1
|
Hassan AM, Zehairy AA, Awatif Abid AJ, Sohrab SS, Esam IA. Cloning and phylogenetic analysis of N protein gene from Rift Valley Fever Virus (RVFV). Bioinformation 2024; 20:91-102. [PMID: 38497067 PMCID: PMC10941780 DOI: 10.6026/973206300200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis caused by RVFV in humans and livestock. Currently, there are no approved vaccines or antiviral therapies available. Additionally, in Saudi Arabia, there is a lack of a routine screening system to monitor RVFV in humans and animals which hinders to design and develop the preventive measures as well as the prediction of future outbreaks and the potential re-emergence of RVFV. Hence, we have performed the cloning, sequencing, and phylogenetic analysis, of nucleocapsid (N) protein gene. The sequence analysis showed high similarities with RVFV isolates reported from humans and animals. The highest similarity (99.5%) was observed with an isolate from Saudi Arabia (KU978775-Human) followed by 99.1% with four RVFV isolates (Human and Bovine) from other locations. A total of 51 nucleotides and 31 amino acid variations were observed throughout the N protein gene sequences. The phylogenetic relationship formed closed clusters with other isolates collected from Saudi Arabia. Thus, we report of the cloning, sequencing, and phylogenetic analysis of the RVFV-N protein gene from Saudi Arabia.
Collapse
Affiliation(s)
- Ahmed Mohamed Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arwa Ahmed Zehairy
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Al-Judaibi Awatif Abid
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibraheem Azhar Esam
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Xu Y, Wang X, Jiang L, Zhou Y, Liu Y, Wang F, Zhang L. Natural hosts and animal models for Rift Valley fever phlebovirus. Front Vet Sci 2023; 10:1258172. [PMID: 37929288 PMCID: PMC10621046 DOI: 10.3389/fvets.2023.1258172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Rift Valley fever phlebovirus (RVFV) is a zoonotic mosquito-transmitted arbovirus, presenting a serious threat to humans and animals. Susceptible hosts are of great significance for the prevention of RVFV. Appropriate animal models are helpful to better understand the onset and development of diseases, as well as the control measures and vaccine research. This review focuses on the role of animal hosts in the maintenance of the virus, and summarizes the host range of RVFV. We list some common animal models in the process of RVFV research, which would provide some important insights into the prevention and treatment of RVFV, as well as the study of Rift Valley fever (RVF) pathogenesis and vaccines.
Collapse
Affiliation(s)
- Yuqing Xu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lu Jiang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yixuan Zhou
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yihan Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fei Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- School of Laboratory Animal and Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Amenu K, McIntyre KM, Moje N, Knight-Jones T, Rushton J, Grace D. Approaches for disease prioritization and decision-making in animal health, 2000-2021: a structured scoping review. Front Vet Sci 2023; 10:1231711. [PMID: 37876628 PMCID: PMC10593474 DOI: 10.3389/fvets.2023.1231711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/06/2023] [Indexed: 10/26/2023] Open
Abstract
This scoping review identifies and describes the methods used to prioritize diseases for resource allocation across disease control, surveillance, and research and the methods used generally in decision-making on animal health policy. Three electronic databases (Medline/PubMed, Embase, and CAB Abstracts) were searched for articles from 2000 to 2021. Searches identified 6, 395 articles after de-duplication, with an additional 64 articles added manually. A total of 6, 460 articles were imported to online document review management software (sysrev.com) for screening. Based on inclusion and exclusion criteria, 532 articles passed the first screening, and after a second round of screening, 336 articles were recommended for full review. A total of 40 articles were removed after data extraction. Another 11 articles were added, having been obtained from cross-citations of already identified articles, providing a total of 307 articles to be considered in the scoping review. The results show that the main methods used for disease prioritization were based on economic analysis, multi-criteria evaluation, risk assessment, simple ranking, spatial risk mapping, and simulation modeling. Disease prioritization was performed to aid in decision-making related to various categories: (1) disease control, prevention, or eradication strategies, (2) general organizational strategy, (3) identification of high-risk areas or populations, (4) assessment of risk of disease introduction or occurrence, (5) disease surveillance, and (6) research priority setting. Of the articles included in data extraction, 50.5% had a national focus, 12.3% were local, 11.9% were regional, 6.5% were sub-national, and 3.9% were global. In 15.2% of the articles, the geographic focus was not specified. The scoping review revealed the lack of comprehensive, integrated, and mutually compatible approaches to disease prioritization and decision support tools for animal health. We recommend that future studies should focus on creating comprehensive and harmonized frameworks describing methods for disease prioritization and decision-making tools in animal health.
Collapse
Affiliation(s)
- Kebede Amenu
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Microbiology, Immunology and Veterinary, Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - K. Marie McIntyre
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Modelling, Evidence and Policy Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nebyou Moje
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Theodore Knight-Jones
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Jonathan Rushton
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Delia Grace
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Food and Markets Department, Natural Resources Institute, University of Greenwich, London, United Kingdom
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| |
Collapse
|
4
|
Johnson SAM, Asmah R, Awuni JA, Tasiame W, Mensah GI, Paweska JT, Weyer J, Hellferscee O, Thompson PN. Evidence of Rift Valley Fever Virus Circulation in Livestock and Herders in Southern Ghana. Viruses 2023; 15:1346. [PMID: 37376647 DOI: 10.3390/v15061346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Rift Valley fever (RVF) is a re-emerging zoonotic disease of domestic ruminants and humans. While neighbouring countries have reported outbreaks of RVF, Ghana has not yet identified any cases. The aim of this study was to determine whether RVF virus (RVFV) was circulating in livestock and herders in the southern part of Ghana, to estimate its seroprevalence, and to identify associated risk factors. The study surveyed 165 livestock farms randomly selected from two districts in southern Ghana. Serum samples of 253 goats, 246 sheep, 220 cattle, and 157 herdsmen were tested to detect IgG and IgM antibodies against RVFV. The overall seroprevalence of anti-RVF antibodies in livestock was 13.1% and 30.9% of farms had RVFV seropositive animals. The species-specific prevalence was 24.1% in cattle, 8.5% in sheep, and 7.9% in goats. A RVFV IgG seroprevalence of 17.8% was found among the ruminant herders, with 8.3% of all herders being IgM positive. RVFV was shown, for the first time, to have been circulating in southern Ghana, with evidence of a recent outbreak in Kwahu East; however, it was clinically undetected despite significant recent human exposure. A One Health approach is recommended to better understand RVF epidemiology and socio-economic impact in Ghana.
Collapse
Affiliation(s)
- Sherry Ama Mawuko Johnson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
- School of Veterinary Medicine, University of Ghana, Legon, Accra 00233, Ghana
| | - Richard Asmah
- School of Biomedical & Allied Health Sciences, University of Ghana, Accra 00233, Ghana
| | - Joseph Adongo Awuni
- Accra Veterinary Laboratory, Ministry of Food and Agriculture, Accra P.O. Box M161, Ghana
| | - William Tasiame
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana
| | - Gloria Ivy Mensah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra 00233, Ghana
| | - Janusz T Paweska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg 2192, South Africa
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Jacqueline Weyer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg 2192, South Africa
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Orienka Hellferscee
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg 2192, South Africa
- Department of Medical Virology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Peter N Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| |
Collapse
|
5
|
Gossner CM, Hallmaier-Wacker L, Briet O, Haussig JM, de Valk H, Wijermans A, Bakonyi T, Madubuko T, Frank C, Noel H, Abdulaziz M. Arthropod-borne diseases among travellers arriving in Europe from Africa, 2015 to 2019. Euro Surveill 2023; 28:2200270. [PMID: 36795503 PMCID: PMC9936595 DOI: 10.2807/1560-7917.es.2023.28.7.2200270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
BackgroundTravellers are generally considered good sentinels for infectious disease surveillance.AimTo investigate whether health data from travellers arriving from Africa to Europe could provide evidence to support surveillance systems in Africa.MethodsWe examined disease occurrence and estimated risk of infection among travellers arriving from Africa to Europe from 2015 to 2019 using surveillance data of arthropod-borne disease cases collected through The European Surveillance System (TESSy) and flight passenger volumes from the International Air Transport Association.ResultsMalaria was the most common arthropod-borne disease reported among travellers from Africa, with 34,235 cases. The malaria travellers' infection rate (TIR) was 28.8 cases per 100,000 travellers, which is 36 and 144 times higher than the TIR for dengue and chikungunya, respectively. The malaria TIR was highest among travellers arriving from Central and Western Africa. There were 956 and 161 diagnosed imported cases of dengue and chikungunya, respectively. The highest TIR was among travellers arriving from Central, Eastern and Western Africa for dengue and from Central Africa for chikungunya in this period. Limited numbers of cases of Zika virus disease, West Nile virus infection, Rift Valley fever and yellow fever were reported.ConclusionsDespite some limitations, travellers' health data can efficiently complement local surveillance data in Africa, particularly when the country or region has a sub-optimal surveillance system. The sharing of anonymised traveller health data between regions/continents should be encouraged.
Collapse
Affiliation(s)
- Céline M Gossner
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | - Olivier Briet
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Joana M Haussig
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | - Ariana Wijermans
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Tamas Bakonyi
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Theresa Madubuko
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | | | - Harold Noel
- Santé publique France, Saint Maurice, France
| | - Mohammed Abdulaziz
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Teng AY, Che TL, Zhang AR, Zhang YY, Xu Q, Wang T, Sun YQ, Jiang BG, Lv CL, Chen JJ, Wang LP, Hay SI, Liu W, Fang LQ. Mapping the viruses belonging to the order Bunyavirales in China. Infect Dis Poverty 2022; 11:81. [PMID: 35799306 PMCID: PMC9264531 DOI: 10.1186/s40249-022-00993-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral pathogens belonging to the order Bunyavirales pose a continuous background threat to global health, but the fact remains that they are usually neglected and their distribution is still ambiguously known. We aim to map the geographical distribution of Bunyavirales viruses and assess the environmental suitability and transmission risk of major Bunyavirales viruses in China. METHODS We assembled data on all Bunyavirales viruses detected in humans, animals and vectors from multiple sources, to update distribution maps of them across China. In addition, we predicted environmental suitability at the 10 km × 10 km pixel level by applying boosted regression tree models for two important Bunyavirales viruses, including Crimean-Congo hemorrhagic fever virus (CCHFV) and Rift Valley fever virus (RVFV). Based on model-projected risks and air travel volume, the imported risk of RVFV was also estimated from its endemic areas to the cities in China. RESULTS Here we mapped all 89 species of Bunyavirales viruses in China from January 1951 to June 2021. Nineteen viruses were shown to infect humans, including ten species first reported as human infections. A total of 447,848 cases infected with Bunyavirales viruses were reported, and hantaviruses, Dabie bandavirus and Crimean-Congo hemorrhagic fever virus (CCHFV) had the severest disease burden. Model-predicted maps showed that Xinjiang and southwestern Yunnan had the highest environmental suitability for CCHFV occurrence, mainly related to Hyalomma asiaticum presence, while southern China had the highest environmental suitability for Rift Valley fever virus (RVFV) transmission all year round, mainly driven by livestock density, mean precipitation in the previous month. We further identified three cities including Guangzhou, Beijing and Shanghai, with the highest imported risk of RVFV potentially from Egypt, South Africa, Saudi Arabia and Kenya. CONCLUSIONS A variety of Bunyavirales viruses are widely distributed in China, and the two major neglected Bunyavirales viruses including CCHFV and RVFV, both have the potential for outbreaks in local areas of China. Our study can help to promote the understanding of risk distribution and disease burden of Bunyavirales viruses in China, and the risk maps of CCHFV and RVFV occurrence are crucial to the targeted surveillance and control, especially in seasons and locations at high risk.
Collapse
Affiliation(s)
- Ai-Ying Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Tian-Le Che
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - An-Ran Zhang
- Department of Research, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Yan-Qun Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Li-Ping Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China.
| |
Collapse
|
7
|
Ramadan OPC, Berta KK, Wamala JF, Maleghemi S, Rumunu J, Ryan C, Ladu AI, Joseph JLK, Abenego AA, Ndenzako F, Olu OO. Analysis of the 2017-2018 Rift valley fever outbreak in Yirol East County, South Sudan: a one health perspective. Pan Afr Med J 2022; 42:5. [PMID: 36158935 PMCID: PMC9474954 DOI: 10.11604/pamj.supp.2022.42.1.33769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION the emergence and re-emergence of zoonotic diseases have threatened both human and animal health globally since their identification in the 20th century. Rift Valley fever (RVF) virus is a recurrent zoonotic disease in South Sudan, with the earliest RVF cases confirmed in 2007 in Kapoeta North County, Eastern Equatoria state. METHODS we analyzed national RVF outbreak data to describe the epidemiological pattern of the RVF outbreak in Yirol East county in Lakes State. The line list of cases (confirmed, probable, suspected, and non-cases) was used to describe the pattern and risk factors associated with the outbreak. The animal and human blood samples were tested using Enzyme-Linked Immunosorbent Assay (ELISA) (Immunoglobulin IgG and IgM) and Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). Qualitative data were collected from weekly RVF situation reports, and national guidelines and policies. RESULTS between December 2017 and December 2018, 58 suspected human RVF cases were reported. The cases were reclassified based on laboratory and investigations results, such that as of 16th December 2018, there were a total of six (10.3%) laboratory-confirmed, three (5.2%) probable, one (1.7%) suspected, and 48 (82.8%) non-cases were reported. A total of four deaths were reported during the outbreak (case fatality rate (CFR) 6.8% (4/58). A total of 28 samples were collected from animals; of these, six tested positives for RVF (positivity rate of 32.1% (9/28). The outbreak was announced in March 2018, after four months of the first reported suspected RVF case. Several factors were attributed to the delayed notification and outbreak announcement such as lack of multi-sectorial coordination at the state and county level, multi-sectoral coordination at national level mostly attended by public health experts from human health, inadequate animal health surveillance, poor coordination between livestock disease surveillance and public health surveillance, limited in-country laboratory diagnostic capacity, the laboratory results for the animal health took longer than expected, and lack of a national One Health approach strategy. CONCLUSION the outbreak demonstrated gaps to investigate and respond to zoonotic disease outbreaks in South Sudan.
Collapse
Affiliation(s)
- Otim Patrick Cossy Ramadan
- World Health Organization, East and South Africa, Sub Regional Office, Nairobi, Kenya,,Corresponding author Kibebu Kinfu, World Health Organization, Country Office, Juba, South Sudan.
| | | | | | | | - John Rumunu
- Ministry of Health, Juba, Republic of South Sudan
| | - Caroline Ryan
- World Health Organization, East and South Africa, Sub Regional Office, Nairobi, Kenya
| | - Alice Igale Ladu
- World Health Organization (WHO), WHO Country Office, Juba, South Sudan
| | | | | | - Fabian Ndenzako
- World Health Organization (WHO), WHO Country Office, Juba, South Sudan
| | - Olushayo Oluseun Olu
- World Health Organization, East and South Africa, Sub Regional Office, Nairobi, Kenya
| |
Collapse
|
8
|
Gerken KN, LaBeaud AD, Mandi H, L’Azou Jackson M, Breugelmans JG, King CH. Paving the way for human vaccination against Rift Valley fever virus: A systematic literature review of RVFV epidemiology from 1999 to 2021. PLoS Negl Trop Dis 2022; 16:e0009852. [PMID: 35073355 PMCID: PMC8812886 DOI: 10.1371/journal.pntd.0009852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/03/2022] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rift Valley fever virus (RVFV) is a lethal threat to humans and livestock in many parts of Africa, the Arabian Peninsula, and the Indian Ocean. This systematic review's objective was to consolidate understanding of RVFV epidemiology during 1999-2021 and highlight knowledge gaps relevant to plans for human vaccine trials. METHODOLOGY/PRINCIPAL FINDINGS The review is registered with PROSPERO (CRD42020221622). Reports of RVFV infection or exposure among humans, animals, and/or vectors in Africa, the Arabian Peninsula, and the Indian Ocean during the period January 1999 to June 2021 were eligible for inclusion. Online databases were searched for publications, and supplemental materials were recovered from official reports and research colleagues. Exposures were classified into five groups: 1) acute human RVF cases, 2) acute animal cases, 3) human RVFV sero-surveys, 4) animal sero-surveys, and 5) arthropod infections. Human risk factors, circulating RVFV lineages, and surveillance methods were also tabulated. In meta-analysis of risks, summary odds ratios were computed using random-effects modeling. 1104 unique human or animal RVFV transmission events were reported in 39 countries during 1999-2021. Outbreaks among humans or animals occurred at rates of 5.8/year and 12.4/year, respectively, with Mauritania, Madagascar, Kenya, South Africa, and Sudan having the most human outbreak years. Men had greater odds of RVFV infection than women, and animal contact, butchering, milking, and handling aborted material were significantly associated with greater odds of exposure. Animal infection risk was linked to location, proximity to water, and exposure to other herds or wildlife. RVFV was detected in a variety of mosquito vectors during interepidemic periods, confirming ongoing transmission. CONCLUSIONS/SIGNIFICANCE With broad variability in surveillance, case finding, survey design, and RVFV case confirmation, combined with uncertainty about populations-at-risk, there were inconsistent results from location to location. However, it was evident that RVFV transmission is expanding its range and frequency. Gaps assessment indicated the need to harmonize human and animal surveillance and improve diagnostics and genotyping. Given the frequency of RVFV outbreaks, human vaccination has strong potential to mitigate the impact of this now widely endemic disease.
Collapse
Affiliation(s)
- Keli N. Gerken
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - A. Desirée LaBeaud
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Henshaw Mandi
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | | | | | - Charles H. King
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|