOI: 10.1016/j.scitotenv.2024.173152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Zinc (Zn) is an essential trace element that is required for various biological functions, but excessive exposure to Zn is associated with many disorders and even diseases. However, the health effects and underlying mechanisms of long-term and high concentration exposure of Zn remain to be unclear. In the present study, we investigated the association between occupational exposure to Zn and liver function indicators (like alanine aminotransferase (ALT)) in workers. We found a positive association between Zn exposure and ALT level in workers. Workers having higher blood Zn (7735.65 (1159.15) μg/L) shows a 30.4 % increase in ALT level compared to those with lower blood Zn (5969.30 (989.26) μg/L). Furthermore, we explored the effects of phospholipids (PLs) and their metabolism on ALT level and discovered that Zn exposure in workers was associated with changes in PL levels and metabolism, which had further effects on increased ALT levels in workers. The study provides insights into the relationship between occupational Zn exposure and liver function, highlights the risk of long-term exposure to high concentrations of Zn, and paves the way for understanding the underlying mechanisms of Zn exposure on human health.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiling Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiying Nong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guohuan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nian Liu
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Hua Guo
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Qinghao He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Yang L, He X, Xue Y, Zhi D, Meng Q, Zhao W, Gong X, Yue D, Dong K, Tian Y. Amelioration of melittin on adjuvant-induced rheumatoid arthritis: Integrated transcriptome and metabolome. Int J Biol Macromol 2024; 270:132293. [PMID: 38735618 DOI: 10.1016/j.ijbiomac.2024.132293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease lacking a definitive cure. Although conventional treatments such as dexamethasone and methotrexate are prevalent, their usage is constrained by potential adverse effects. Melittin (MLT) has emerged as a promising natural anti-rheumatic drug; however, studies focusing on the role of MLT in modulating the expression and metabolism of RA-related genes are scarce. METHOD Arthritis was induced in rats using Complete Freund's Adjuvant (CFA), followed by MLT injections for treatment. Post-treatment, the inflammatory status of each group was assessed, and the mechanistic underpinnings of MLT's ameliorative effects on RA were elucidated through transcriptomic and metabolomic analyses. Additionally, this study conducted qRT-PCR validation of key therapeutic genes and characterized the molecular docking interactions of MLT with key receptor proteins (TNF-α and IL-1β) using the AutoDock Vina software. RESULT MLT significantly diminished redness and swelling in affected joints, ameliorated inflammatory cell infiltration, and mitigated joint damage. Integration of transcriptomic and metabolomic data revealed that MLT predominantly regulated the transcription levels of pathways and genes related to cytokines and immune responses, and the metabolic biomarkers of Sphingomyelin, fatty acid, and flavonoid. qRT-PCR confirmed MLT's downregulation of inflammation-related genes such as Il6, Jak2, Stat3, and Ptx3. Molecular docking simulations demonstrated the stable binding of MLT to TNF-α and IL-1β. CONCLUSION MLT demonstrated significant efficacy in alleviating RA. This study provides a comprehensive summary of MLT's impact on gene expression and metabolic processes associated with RA.
Collapse
Affiliation(s)
- Linfu Yang
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiying He
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650000, China
| | - Yunfei Xue
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dandan Zhi
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qingxin Meng
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Wenzheng Zhao
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xueyang Gong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dan Yue
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kun Dong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Yakai Tian
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
5
|
Peschel G, Weigand K, Grimm J, Müller M, Krautbauer S, Höring M, Liebisch G, Buechler C. Gender-Specific Differences in Serum Sphingomyelin Species in Patients with Hepatitis C Virus Infection-Sphingomyelin Species Are Related to the Model of End-Stage Liver Disease (MELD) Score in Male Patients. Int J Mol Sci 2023; 24:8402. [PMID: 37176109 PMCID: PMC10179471 DOI: 10.3390/ijms24098402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Hepatitis C virus (HCV) replication depends on cellular sphingomyelin (SM), but serum SM composition in chronic HCV infection has been hardly analyzed. In this work, 18 SM species could be quantified in the serum of 178 patients with chronic HCV infection before therapy with direct-acting antivirals (DAAs) and 12 weeks later, when therapy was completed. Six SM species were higher in the serum of females than males before therapy and nine at the end of therapy; thus, sex-specific analysis was performed. Type 2 diabetes was associated with lower serum levels of SM 36:2;O2 and 38:2;O2 in men. Serum SM species did not correlate with the viral load in both sexes. Of note, three SM species were lower in males infected with HCV genotype 3 in comparison to genotype 1 infection. These SM species normalized after viral cure. SM 38:1;O2, 40:1;O2, 41:1;O2, and 42:1;O2 (and, thus, total SM levels) were higher in the serum of both sexes at the end of therapy. In males, SM 39:1;O2 was induced in addition, and higher levels of all of these SM species were already detected at 4 weeks after therapy has been started. Serum lipids are related to liver disease severity, and in females 15 serum SM species were low in patients with liver cirrhosis before initiation of and after treatment with DAAs. The serum SM species did not correlate with the model of end-stage liver disease (MELD) score in the cirrhosis and the non-cirrhosis subgroups in females. In HCV-infected male patients, nine SM species were lower in the serum of patients with cirrhosis before DAA treatment and eleven at the end of the study. Most of the SM species showed strong negative correlations with the MELD score in the male cirrhosis patients before DAA treatment and at the end of therapy. Associations of SM species with the MELD score were not detected in the non-cirrhosis male subgroup. In summary, the current analysis identified sex-specific differences in the serum levels of SM species in HCV infection, in liver cirrhosis, and during DAA therapy. Correlations of SM species with the MELD score in male but not in female patients indicate a much closer association between SM metabolism and liver function in male patients.
Collapse
Affiliation(s)
- Georg Peschel
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
- Department of Internal Medicine, Klinikum Fürstenfeldbruck, 82256 Fürstenfeldbruck, Germany
| | - Kilian Weigand
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
- Department of Gastroenterology, Gemeinschaftsklinikum Mittelrhein, 56073 Koblenz, Germany
| | - Jonathan Grimm
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| |
Collapse
|
6
|
Rapid Evaporative Ionization Mass Spectrometry-Based Lipidomics for Identification of Canine Mammary Pathology. Int J Mol Sci 2022; 23:ijms231810562. [PMID: 36142485 PMCID: PMC9502565 DOI: 10.3390/ijms231810562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The present work proposes the use of a fast analytical platform for the mass spectrometric (MS) profiling of canine mammary tissues in their native form for the building of a predictive statistical model. The latter could be used as a novel diagnostic tool for the real-time identification of different cellular alterations in order to improve tissue resection during veterinary surgery, as previously validated in human oncology. Specifically, Rapid Evaporative Ionization Mass Spectrometry (REIMS) coupled with surgical electrocautery (intelligent knife—iKnife) was used to collect MS data from histologically processed mammary samples, classified into healthy, hyperplastic/dysplastic, mastitis and tumors. Differences in the lipid composition enabled tissue discrimination with an accuracy greater than 90%. The recognition capability of REIMS was tested on unknown mammary samples, and all of them were correctly identified with a correctness score of 98–100%. Triglyceride identification was increased in healthy mammary tissues, while the abundance of phospholipids was observed in altered tissues, reflecting morpho-functional changes in cell membranes, and oxidized species were also tentatively identified as discriminant features. The obtained lipidomic profiles represented unique fingerprints of the samples, suggesting that the iKnife technique is capable of differentiating mammary tissues following chemical changes in cellular metabolism.
Collapse
|
7
|
Lan W, Wang Y, Zhou Z, Sun X, Zhang Y, Zhang F. Metabolic Regulation of Hepatitis B Virus Infection in HBV-Transgenic Mice. Metabolites 2022; 12:287. [PMID: 35448475 PMCID: PMC9031567 DOI: 10.3390/metabo12040287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a worldwide health burden. Metabolomics analysis has revealed HBV-induced metabolism dysregulation in liver tissues and hepatocytes. However, as an infectious disease, the tissue-specific landscape of metabolic profiles of HBV infection remains unclear. To fill this gap, we applied untargeted nuclear magnetic resonance (NMR) metabolomic analysis of the heart, liver, spleen, lung, kidney, pancreas, and intestine (duodenum, jejunum, ileum) in HBV-transgenic mice and their wild-type littermates. Strikingly, we found systemic metabolic alterations induced by HBV in liver and extrahepatic organs. Significant changes in metabolites have been observed in most tissues of HBV-transgenic mice, except for ileum. The metabolic changes may provide novel therapeutic targets for the treatment of HBV infection. Moreover, tissue-specific metabolic profiles could speed up the study of HBV induced systemic metabolic reprogramming, which could help follow the progression of HBV infection and explain the underlying pathogenesis.
Collapse
Affiliation(s)
- Wenning Lan
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341001, China
| | - Yang Wang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou 350122, China;
| | - Zixiong Zhou
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
| | - Yun Zhang
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
8
|
Lipidomics study of plasma from patients suggest that ALS and PLS are part of a continuum of motor neuron disorders. Sci Rep 2021; 11:13562. [PMID: 34193885 PMCID: PMC8245424 DOI: 10.1038/s41598-021-92112-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/14/2020] [Indexed: 12/04/2022] Open
Abstract
Motor neuron disorders (MND) include a group of pathologies that affect upper and/or lower motor neurons. Among them, amyotrophic lateral sclerosis (ALS) is characterized by progressive muscle weakness, with fatal outcomes only in a few years after diagnosis. On the other hand, primary lateral sclerosis (PLS), a more benign form of MND that only affects upper motor neurons, results in life-long progressive motor dysfunction. Although the outcomes are quite different, ALS and PLS present with similar symptoms at disease onset, to the degree that both disorders could be considered part of a continuum. These similarities and the lack of reliable biomarkers often result in delays in accurate diagnosis and/or treatment. In the nervous system, lipids exert a wide variety of functions, including roles in cell structure, synaptic transmission, and multiple metabolic processes. Thus, the study of the absolute and relative concentrations of a subset of lipids in human pathology can shed light into these cellular processes and unravel alterations in one or more pathways. In here, we report the lipid composition of longitudinal plasma samples from ALS and PLS patients initially, and after 2 years following enrollment in a clinical study. Our analysis revealed common aspects of these pathologies suggesting that, from the lipidomics point of view, PLS and ALS behave as part of a continuum of motor neuron disorders.
Collapse
|
9
|
Liver Lipids of Patients with Hepatitis B and C and Associated Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22105297. [PMID: 34069902 PMCID: PMC8157577 DOI: 10.3390/ijms22105297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) still remains a difficult to cure malignancy. In recent years, the focus has shifted to lipid metabolism for the treatment of HCC. Very little is known about hepatitis B virus (HBV) and C virus (HCV)-related hepatic lipid disturbances in non-malignant and cancer tissues. The present study showed that triacylglycerol and cholesterol concentrations were similar in tumor adjacent HBV and HCV liver, and were not induced in the HCC tissues. Higher levels of free cholesterol, polyunsaturated phospholipids and diacylglycerol species were noted in non-tumorous HBV compared to HCV liver. Moreover, polyunsaturated phospholipids and diacylglycerols, and ceramides declined in tumors of HBV infected patients. All of these lipids remained unchanged in HCV-related HCC. In HCV tumors, polyunsaturated phosphatidylinositol levels were even induced. There were no associations of these lipid classes in non-tumor tissues with hepatic inflammation and fibrosis scores. Moreover, these lipids did not correlate with tumor grade or T-stage in HCC tissues. Lipid reprogramming of the three analysed HBV/HCV related tumors mostly resembled HBV-HCC. Indeed, lipid composition of non-tumorous HCV tissue, HCV tumors, HBV tumors and HBV/HCV tumors was highly similar. The tumor suppressor protein p53 regulates lipid metabolism. The p53 and p53S392 protein levels were induced in the tumors of HBV, HCV and double infected patients, and this was significant in HBV infection. Negative correlation of tumor p53 protein with free cholesterol indicates a role of p53 in cholesterol metabolism. In summary, the current study suggests that therapeutic strategies to target lipid metabolism in chronic viral hepatitis and associated cancers have to consider disease etiology.
Collapse
|
10
|
Li T, Yang H, Li X, Hou Y, Zhao Y, Wu W, Zhao L, Wang F, Zhao Z. Open-flow microperfusion combined with mass spectrometry for in vivo liver lipidomic analysis. Analyst 2021; 146:1915-1923. [PMID: 33481970 DOI: 10.1039/d0an02189j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
At present, conventional microdialysis (MD) techniques cannot efficiently sample lipids in vivo, possibly due to the high mass transfer resistance and/or the serious adsorption of lipids onto the semi-permeable membrane of a MD probe. The in vivo monitoring of lipids could be of great significance for the study of disease development and mechanisms. In this work, an open-flow microperfusion (OFM) probe was fabricated, and the conditions for sampling lipids via OFM were optimized. Using OFM, the recovery of lipid standards was improved to more than 34.7%. OFM is used for the in vivo sampling of lipids in mouse liver tissue with fibrosis, and it is then combined with mass spectrometry (MS) to perform lipidomic analysis. 156 kinds of lipids were identified in the dialysate collected via OFM, and it was found that the phospholipid levels, including PC, PE, and SM, were significantly higher in a liver suffering from fibrosis. For the first time, OFM combined with MS to sample and analyze lipids has provided a promising platform for in vivo lipidomic studies.
Collapse
Affiliation(s)
- Tuo Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Yang
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xing Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yinzhu Hou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Wenjing Wu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lingyu Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Gan J, Mao XR, Zheng SJ, Li JF. Invariant natural killer T cells: Not to be ignored in liver disease. J Dig Dis 2021; 22:136-142. [PMID: 33421264 DOI: 10.1111/1751-2980.12968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
The liver is an important immune organ. Hepatocellular injury can be caused by many factors, which further leads to chronic liver diseases by activating the immune system. Multiple immune cells, such as T lymphocytes, B lymphocytes, natural killer cells (NKs), natural killer T cells (NKTs), and γδT cells, accumulate and participate in the immune regulation of the liver. NKTs are an indispensable component of immune cells in the liver, and invariant natural killer T cells (iNKTs) are the main subpopulation of NKTs. iNKTs activated by glycolipid antigen presented on CD1d secrete a series of cytokines and also act on other immune cells through cell-to-cell contact. Studies on the relationship between iNKTs and liver immunity have provided clues to uncover the pathogenesis of liver diseases and develop a promising strategy for the diagnosis and treatment of liver diseases.
Collapse
Affiliation(s)
- Jian Gan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiao Rong Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China.,Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Su Jun Zheng
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jun Feng Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China.,Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China.,Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
12
|
Mücke VT, Jakobi K, Knop V, Thomas D, Mücke MM, Peiffer KH, Zeuzem S, Sarrazin C, Pfeilschifter J, Grammatikos G. Serum sphingolipid levels associate with upcoming virologic events and HBV genotype D in a cohort of patients with HBeAg-negative HBV infection. PLoS One 2018; 13:e0207293. [PMID: 30439997 PMCID: PMC6237377 DOI: 10.1371/journal.pone.0207293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Sphingolipids (SLs) have been implicated as potent regulators of the hepatitis B virus (HBV) life cycle. We investigated the SL biomarker potential regarding virologic endpoints in a prospective subgroup of patients with HBeAg-negative chronic HBV infection. METHODS From 2009-2016 98 patients with HBeAg-negative HBV infection were prospectively followed over four years. Clinical, laboratory and imaging data were evaluated annually. SLs were assessed in available serum probes via liquid chromatography coupled to tandem mass spectrometry. RESULTS Of those 98 patients, 10 (10.2%) showed HBV reactivation, 13 (13.2%) lost HBsAg and 9 (9.1%) gained status of HBsAg-/HBsAb-coexistence, whereas 66 (67.3%) had no events. Within the four-year analysis sphingosine (p = 0.020), sphinganine (p<0.001), dhS1P (p<0.001), C16DHC (p<0.01) and C20Cer (p<0.001) showed a significant upregulation in patients without virologic events, C18Cer significantly decreased (p<0.001). At baseline decreased S1P-, dhS1P- and C16Cer-levels were observed in patients with upcoming status of HBsAg-/HBsAb-coexistence. S1P and dhS1P levels were elevated HBV genotype D infected patients. CONCLUSIONS In a prospective cohort of patients with a HBeAg-negative HBV infection, serum SLs associated with the virologic course and HBV genotype D. Further studies are required to elucidate SLs as potential novel predictors of the course of HBeAg-negative HBV infection.
Collapse
Affiliation(s)
| | - Katja Jakobi
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie, Frankfurt am Main, Germany
| | - Viola Knop
- Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institut für Klinische Pharmakologie und Toxikologie, Frankfurt am Main, Deutschland
| | | | | | - Stefan Zeuzem
- Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | | | - Josef Pfeilschifter
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie, Frankfurt am Main, Germany.,Institut für Klinische Pharmakologie und Toxikologie, Frankfurt am Main, Deutschland
| | - Georgios Grammatikos
- Universitätsklinikum Frankfurt, Frankfurt am Main, Germany.,Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Lipid profiling of pre-treatment plasma reveals biomarker candidates associated with response rates and hand-foot skin reactions in sorafenib-treated patients. Cancer Chemother Pharmacol 2018; 82:677-684. [PMID: 30062555 DOI: 10.1007/s00280-018-3655-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022]
Abstract
Sorafenib is a multi-kinase inhibitor for treatment of advanced hepatocellular carcinoma (HCC). Beyond its clinical benefit against advanced HCC, the efficacy and safety of sorafenib chemotherapy are critical concerns. In this study, we addressed the lipid profiles associated with the efficacy and safety of sorafenib chemotherapy. Plasma samples from HCC patients before sorafenib chemotherapy (N = 44) were collected and subjected to lipidomic analysis. We measured the levels of 176 lipids belonging to 8 classes of phosphoglycerolipids, 2 classes of sphingolipids, 3 classes of neutral lipids, and 4 other classes of lipids. To characterize lipids associated with efficacy, we compared the responder group (N = 21; partial response and stable disease) with non-responder group (N = 22; progressive disease). To characterize lipids associated with hand-foot skin reaction (HFSR), we compared the susceptible group (N = 12; grade 2 and 3) with non-susceptible group (N = 32; grade 0 and 1). The levels of 8 lipids, including phosphatidylcholine (PC)[34:2], PC[34:3]a, PC[35:2], PC[36:4]a, PC[34:3e], acylcarnitine (Car)[18:0], cholesterol ester[20:2], and diacylglycerol (DG)[34:2], were significantly lower in the responder group, and 6 out of 8 these lipids contained FA(18:2). In addition, the levels of 7 lipids (Car[12:0], Car[18:0], Car[18:1], Car[20:1] and fatty acid amides (FAA[16:0], FAA[18:0], and FAA[18:1]b)) were significantly lower in the group susceptible to HFSR. Our comprehensive lipidomics study using samples from sorafenib-treated patients with HCC revealed that significant differences in the lipid profiles of pre-treatment plasma were associated with sorafenib efficacy and sorafenib-induced HFSR. Validation using another set of patient plasma samples and elucidating the molecular basis of these changes will lead to better treatment with sorafenib chemotherapy.
Collapse
|
14
|
Apparent Acetaminophen Toxicity in a Patient with Transaldolase Deficiency. JIMD Rep 2018; 44:9-15. [PMID: 29923087 DOI: 10.1007/8904_2018_116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Transaldolase deficiency (MIM#: 606003) is a rare autosomal recessive defect in the pentose phosphate pathway. Affected individuals are at risk for progressive liver failure and hepatocarcinoma. In the transaldolase-deficient mouse model (Taldo1 -/-), these hepatic complications are accentuated by oxidative stress related to acetaminophen administration. We report a 13-month-old transaldolase-deficient male who developed mild liver failure after receiving standard doses of acetaminophen during a febrile respiratory syncytial virus infection. He was admitted for respiratory distress with neutropenia and thrombocytopenia, but developed an enlarged nodular liver with accompanying splenomegaly and rising alpha-fetoprotein which peaked 2 weeks after acetaminophen exposure. Whole exome sequencing revealed compound heterozygous variants c.512_514delCCT (p.Ser171del) and c.931G > T (p.Gly311Trp) in TALDO1 (HGNC:11559), which encodes transaldolase (EC 2.2.1.2), a key enzyme in ribose metabolism. Urine polyols and plasma metabolomics confirmed the diagnosis of transaldolase deficiency. Studies on the Taldo1 -/- mouse model demonstrate acetaminophen-induced liver failure can be prevented by administration of the antioxidant N-acetylcysteine. Moreover, a published report showed treatment of a transaldolase-deficient patient with N-acetylcysteine was associated with a decrease in alpha-fetoprotein levels. After discontinuation of acetaminophen and prior to initiation of N-acetylcysteine treatment, our patient demonstrated resolving alpha-fetoprotein levels suggesting acetaminophen incited the liver failure. Conclusion: Our observations support the conclusion from mouse model studies that transaldolase-deficient patients are uniquely sensitive to acetaminophen and should avoid this antipyretic. Recognition of this individualized toxicity and avoidance of acetaminophen are essential for management of these patients.
Collapse
|
15
|
Mindikoglu AL, Opekun AR, Putluri N, Devaraj S, Sheikh-Hamad D, Vierling JM, Goss JA, Rana A, Sood GK, Jalal PK, Inker LA, Mohney RP, Tighiouart H, Christenson RH, Dowling TC, Weir MR, Seliger SL, Hutson WR, Howell CD, Raufman JP, Magder LS, Coarfa C. Unique metabolomic signature associated with hepatorenal dysfunction and mortality in cirrhosis. Transl Res 2018; 195:25-47. [PMID: 29291380 PMCID: PMC6037419 DOI: 10.1016/j.trsl.2017.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
The application of nontargeted metabolomic profiling has recently become a powerful noninvasive tool to discover new clinical biomarkers. This study aimed to identify metabolic pathways that could be exploited for prognostic and therapeutic purposes in hepatorenal dysfunction in cirrhosis. One hundred three subjects with cirrhosis had glomerular filtration rate (GFR) measured using iothalamate plasma clearance, and were followed until death, transplantation, or the last encounter. Concomitantly, plasma metabolomic profiling was performed using ultrahigh performance liquid chromatography-tandem mass spectrometry to identify preliminary metabolomic biomarker candidates. Among the 1028 metabolites identified, 34 were significantly increased in subjects with high liver and kidney disease severity compared with those with low liver and kidney disease severity. The highest average fold-change (2.39) was for 4-acetamidobutanoate. Metabolite-based enriched pathways were significantly associated with the identified metabolomic signature (P values ranged from 2.07E-06 to 0.02919). Ascorbate and aldarate metabolism, methylation, and glucuronidation were among the most significant protein-based enriched pathways associated with this metabolomic signature (P values ranged from 1.09E-18 to 7.61E-05). Erythronate had the highest association with measured GFR (R-square = 0.571, P <0.0001). Erythronate (R = 0.594, P <0.0001) and N6-carbamoylthreonyladenosine (R = 0.591, P <0.0001) showed stronger associations with measured GFR compared with creatinine (R = 0.588, P <0.0001) even after controlling for age, gender, and race. The 5 most significant metabolites that predicted mortality independent of kidney disease and demographics were S-adenosylhomocysteine (P = 0.0003), glucuronate (P = 0.0006), trans-aconitate (P = 0.0018), 3-ureidopropionate (P = 0.0021), and 3-(4-hydroxyphenyl)lactate (P = 0.0047). A unique metabolomic signature associated with hepatorenal dysfunction in cirrhosis was identified for further investigations that provide potentially important mechanistic insights into cirrhosis-altered metabolism.
Collapse
Affiliation(s)
- Ayse L Mindikoglu
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas; Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.
| | - Antone R Opekun
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Division of Gastroenterology, Nutrition and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Sridevi Devaraj
- Clinical Chemistry and Point of Care Technology, Texas Children's Hospital and Health Centers, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - David Sheikh-Hamad
- Department of Medicine, Division of Nephrology, Baylor College of Medicine, Houston, Texas
| | - John M Vierling
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas; Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - John A Goss
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas
| | - Abbas Rana
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas
| | - Gagan K Sood
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas
| | - Prasun K Jalal
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas
| | - Lesley A Inker
- Department of Medicine, Division of Nephrology, Tufts Medical Center, Boston, Massachusetts
| | | | - Hocine Tighiouart
- Institute for Clinical Research and Health Policy Studies, Biostatistics, Epidemiology and Research Design (BERD) Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Robert H Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Thomas C Dowling
- Ferris State University, College of Pharmacy, Grand Rapids, Michigan
| | - Matthew R Weir
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen L Seliger
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland
| | - William R Hutson
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Charles D Howell
- Department of Medicine, Howard University College of Medicine, Washington, District of Columbia
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Laurence S Magder
- Department of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
16
|
Chong JR, Xiang P, Wang W, Hind T, Chew WS, Ong WY, Lai MKP, Herr DR. Sphingolipidomics analysis of large clinical cohorts. Part 2: Potential impact and applications. Biochem Biophys Res Commun 2018; 504:602-607. [PMID: 29654757 DOI: 10.1016/j.bbrc.2018.04.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 11/18/2022]
Abstract
It has been known for decades that the regulation of sphingolipids (SLs) is essential for the proper function of many cellular processes. However, a complete understanding of these processes has been complicated by the structural diversity of these lipids. A well-characterized metabolic pathway is responsible for homeostatic maintenance of hundreds of distinct SL species. This pathway is perturbed in a number of pathological processes, resulting in derangement of the "sphingolipidome." Recently, advances in mass spectrometry (MS) techniques have made it possible to characterize the sphingolipidome in large-scale clinical studies, allowing for the identification of specific SL molecules that mediate pathological processes and/or may serve as biomarkers. This manuscript provides an overview of the functions of SLs, and reviews previous studies that have used MS techniques to identify changes to the sphingolipidome in non-metabolic diseases.
Collapse
Affiliation(s)
- Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Ping Xiang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Wei Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Tatsuma Hind
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Department of Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 119260, Singapore; Neurobiology and Ageing Research Programme, Life Sciences Institute, National University of Singapore, 119260, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Neurobiology and Ageing Research Programme, Life Sciences Institute, National University of Singapore, 119260, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
17
|
Li JF, Zheng SJ, Wang LL, Liu S, Ren F, Chen Y, Bai L, Liu M, Duan ZP. Glucosylceramide synthase regulates the proliferation and apoptosis of liver cells in vitro by Bcl‑2/Bax pathway. Mol Med Rep 2017; 16:7355-7360. [PMID: 28944894 PMCID: PMC5865865 DOI: 10.3892/mmr.2017.7580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/07/2017] [Indexed: 12/27/2022] Open
Abstract
Our previous study found that glucosylceramide, a type of sphingolipids, was associated with liver inflammation and fibrosis. Glucosylceramide is generated by glucosylceramide synthase (GCS), which is encoded by the UDP-glucose ceramide glucosyltransferase (UGCG) gene. GCS is a key enzyme to regulate the physiological activity of cells. However, the role of GCS in hepatic cells remains unclear. The aim of the present study was to explore the mechanism of GCS in the proliferation and apoptosis of liver cells. Following the interference of expression of GCS in vitro by UGCG small interfering (si)RNA, the MTT method was performed to detect the proliferation of HL-7702 hepatocytes, and ELISA was used to determine the concentration of tumor necrosis factor (TNF) α and cytochrome c in the supernatant of culture system. Fluorescence microscopy was used to observe the apoptosis of liver cells stained by Annexin V-fluorescein isothiocyanate/propidium iodide. Reverse transcription-quantitative polymerase chain reaction was used to detect the gene expression apoptosis regulator Bcl-2 (Bcl-2), apoptosis regulator Bax (Bax) and caspase-3. Western blot analysis was used to detect the expression of caspase-3 protein in the liver cells. Following treatment with UGCG siRNA for 24 h, the proliferation of HL-7702 hepatocytes was significantly inhibited when compared with the transfection reagent group. Furthermore, the early and advanced apoptosis of liver cells showed an increasing trend. Additionally, concentrations of TNF α and cytochrome c showed no significant difference between the UGCG siRNA and transfection reagent groups. Compared with the transfection reagent group, Bcl-2 mRNA expression decreased, and Bax and caspase-3 mRNA expression increased in the UGCG siRNA transfection group. The protein expression level of caspase-3 showed increased in hepatocytes following the treatment with UGCG siRNA. In conclusion, the metabolic changes of sphingolipids caused by the lack of GCS may be involved in the proliferation and apoptosis of liver cells through the Bcl-2/Bax signaling pathway.
Collapse
Affiliation(s)
- Jun-Feng Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Su-Jun Zheng
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Li-Li Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shuang Liu
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Feng Ren
- Institute of Liver Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yu Chen
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Li Bai
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Mei Liu
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Zhong-Ping Duan
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
18
|
The lipid-sensor TREM2 aggravates disease in a model of LCMV-induced hepatitis. Sci Rep 2017; 7:11289. [PMID: 28900132 PMCID: PMC5595927 DOI: 10.1038/s41598-017-10637-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Lipid metabolism is increasingly being appreciated to affect immunoregulation, inflammation and pathology. In this study we found that mice infected with lymphocytic choriomeningitis virus (LCMV) exhibit global perturbations of circulating serum lipids. Mice lacking the lipid-sensing surface receptor triggering receptor expressed on myeloid cells 2 (Trem2 -/-) were protected from LCMV-induced hepatitis and showed improved virus control despite comparable virus-specific T cell responses. Non-hematopoietic expression of TREM2 was found to be responsible for aggravated hepatitis, indicating a novel role for TREM2 in the non-myeloid compartment. These results suggest a link between virus-perturbed lipids and TREM2 that modulates liver pathogenesis upon viral infection. Targeted interventions of this immunoregulatory axis may ameliorate tissue pathology in hepatitis.
Collapse
|
19
|
Krautbauer S, Wiest R, Liebisch G, Buechler C. Associations of systemic sphingolipids with measures of hepatic function in liver cirrhosis are related to cholesterol. Prostaglandins Other Lipid Mediat 2017. [PMID: 28647317 DOI: 10.1016/j.prostaglandins.2017.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipoprotein particles are composed of various lipid classes including cholesterol and sphingolipids, and are low in serum of patients with liver cirrhosis. Hepatic decompensation is associated with a further decline of lipoproteins. Aim of the present work was to evaluate whether ceramide and sphingomyelin species are similarly changed in patients with liver cirrhosis and whether these variations are related to systemic cholesterol levels. In a cohort of 45 patients suffering from liver cirrhosis, cholesteryl ester species and subsequently total cholesterol were identified to be negatively associated with model of end stage liver disease (MELD) score. Indeed, the negative correlations of ceramide (Cer) and sphingomyelin (SM) species with MELD score, bilirubin and anti-thrombin 3 were non-significant after adjustment for cholesterol. Cer/SM ratios of species with identical acyl chains were not related to Child-Pugh or MELD score indicating that both lipids are comparably changed. Further, cholesterol levels and concentrations of all sphingolipids measured were similar in systemic, hepatic vein and portal vein blood. Cholesterol and distinct sphingolipids were similar before and 3 months after insertion of a transjugular intrahepatic portosystemic shunt while hexosylceramide 24:1 was significantly induced. It is concluded that analysis of distinct systemic sphingolipid species is not superior to measurement of cholesterol as non-invasive marker of hepatic injury in patients with liver cirrhosis.
Collapse
Affiliation(s)
- Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany; Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, University Inselspital, Bern, Switzerland
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
20
|
Serum lipid alterations identified in chronic hepatitis B, hepatitis B virus-associated cirrhosis and carcinoma patients. Sci Rep 2017; 7:42710. [PMID: 28198443 PMCID: PMC5309878 DOI: 10.1038/srep42710] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/12/2017] [Indexed: 01/03/2023] Open
Abstract
The incidences of chronic hepatitis B (CHB), Hepatitis B virus (HBV)-associated cirrhosis and HBV-associated carcinoma are high and increasing. This study was designed to evaluate serum lipid metabolite changes that are associated with the progression from CHB to HBV-associated cirrhosis and ultimately to HBV-associated HCC. A targeted metabolomic assay was performed in fasting sera from 136 CHB patients, 104 HBV-associated cirrhosis, and 95 HBV-associated HCC using ultra-performance liquid chromatography triple quadrupole mass spectrometry. A total of 140 metabolites were identified. Clear separations between each two groups were obtained using the partial least squares discriminate analysis of 9 lipid metabolites. Progressively lower levels of long-chain lysophosphatidylcholines (lysoPC a C18:2, lysoPC a C20:3, lysoPC a C20:4) were observed from CHB to cirrhosis to carcinoma; lower levels of lysoPC a C20:4 were found in patients with higher model for end-stage liver disease in the same disease group; and lysoPC a C20:3 levels were lower in Child-Pugh Class C than in Class A and Class B in HBV-associated cirrhosis and HBV-associated HCC groups. The octadecadienyl carnitine level was higher in HBV-associated cirrhosis group than in other two groups. Serum levels of selected long-chain lysoPCs are promising markers for the progression of HBV-associated liver diseases.
Collapse
|
21
|
Schoeman JC, Hou J, Harms AC, Vreeken RJ, Berger R, Hankemeier T, Boonstra A. Metabolic characterization of the natural progression of chronic hepatitis B. Genome Med 2016; 8:64. [PMID: 27286979 PMCID: PMC4902991 DOI: 10.1186/s13073-016-0318-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
Background Worldwide, over 350 million people are chronically infected with the hepatitis B virus (HBV) and are at increased risk of developing progressive liver diseases. The confinement of HBV replication to the liver, which also acts as the central hub for metabolic and nutritional regulation, emphasizes the interlinked nature of host metabolism and the disease. Still, the metabolic processes operational during the distinct clinical phases of a chronic HBV infection—immune tolerant, immune active, inactive carrier, and HBeAg-negative hepatitis phases—remains unexplored. Methods To investigate this, we conducted a targeted metabolomics approach on serum to determine the metabolic progression over the clinical phases of chronic HBV infection, using patient samples grouped based on their HBV DNA, alanine aminotransferase, and HBeAg serum levels. Results Our data illustrate the strength of metabolomics to provide insight into the metabolic dysregulation experienced during chronic HBV. The immune tolerant phase is characterized by the speculated viral hijacking of the glycerol-3-phosphate–NADH shuttle, explaining the reduced glycerophospholipid and increased plasmalogen species, indicating a strong link to HBV replication. The persisting impairment of the choline glycerophospholipids, even during the inactive carrier phase with minimal HBV activity, alludes to possible metabolic imprinting effects. The progression of chronic HBV is associated with increased concentrations of very long chain triglycerides together with citrulline and ornithine, reflective of a dysregulated urea cycle peaking in the HBV envelope antigen-negative phase. Conclusions The work presented here will aid in future studies to (i) validate and understand the implication of these metabolic changes using a thorough systems biology approach, (ii) monitor and predict disease severity, as well as (iii) determine the therapeutic value of the glycerol-3-phosphate–NADH shuttle. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0318-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes C Schoeman
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Jun Hou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Wytemaweg 80, Room Na-1011, 3015, CE, Rotterdam, The Netherlands
| | - Amy C Harms
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Rob J Vreeken
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Present address: Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ruud Berger
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Wytemaweg 80, Room Na-1011, 3015, CE, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Zhao Q, Zhang A, Zong W, An N, Zhang H, Luan Y, Cao H, Sun H, Wang X. Chemometrics strategy coupled with high resolution mass spectrometry for analyzing and interpreting comprehensive metabolomic characterization of hyperlipemia. RSC Adv 2016. [DOI: 10.1039/c6ra24267g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hyperlipidemia (HLP) is a metabolic disorder which is characterized by a disturbance in lipid metabolism and is a primary risk factor for cardiovascular disease and atherosclerosis.
Collapse
Affiliation(s)
- Qiqi Zhao
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| | - Aihua Zhang
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| | - Wenjing Zong
- China Academy of Chinese Medical Science
- Beijing
- China
| | - Na An
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| | - Huamin Zhang
- China Academy of Chinese Medical Science
- Beijing
- China
| | - Yihan Luan
- China Academy of Chinese Medical Science
- Beijing
- China
| | - Hongxin Cao
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| | - Hui Sun
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| | - Xijun Wang
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Metabolomics Laboratory
- Heilongjiang University of Chinese Medicine
| |
Collapse
|
23
|
Chen EQ, Zeng F, Zhou LY, Tang H. Early warning and clinical outcome prediction of acute-on-chronic hepatitis B liver failure. World J Gastroenterol 2015; 21:11964-11973. [PMID: 26576085 PMCID: PMC4641118 DOI: 10.3748/wjg.v21.i42.11964] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) associated acute-on-chronic liver failure (ACLF) is an increasingly recognized fatal liver disease encompassing a severe acute exacerbation of liver function in patients with chronic hepatitis B (CHB). Despite the introduction of an artificial liver support system and antiviral therapy, the short-term prognosis of HBV-ACLF is still extremely poor unless emergency liver transplantation is performed. In such a situation, stopping or slowing the progression of CHB to ACLF at an early stage is the most effective way of reducing the morbidity and mortality of HBV-ACLF. It is well-known that the occurrence and progression of HBV-ACLF is associated with many factors, and the outcomes of HBV-ACLF patients can be significantly improved if timely and appropriate interventions are provided. In this review, we highlight recent developments in early warning and clinical outcome prediction in patients with HBV-ACLF and provide an outlook for future research in this field.
Collapse
|