1
|
Zhang B, Xiang L, Chen J, Zhang J, Dong R, Mo G, Wu F. GRN Activates TNFR2 to Promote Macrophage M2 Polarization Aggravating Mycobacterium Tuberculosis Infection. FRONT BIOSCI-LANDMRK 2024; 29:332. [PMID: 39344332 DOI: 10.31083/j.fbl2909332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The polarization of macrophages plays a critical role in the immune response to infectious diseases, with M2 polarization shown to be particularly important in various pathological processes. However, the specific mechanisms of M2 macrophage polarization in Mycobacterium tuberculosis (Mtb) infection remain unclear. In particular, the roles of Granulin (GRN) and tumor necrosis factor receptor 2 (TNFR2) in the M2 polarization process have not been thoroughly studied. OBJECTIVE To investigate the effect of macrophage M2 polarization on Mtb infection and the mechanism of GRN and TNFR2 in M2 polarization. METHODS Forty patients with pulmonary tuberculosis (PTB) and 40 healthy volunteers were enrolled in this study, and peripheral blood samples were taken to detect the levels of TNFR2 and GRN mRNA by Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR); monocytes were isolated and then assessed by Flow Cytometry (FC) for M1 and M2 macrophage levels. To further validate the function of TNFR2 in macrophage polarization, we used interleukin 4 (IL-4) to induce mouse monocyte macrophages RAW264.7 to M2 polarized state. The expression of TNFR2 was detected by Western Blot and RT-qPCR. Next, we constructed a GRN knockdown plasmid and transfected it into IL-4-induced mouse monocyte macrophage RAW264.7, and detected the expression of TNFR2, M1 macrophage-associated factors tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin 6 (IL-6), and the M2 macrophage-associated factors CD206, IL-10, and Arginase 1 (Arg1); Immunofluorescence staining was used to monitor the expression of CD86+ and CD206+, and FC was used to analyze the macrophage phenotype. Subsequently, immunoprecipitation was used to detect the binding role of GRN and TNFR2. Finally, the effects of GRN and TNFR2 in macrophage polarization were further explored by knocking down GRN and simultaneously overexpressing TNFR2 and observing the macrophage polarization status. RESULTS The results of the study showed elevated expression of TNFR2 and GRN and predominance of M2 type in macrophages in PTB patients compared to healthy volunteers (p < 0.05). Moreover, TNFR2 was highly expressed in M2 macrophages (p < 0.05). Additionally, GRN knockdown was followed by elevated expression of M1 polarization markers TNF-α, iNOS and IL-6 (p < 0.05), decreased levels of M2 polarization-associated factors CD206, IL-10 and Arg1 (p < 0.05), and macrophage polarization towards M1. Subsequently, we found that GRN binds to TNFR2 and that GRN upregulates TNFR2 expression (p < 0.05). In addition, knockdown of GRN elevated M1 polarization marker expression, decreased M2 polarization marker expression, and increased M1 macrophages and decreased M2 macrophages, whereas concurrent overexpression of TNFR2 decreased M1 polarization marker expression, elevated M2 polarization marker expression, and decreased M1 macrophages and increased M2 macrophages. CONCLUSION TNFR2 and GRN are highly expressed in PTB patients and GRN promotes macrophage M2 polarization by upregulating TNFR2 expression.
Collapse
Affiliation(s)
- Bingling Zhang
- Disease Control and Prevention, Zhangqiao Branch, Ningbo Ninth Hospital Medical Health Group, 315000 Ningbo, Zhejiang, China
| | - Lan Xiang
- Department of Doctor-patient Communication, The First Affiliated Hospital of Ningbo University, 315010 Ningbo, Zhejiang, China
| | - Jun Chen
- Department of Doctor-patient Communication, The First Affiliated Hospital of Ningbo University, 315010 Ningbo, Zhejiang, China
| | - Jun Zhang
- Disease Control and Prevention, Zhangqiao Branch, Ningbo Ninth Hospital Medical Health Group, 315000 Ningbo, Zhejiang, China
| | - Renliu Dong
- Disease Control and Prevention, Zhangqiao Branch, Ningbo Ninth Hospital Medical Health Group, 315000 Ningbo, Zhejiang, China
| | - Guolun Mo
- Beijing STEPPIN Technology Co., LTD., 100195 Beijing, China
| | - Feng Wu
- Infectious Disease Prevention and Control, Jiangbei Center for Disease Control and Prevention, 315000 Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Li Z, Gao Y, Zhang B, Dong W, Xi Y, Li Y, Cui J. circRNA_SLC8A1 promotes the survival of mycobacterium tuberculosis in macrophages by upregulating expression of autophagy-related protein SQSTM1/p62 to activate the NF-κB pathway. Sci Rep 2024; 14:5233. [PMID: 38433218 PMCID: PMC10909944 DOI: 10.1038/s41598-024-55493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Macrophages act as the first immune defense line of the host against Mycobacterium tuberculosis (Mtb). A previous study showed that circRNA_SLC8A1 was significantly upregulated in Mtb-infected macrophages, but its regulatory mechanism in anti-tuberculosis infection is unclear. Therefore, this study aimed to investigate the role of circRNA_SLC8A1 in the anti-tuberculosis activity of macrophages. We showed that circRNA_SLC8A1 was upregulated in tuberculosis patients. Moreover, the binding sites of miR-20b-5p on circRNA_SLC8A1 and Sequestosome 1 (SQSTM1/p62) mRNA were predicted by StarBase and verified by the double luciferase reporter gene assay. Next, we found that miR-20b-5p expression was decreased, while SQSTM1 protein expression was increased in a time- and dose-dependent manner in the human macrophage U937 in response to Mtb infection. Furthermore, circRNA_SLC8A1 overexpression vector (circRNA_SLC8A1) or shRNA (sh-circRNA_SLC8A1) and/or miR-20b-5p mimic or inhibitor and/or SQSTM1 overexpression vector (SQSTM1) or small interfering RNA (si-SQSTM1) or its corresponding control were transfected into Mtb-infected macrophages. Results showed that overexpression of circRNA_SLC8A1 or miR-20b-5p inhibitor promoted the secretion of pro-inflammatory factors IL-1β, IL-6, and TNF-α, increased Nitric Oxide (NO) content and inducible nitric oxide synthase (iNOS) expression, inhibited Reactive oxygen species (ROS) production. Cleaved-caspase-3 protein expression, and cell apoptosis, and promoted Mtb survival. Silencing SQSTM1 inhibited secretion of pro-inflammatory factors and activation of the NF-κB pathway. Overexpression of miR-20b-5p blocked the promoting of circ-SLC8A1 on SQSTM1 protein expression. In summary, circRNA_SLC8A1 sponged miR-20b-5p to upregulate SQSTM1/p62 expression and promoted Mtb survival in macrophages through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhenyun Li
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Yuan Gao
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Bianfang Zhang
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Wei Dong
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Yuling Xi
- Clinical Pharmacy Office, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Yan Li
- Gastrointestinal Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Junwei Cui
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China.
| |
Collapse
|
3
|
Long R, Croxen M, Lee R, Doroshenko A, Lau A, Asadi L, Heffernan C, Paulsen C, Egedahl ML, Lloyd C, Li V, Tyrrell G. The association between phylogenetic lineage and the subclinical phenotype of pulmonary tuberculosis: A retrospective 2-cohort study. J Infect 2024; 88:123-131. [PMID: 38104727 DOI: 10.1016/j.jinf.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Subclinical pulmonary tuberculosis (PTB) is an asymptomatic disease state between established TB infection and symptomatic (clinical) TB disease. It is present in 20-25% of PTB patients in high-income countries. Mycobacterium tuberculosis complex (MTBC) genetic heterogeneity, and differential host immunological responses, have been implicated in its pathogenesis. METHODS To determine the association between MTBC lineage and PTB disease phenotype, we used two retrospective cohorts of PTB patients in Canada and two independent lineage attribution methods (DNA fingerprinting and genome sequencing). The first cohort, Cohort 1, consisted of consecutively diagnosed PTB patients between 2014 and 2020. The second, Cohort 2, consisted of newly-arrived foreign-born PTB patients who either were or were not referred for post-landing medical surveillance between 2004 and 2017. Univariable and multivariable logistic regression models were sequentially fitted to both cohorts, adjusting for age, sex, disease type, drug resistance and HIV. Evolution of radiographic features was correlated to lineage in Cohort 2. FINDINGS Cohort 1 and 2 included 874 (209 subclinical) and 111 (44 subclinical) patients, respectively. In both cohorts, subclinical patients were more likely than clinical patients to have relapse/retreatment disease, be smear-negative, have longer times-to-culture positivity and to harbor an ancestral MTBC lineage (Indo-Oceanic or Mycobacterium africanum). Relapse/retreatment disease and ancestral MTBC lineage were independent predictors of subclinical disease (ORs and 95% CIs in Cohort 1, 1.85 [1.07,3.28], p < 0.029 and 2.30 [1.66,3.18], p < 0.001, respectively, and Cohort 2, 5.74 [1.37-24.06], p < 0.017 and 3.21 (1.29,7.97], p < 0.012, respectively). The geographic distribution of Indo-Oceanic strains causing subclinical disease was uneven. Non-progressive lung disease was more common in patients infected with ancestral than modern lineages in Cohort 2, 56.0% vs 25.4%, p < 0.005. INTERPRETATION MTBC lineage is a strong predictor of PTB disease phenotype. The genetic drivers of this association, and the relative contribution of other explanatory variables, are unknown.
Collapse
Affiliation(s)
- Richard Long
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Matthew Croxen
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Precision Laboratories, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Robyn Lee
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Alexander Doroshenko
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Angela Lau
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leyla Asadi
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Courtney Heffernan
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine Paulsen
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mary Lou Egedahl
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Colin Lloyd
- Alberta Precision Laboratories, Edmonton, Alberta, Canada; Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Vincent Li
- Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Gregory Tyrrell
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Precision Laboratories, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Zein-Eddine R, Hak F, Le Meur A, Genestet C, Dumitrescu O, Guyeux C, Senelle G, Sola C, Refrégier G. The paradoxes of Mycobacterium tuberculosis molecular evolution and consequences for the inference of tuberculosis emergence date. Tuberculosis (Edinb) 2023; 143S:102378. [PMID: 38012921 DOI: 10.1016/j.tube.2023.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 11/29/2023]
Abstract
The date of Mycobacterium tuberculosis complex emergence has been the subject of long debates. New studies joining archaeological efforts with sequencing methods raise high hopes for solving whether this emergence is closer to 70,000 or to 6000 years before present. Inferring the date of emergence of this pathogen based on sequence data requires a molecular clock. Several clocks inferred from different types of loci and/or different samples, using both sound reasoning and reliable data, are actually very different, which we refer to as the paradoxes of M. tuberculosis molecular evolution. After having presented these paradoxes, we will remind the limits of the molecular clocks used in the different studies such as the assumption of homogeneous substitution rate. We will then review recent results that shed new light on the characteristics of M. tuberculosis molecular evolution: traces of diverse selection pressures, the impact of host dynamics, etc. We provide some ideas on what to do next to get nearer to a reliable dating of Mycobacterium tuberculosis complex emergence. Among them, the collection of additional remains from ancient tuberculosis seems still essential.
Collapse
Affiliation(s)
- R Zein-Eddine
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut National de la Santé et de la Recherche Médicale: U1182, Centre National de la Recherche Scientifique: UMR7645, France
| | - F Hak
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| | - A Le Meur
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| | - C Genestet
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | - O Dumitrescu
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | - C Guyeux
- DISC Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000, Besançon, France
| | - G Senelle
- DISC Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000, Besançon, France
| | - C Sola
- Université de Paris, IAME, UMR1137, INSERM, Paris, France; AP-HP, GHU Nord, Service de mycobactériologie spécialisée et de référence, Paris, France; Université Paris-Saclay, Saint-Aubin, France
| | - G Refrégier
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Ocampo JC, Alzate JF, Barrera LF, Baena A. Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients. Biomedicines 2023; 11:3110. [PMID: 38137331 PMCID: PMC10740695 DOI: 10.3390/biomedicines11123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 12/24/2023] Open
Abstract
Currently, tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (Mtb) that primarily affects the lungs. The severity of active pulmonary TB (APTB) is an important determinant of transmission, morbidity, mortality, disease experience, and treatment outcomes. Several publications have shown a high prevalence of disabling complications in individuals who have had severe APTB. Furthermore, certain strains of Mtb were associated with more severe disease outcomes. The use of biomarkers to predict severe APTB patients who are candidates for host-directed therapies, due to the high risk of developing post-tuberculous lung disease (PTLD), has not yet been implemented in the management of TB patients. We followed 108 individuals with APTB for 6 months using clinical tools, flow cytometry, and whole-genome sequencing (WGS). The median age of the study population was 26.5 years, and the frequency of women was 53.7%. In this study, we aimed to identify biomarkers that could help us to recognize individuals with APTB and improve our understanding of the immunopathology in these individuals. In this study, we conducted a follow-up on the treatment progress of 121 cases of APTB. The follow-up process commenced at the time of diagnosis (T0), continued with a control visit at 2 months (T2), and culminated in an exit appointment at 6 months following the completion of medical treatment (T6). People classified with severe APTB showed significantly higher levels of IL-6 (14.7 pg/mL; p < 0.05) compared to those with mild APTB (7.7 pg/mL) at T0. The AUCs for the ROC curves and the Matthews correlation coefficient values (MCC) demonstrate correlations ranging from moderate to very strong. We conducted WGS on 88 clinical isolates of Mtb, and our analysis revealed a total of 325 genes with insertions and deletions (Indels) within their coding regions when compared to the Mtb H37Rv reference genome. The pattern of association was found between serum levels of CHIT1 and the presence of Indels in Mtb isolates from patients with severe APTB. A key finding in our study was the high levels of CHIT1 in severe APTB patients. We identified a biomarker profile (IL-6, IFN-γ, IL-33, and CHIT1) that allows us to identify individuals with severe APTB, as well as the identification of a panel of polymorphisms (125) in clinical isolates of Mtb from individuals with severe APTB. Integrating these findings into a predictive model of severity would show promise for the management of APTB patients in the future, to guide host-directed therapy and reduce the prevalence of PTLD.
Collapse
Affiliation(s)
- Juan C. Ocampo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Universidad de Antioquia (UdeA), Medellín 050010, Colombia; (J.C.O.); (L.F.B.)
| | - Juan F. Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín 050010, Colombia;
- Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín 050010, Colombia
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Universidad de Antioquia (UdeA), Medellín 050010, Colombia; (J.C.O.); (L.F.B.)
- Instituto de Investigaciones Médicas, Universidad de Antioquia (UdeA), Medellín 050010, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Universidad de Antioquia (UdeA), Medellín 050010, Colombia; (J.C.O.); (L.F.B.)
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín 050010, Colombia;
| |
Collapse
|
6
|
Stanley S, Spaulding CN, Liu Q, Chase MR, Ha DTM, Thai PVK, Lan NH, Thu DDA, Quang NL, Brown J, Hicks ND, Wang X, Marin M, Howard NC, Vickers AJ, Karpinski WM, Chao MC, Farhat MR, Caws M, Dunstan SJ, Thuong NTT, Fortune SM. High-throughput phenogenotyping of Mycobacteria tuberculosis clinical strains reveals bacterial determinants of treatment outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536166. [PMID: 37090677 PMCID: PMC10120664 DOI: 10.1101/2023.04.09.536166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background Combatting the tuberculosis (TB) epidemic caused by Mycobacterium tuberculosis ( Mtb ) necessitates a better understanding of the factors contributing to patient clinical outcomes and transmission. While host and environmental factors have been evaluated, the impact of Mtb genetic background and phenotypic diversity is underexplored. Previous work has made associations between Mtb genetic lineages and some clinical and epidemiological features, but the bacterial traits underlying these connections are largely unknown. Methods We developed a high-throughput functional genomics platform for defining genotype-phenotype relationships across a panel of Mtb clinical isolates. These phenotypic fitness profiles function as intermediate traits which can be linked to Mtb genetic variants and associated with clinical and epidemiological outcomes. We applied this approach to a collection of 158 Mtb strains from a study of Mtb transmission in Ho Chi Minh City, Vietnam. Mtb strains were genetically tagged in multiplicate, which allowed us to pool the strains and assess in vitro competitive fitness using deep sequencing across a set of 14 host-relevant antibiotic and metabolic conditions. Phylogenetic and monogenic associations with these intermediate traits were identified and then associated with clinical outcomes. Findings Mtb clinical strains have a broad range of growth and drug response dynamics that can be clustered by their phylogenetic relationships. We identified novel monogenic associations with Mtb fitness in various metabolic and antibiotic conditions. Among these, we find that mutations in Rv1339 , a phosphodiesterase, which were identified through their association with slow growth in glycerol, are further associated with treatment failure. We also identify a previously uncharacterized subclade of Lineage 1 strains (L1.1.1.1) that is phenotypically distinguished by slow growth under most antibiotic and metabolic stress conditions in vitro . This clade is associated with cavitary disease, treatment failure, and demonstrates increased transmission potential. Interpretation High-throughput phenogenotyping of Mtb clinical strains enabled bacterial intermediate trait identification that can provide a mechanistic link between Mtb genetic variation and patient clinical outcomes. Mtb strains associated with cavitary disease, treatment failure, and transmission potential display intermediate phenotypes distinguished by slow growth under various antibiotic and metabolic conditions. These data suggest that Mtb growth regulation is an adaptive advantage for host bacterial success in human populations, in at least some circumstances. These data further suggest markers for the underlying bacterial processes that govern these clinical outcomes. Funding National Institutes of Allergy and Infectious Diseases: P01 AI132130 (SS, SMF); P01 AI143575 (XW, SMF); U19 AI142793 (QL, SMF); 5T32AI132120-03 (SS); 5T32AI132120-04 (SS); 5T32AI049928-17 (SS) Wellcome Trust Fellowship in Public Health and Tropical Medicine: 097124/Z/11/Z (NTTT) National Health and Medical Research Council (NHMRC)/A*STAR joint call: APP1056689 (SJD) The funding sources had no involvement in study methodology, data collection, analysis, and interpretation nor in the writing or submission of the manuscript. Research in context Evidence before this study: We used different combinations of the words mycobacterium tuberculosis, tuberculosis, clinical strains, intermediate phenotypes, genetic barcoding, phenogenomics, cavitary disease, treatment failure, and transmission to search the PubMed database for all studies published up until January 20 th , 2022. We only considered English language publications, which biases our search. Previous work linking Mtb determinants to clinical or epidemiological data has made associations between bacterial lineage, or less frequently, genetic polymorphisms to in vitro or in vivo models of pathogenesis, transmission, and clinical outcomes such as cavitary disease, treatment failure, delayed culture conversion, and severity. Many of these studies focus on the global pandemic Lineage 2 and Lineage 4 Mtb strains due in part to a deletion in a polyketide synthase implicated in host-pathogen interactions. There are a number of Mtb GWAS studies that have led to novel genetic determinants of in vitro drug resistance and tolerance. Previous Mtb GWAS analyses with clinical outcomes did not experimentally test any predicted phenotypes of the clinical strains. Published laboratory-based studies of Mtb clinical strains involve relatively small numbers of strains, do not identify the genetic basis of relevant phenotypes, or link findings to the corresponding clinical outcomes. There are two recent studies of other pathogens that describe phenogenomic analyses. One study of 331 M. abscessus clinical strains performed one-by-one phenotyping to identify bacterial features associated with clearance of infection and another details a competition experiment utilizing three barcoded Plasmodium falciparum clinical isolates to assay antimalarial fitness and resistance. Added value of this study: We developed a functional genomics platform to perform high-throughput phenotyping of Mtb clinical strains. We then used these phenotypes as intermediate traits to identify novel bacterial genetic features associated with clinical outcomes. We leveraged this platform with a sample of 158 Mtb clinical strains from a cross sectional study of Mtb transmission in Ho Chi Minh City, Vietnam. To enable high-throughput phenotyping of large numbers of Mtb clinical isolates, we applied a DNA barcoding approach that has not been previously utilized for the high-throughput analysis of Mtb clinical strains. This approach allowed us to perform pooled competitive fitness assays, tracking strain fitness using deep sequencing. We measured the replicative fitness of the clinical strains in multiplicate under 14 metabolic and antibiotic stress condition. To our knowledge, this is the largest phenotypic screen of Mtb clinical isolates to date. We performed bacterial GWAS to delineate the Mtb genetic variants associated with each fitness phenotype, identifying monogenic associations with several conditions. We then defined Mtb phenotypic and genetic features associated with clinical outcomes. We find that a subclade of Mtb strains, defined by variants largely involved in fatty acid metabolic pathways, share a universal slow growth phenotype that is associated with cavitary disease, treatment failure and increased transmission potential in Vietnam. We also find that mutations in Rv1339 , a poorly characterized phosphodiesterase, also associate with slow growth in vitro and with treatment failure in patients. Implications of all the available evidence: Phenogenomic profiling demonstrates that Mtb strains exhibit distinct growth characteristics under metabolic and antibiotic stress conditions. These fitness profiles can serve as intermediate traits for GWAS and association with clinical outcomes. Intermediate phenotyping allows us to examine potential processes by which bacterial strain differences contribute to clinical outcomes. Our study identifies clinical strains with slow growth phenotypes under in vitro models of antibiotic and host-like metabolic conditions that are associated with adverse clinical outcomes. It is possible that the bacterial intermediate phenotypes we identified are directly related to the mechanisms of these outcomes, or they may serve as markers for the causal yet unidentified bacterial determinants. Via the intermediate phenotyping, we also discovered a surprising diversity in Mtb responses to the new anti-mycobacterial drugs that target central metabolic processes, which will be important in considering roll-out of these new agents. Our study and others that have identified Mtb determinants of TB clinical and epidemiological phenotypes should inform efforts to improve diagnostics and drug regimen design.
Collapse
|