1
|
Willems E, Hamerlinck H, Messiaen AS, Schelstraete P, Van Braeckel E, Vande Weygaerde Y, Verhasselt B, Boelens J, Vandendriessche S. Expansion of MALDI-TOF MS database as a strategy for identification of Haemophilus species other than H. influenzae. Acta Clin Belg 2024:1-7. [PMID: 39101268 DOI: 10.1080/17843286.2024.2386216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVES This study aimed to evaluate an expanded matrix-assisted laser desorption-ionization-time of flight mass spectrometry (MALDI-TOF MS) database for the identification of Haemophilus species other than H. influenzae (Hi). METHODS A total of 144 Haemophilus species, cultured from respiratory samples from people (living) with cystic fibrosis, were identified with MALDI-TOF MS and 16S rRNA sequencing. Of these, 99 Haemophilus strains showed >99% similarity with the best matching strain in the National Center for Biotechnology Information (NCBI) database and were assigned to a single Haemophilus subspecies using both MALDI-TOF MS and 16S rRNA sequencing. The MS profiles of a subset of strains (n = 58/99) were added to the Bruker MALDI-TOF MS database. Subsequently, 270 different strains that were analyzed previously in a routine setting were re-analyzed. RESULTS 16S rRNA sequencing reliably identified 99/144 Haemophilus strains (>99% similarity). H. haemolyticus 16S rRNA identification was suboptimal since only 3/21 H. haemolyticus strains attained a similarity of >99% with H. haemolyticus 16S rRNA sequence in the NCBI database. Expansion of the MALDI-TOF MS database improved the number of reliable identifications only moderately for H. haemolyticus, H. influenzae and H. paraphrohaemolyticus (<10%). By contrast, improved identification was more outspoken for H. parahaemolyticus, H. parainfluenzae, H. sputorum and H. pittmaniae (>85%). CONCLUSION 16S rRNA sequencing is a valuable method for the identification of Haemophilus sp. other than Hi. Expansion of the MALDI-TOF MS database, based on 16S rRNA sequencing results, increased the proportion of reliable identifications and in this study resulted in an increase of 10% of Haemophilus sp. other than Hi strain identifications.
Collapse
Affiliation(s)
- Eva Willems
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Hamerlinck
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Petra Schelstraete
- Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Bruno Verhasselt
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jerina Boelens
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | |
Collapse
|
2
|
Costello VH, Robinson SL, Klusewitz S, Surpris G, Nahid M, Backlund MG. Infective endocarditis due to Haemophilus sputorum. Access Microbiol 2022; 4:acmi000410. [PMID: 36644734 PMCID: PMC9836057 DOI: 10.1099/acmi.0.000410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/21/2022] [Indexed: 12/07/2022] Open
Abstract
Introduction Haemophilus species are gram-negative, non-motile, facultative anaerobic coccobacilli in the larger family of Pasteurellaceae . Implicated in a variety of human diseases, Haemophilus species are also included in the 'HACEK' group of organisms, which are fastidious gram-negative bacteria, a well-described but uncommon cause of endocarditis. Among the Haemophilus species responsible for endocarditis, Haemophilus parainfluenzae is the most frequently isolated. However, novel species of Haemophilus have recently been described, and their clinical significance remains uncertain. Case presentation A 35-year-old man was admitted to the hospital after presenting with a 3 month history of nightly fevers, night sweats and unintentional weight loss, with a new murmur detected on cardiac auscultation. Blood cultures returned positive for Haemophilus sputorum identified by matrix assisted laser desorption ionization - time of flight MS, and confirmed with whole genome sequencing. Echocardiography revealed the presence of an aortic valve vegetation, with aortic and mitral valve leaflet perforations. He was successfully treated with surgical bioprosthetic valve replacements and pathogen-directed antibiotics without complications. Conclusion We describe a case of infective endocarditis due to H. sputorum , a newly identified Haemophilus species, which to the best of our knowledge has yet to be reported, and discuss the available literature regarding this organism.
Collapse
Affiliation(s)
- Varea H. Costello
- Department of Infectious Diseases, Walter Reed National Military Medical Center, Bethesda, MD, USA,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA,*Correspondence: Varea H. Costello,
| | - Sara L. Robinson
- Department of Infectious Diseases, Walter Reed National Military Medical Center, Bethesda, MD, USA,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Seth Klusewitz
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA,Department of Cardiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Guy Surpris
- Department of Pathology and Laboratory Services, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Md Nahid
- Department of Pathology and Laboratory Services, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Michael G. Backlund
- Department of Pathology and Laboratory Services, Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
3
|
Franco-Acosta A, Espadafor-López B, Rosales-Castillo A, Navarro-Marí JM, Gutiérrez-Fernández J. Emergence of genital infections due to Haemophilus pittmaniae and Haemophilus sputorum. Infect Dis Now 2022; 52:227-229. [DOI: 10.1016/j.idnow.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
|
4
|
Diricks M, Kohl TA, Käding N, Leshchinskiy V, Hauswaldt S, Jiménez Vázquez O, Utpatel C, Niemann S, Rupp J, Merker M. Whole genome sequencing-based classification of human-related Haemophilus species and detection of antimicrobial resistance genes. Genome Med 2022; 14:13. [PMID: 35139905 PMCID: PMC8830169 DOI: 10.1186/s13073-022-01017-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/24/2022] [Indexed: 12/31/2022] Open
Abstract
Background Bacteria belonging to the genus Haemophilus cause a wide range of diseases in humans. Recently, H. influenzae was classified by the WHO as priority pathogen due to the wide spread of ampicillin resistant strains. However, other Haemophilus spp. are often misclassified as H. influenzae. Therefore, we established an accurate and rapid whole genome sequencing (WGS) based classification and serotyping algorithm and combined it with the detection of resistance genes. Methods A gene presence/absence-based classification algorithm was developed, which employs the open-source gene-detection tool SRST2 and a new classification database comprising 36 genes, including capsule loci for serotyping. These genes were identified using a comparative genome analysis of 215 strains belonging to ten human-related Haemophilus (sub)species (training dataset). The algorithm was evaluated on 1329 public short read datasets (evaluation dataset) and used to reclassify 262 clinical Haemophilus spp. isolates from 250 patients (German cohort). In addition, the presence of antibiotic resistance genes within the German dataset was evaluated with SRST2 and correlated with results of traditional phenotyping assays. Results The newly developed algorithm can differentiate between clinically relevant Haemophilus species including, but not limited to, H. influenzae, H. haemolyticus, and H. parainfluenzae. It can also identify putative haemin-independent H. haemolyticus strains and determine the serotype of typeable Haemophilus strains. The algorithm performed excellently in the evaluation dataset (99.6% concordance with reported species classification and 99.5% with reported serotype) and revealed several misclassifications. Additionally, 83 out of 262 (31.7%) suspected H. influenzae strains from the German cohort were in fact H. haemolyticus strains, some of which associated with mouth abscesses and lower respiratory tract infections. Resistance genes were detected in 16 out of 262 datasets from the German cohort. Prediction of ampicillin resistance, associated with blaTEM-1D, and tetracycline resistance, associated with tetB, correlated well with available phenotypic data. Conclusions Our new classification database and algorithm have the potential to improve diagnosis and surveillance of Haemophilus spp. and can easily be coupled with other public genotyping and antimicrobial resistance databases. Our data also point towards a possible pathogenic role of H. haemolyticus strains, which needs to be further investigated. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01017-x.
Collapse
Affiliation(s)
- Margo Diricks
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Nadja Käding
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany.,German Center for Infection Research (DZIF), TTU HAARBI, Lübeck, Germany
| | - Vladislav Leshchinskiy
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susanne Hauswaldt
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Omar Jiménez Vázquez
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany.,German Center for Infection Research (DZIF), TTU HAARBI, Lübeck, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany. .,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany. .,Evolution of the Resistome, Research Center Borstel, Borstel, Germany.
| |
Collapse
|
5
|
Whole-Genome Sequencing of Aggregatibacter Species Isolated from Human Clinical Specimens and Description of Aggregatibacter kilianii sp. nov. J Clin Microbiol 2018; 56:JCM.00053-18. [PMID: 29695522 DOI: 10.1128/jcm.00053-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022] Open
Abstract
Aggregatibacter species are commensal bacteria of human mucosal surfaces that are sometimes involved in serious invasive infections. During the investigation of strains cultured from various clinical specimens, we encountered a coherent group of 10 isolates that could not be allocated to any validly named species by phenotype, mass spectrometry, or partial 16S rRNA gene sequencing. Whole-genome sequencing revealed a phylogenetic cluster related to but separate from Aggregatibacter aphrophilus The mean in silico DNA hybridization value for strains of the new cluster versus A. aphrophilus was 56% (range, 53.7 to 58.0%), whereas the average nucleotide identity was 94.4% (range, 93.9 to 94.8%). The new cluster exhibited aggregative properties typical of the genus Aggregatibacter Key phenotypic tests for discrimination of the new cluster from validly named Aggregatibacter species are alanine-phenylalanine-proline arylamidase, N-acetylglucosamine, and β-galactosidase. The name Aggregatibacter kilianii is proposed, with PN_528 (CCUG 70536T or DSM 105094T) as the type strain.
Collapse
|
6
|
Loy JD, Clawson ML. Rapid typing of Mannheimia haemolytica major genotypes 1 and 2 using MALDI-TOF mass spectrometry. J Microbiol Methods 2017; 136:30-33. [PMID: 28267571 DOI: 10.1016/j.mimet.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
Genotype 2M. haemolytica predominantly associate over genotype 1 with the lungs of cattle with respiratory disease and ICEs containing antimicrobial resistance genes. Distinct protein masses were detected by MALDI-TOF MS between genotype 1 and 2 strains. MALDI-TOF MS could rapidly differentiate genotype 2 strains in veterinary diagnostic laboratories.
Collapse
Affiliation(s)
- John Dustin Loy
- University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources, School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA.
| | - Michael L Clawson
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| |
Collapse
|
7
|
Munson E, Carroll KC. What's in a Name? New Bacterial Species and Changes to Taxonomic Status from 2012 through 2015. J Clin Microbiol 2017; 55:24-42. [PMID: 27795334 PMCID: PMC5228236 DOI: 10.1128/jcm.01379-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Technological advancements in fields such as molecular genetics and the human microbiome have resulted in an unprecedented recognition of new bacterial genus/species designations by the International Journal of Systematic and Evolutionary Microbiology Knowledge of designations involving clinically significant bacterial species would benefit clinical microbiologists in the context of emerging pathogens, performance of accurate organism identification, and antimicrobial susceptibility testing. In anticipation of subsequent taxonomic changes being compiled by the Journal of Clinical Microbiology on a biannual basis, this compendium summarizes novel species and taxonomic revisions specific to bacteria derived from human clinical specimens from the calendar years 2012 through 2015.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Lo CI, Sankar SA, Fall B, Sambe-Ba B, Diawara S, Gueye MW, Mediannikov O, Blanc-Tailleur C, Wade B, Raoult D, Fournier PE, Fenollar F. High-quality draft genome sequence and description of Haemophilus massiliensis sp. nov. Stand Genomic Sci 2016; 11:31. [PMID: 27081435 PMCID: PMC4831113 DOI: 10.1186/s40793-016-0150-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/04/2016] [Indexed: 01/16/2023] Open
Abstract
Strain FF7T was isolated from the peritoneal fluid of a 44-year-old woman who suffered from pelvic peritonitis. This strain exhibited a 16S rRNA sequence similarity of 94.8 % 16S rRNA sequence identity with Haemophilus parasuis, the phylogenetically closest species with a name with standing in nomenclature and a poor MALDI-TOF MS score (1.32 to 1.56) that does not allow any reliable identification. Using a polyphasic study made of phenotypic and genomic analyses, strain FF7T was a Gram-negative, facultatively anaerobic rod and member of the family Pasteurellaceae. It exhibited a genome of 2,442,548 bp long genome (one chromosome but no plasmid) contains 2,319 protein-coding and 67 RNA genes, including 6 rRNA operons. On the basis of these data, we propose the creation of Haemophilus massiliensis sp. nov. with strain FF7T (= CSUR P859 = DSM 28247) as the type strain.
Collapse
Affiliation(s)
- Cheikh Ibrahima Lo
- Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm U1095, Faculté de médecine, Marseille, France ; Campus international UCAD-IRD, Dakar, Senegal
| | - Senthil Alias Sankar
- Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm U1095, Faculté de médecine, Marseille, France
| | | | | | | | | | - Oleg Mediannikov
- Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm U1095, Faculté de médecine, Marseille, France ; Campus international UCAD-IRD, Dakar, Senegal
| | - Caroline Blanc-Tailleur
- Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm U1095, Faculté de médecine, Marseille, France
| | | | - Didier Raoult
- Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm U1095, Faculté de médecine, Marseille, France ; Campus international UCAD-IRD, Dakar, Senegal ; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pierre-Edouard Fournier
- Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm U1095, Faculté de médecine, Marseille, France
| | - Florence Fenollar
- Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm U1095, Faculté de médecine, Marseille, France ; Campus international UCAD-IRD, Dakar, Senegal
| |
Collapse
|
9
|
Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 2015; 6:791. [PMID: 26300860 PMCID: PMC4525378 DOI: 10.3389/fmicb.2015.00791] [Citation(s) in RCA: 808] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/21/2015] [Indexed: 01/13/2023] Open
Abstract
Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Microbiology, University of Delhi New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi New Delhi, India
| | - Pawan K Kanaujia
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
10
|
Nielsen SM, de Gier C, Dimopoulou C, Gupta V, Hansen LH, Nørskov-Lauritsen N. The capsule biosynthesis locus of Haemophilus influenzae shows conspicuous similarity to the corresponding locus in Haemophilus sputorum and may have been recruited from this species by horizontal gene transfer. MICROBIOLOGY-SGM 2015; 161:1182-8. [PMID: 25794502 DOI: 10.1099/mic.0.000081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The newly described species Haemophilus sputorum has been cultured from the upper respiratory tract of humans and appears to have little pathogenic potential. The species encodes a capsular biosynthesis locus of approximately 12 kb composed of three distinct regions. Region I and III genes, involved in export and processing of the capsular material, show high similarity to the corresponding genes in capsulate lineages of the pathogenic species Haemophilus influenzae; indeed, standard bexA and bexB PCRs for detection of capsulated strains of H. influenzae give positive results with strains of H. sputorum. Three ORFs are present in region II of the sequenced strain of H. sputorum, of which a putative phosphotransferase showed homology with corresponding genes from H. influenzae serotype c and f. Phylogenetic analysis of housekeeping genes from 24 Pasteurellaceae species showed that H. sputorum was only distantly related to H. influenzae. In contrast to H. influenzae, the capsule locus in H. sputorum is not associated with transposases or other transposable elements. Our data suggest that the capsule locus of capsulate lineages of H. influenzae may have been recruited relatively recently from the commensal species H. sputorum by horizontal gene transfer.
Collapse
Affiliation(s)
- Signe M Nielsen
- 1Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Camilla de Gier
- 1Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Vikas Gupta
- 3Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Lars H Hansen
- 2Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | |
Collapse
|
11
|
Phylogenomic and molecular demarcation of the core members of the polyphyletic pasteurellaceae genera actinobacillus, haemophilus, and pasteurella. Int J Genomics 2015; 2015:198560. [PMID: 25821780 PMCID: PMC4363679 DOI: 10.1155/2015/198560] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 12/18/2022] Open
Abstract
The genera Actinobacillus, Haemophilus, and Pasteurella exhibit extensive polyphyletic branching in phylogenetic trees and do not represent coherent clusters of species. In this study, we have utilized molecular signatures identified through comparative genomic analyses in conjunction with genome based and multilocus sequence based phylogenetic analyses to clarify the phylogenetic and taxonomic boundary of these genera. We have identified large clusters of Actinobacillus, Haemophilus, and Pasteurella species which represent the “sensu stricto” members of these genera. We have identified 3, 7, and 6 conserved signature indels (CSIs), which are specifically shared by sensu stricto members of Actinobacillus, Haemophilus, and Pasteurella, respectively. We have also identified two different sets of CSIs that are unique characteristics of the pathogen containing genera Aggregatibacter and Mannheimia, respectively. It is now possible to demarcate the genera Actinobacillus sensu stricto, Haemophilus sensu stricto, and Pasteurella sensu stricto on the basis of discrete molecular signatures. The other members of the genera Actinobacillus, Haemophilus, and Pasteurella that do not fall within the “sensu stricto” clades and do not contain these molecular signatures should be reclassified as other genera. The CSIs identified here also provide useful diagnostic targets for the identification of current and novel members of the indicated genera.
Collapse
|
12
|
|
13
|
Le Floch AS, Cassir N, Hraiech S, Guervilly C, Papazian L, Rolain JM. Haemophilus parahaemolyticus septic shock after aspiration pneumonia, France. Emerg Infect Dis 2014; 19:1694-5. [PMID: 24050515 PMCID: PMC3810756 DOI: 10.3201/eid1910.130608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Nørskov-Lauritsen N. Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clin Microbiol Rev 2014; 27:214-40. [PMID: 24696434 PMCID: PMC3993099 DOI: 10.1128/cmr.00103-13] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this review is to provide a comprehensive update on the current classification and identification of Haemophilus and Aggregatibacter species with exclusive or predominant host specificity for humans. Haemophilus influenzae and some of the other Haemophilus species are commonly encountered in the clinical microbiology laboratory and demonstrate a wide range of pathogenicity, from life-threatening invasive disease to respiratory infections to a nonpathogenic, commensal lifestyle. New species of Haemophilus have been described (Haemophilus pittmaniae and Haemophilus sputorum), and the new genus Aggregatibacter was created to accommodate some former Haemophilus and Actinobacillus species (Aggregatibacter aphrophilus, Aggregatibacter segnis, and Aggregatibacter actinomycetemcomitans). Aggregatibacter species are now a dominant etiology of infective endocarditis caused by fastidious organisms (HACEK endocarditis), and A. aphrophilus has emerged as an important cause of brain abscesses. Correct identification of Haemophilus and Aggregatibacter species based on phenotypic characterization can be challenging. It has become clear that 15 to 20% of presumptive H. influenzae isolates from the respiratory tracts of healthy individuals do not belong to this species but represent nonhemolytic variants of Haemophilus haemolyticus. Due to the limited pathogenicity of H. haemolyticus, the proportion of misidentified strains may be lower in clinical samples, but even among invasive strains, a misidentification rate of 0.5 to 2% can be found. Several methods have been investigated for differentiation of H. influenzae from its less pathogenic relatives, but a simple method for reliable discrimination is not available. With the implementation of identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry, the more rarely encountered species of Haemophilus and Aggregatibacter will increasingly be identified in clinical microbiology practice. However, identification of some strains will still be problematic, necessitating DNA sequencing of multiple housekeeping gene fragments or full-length 16S rRNA genes.
Collapse
|
15
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 2014; 26:547-603. [PMID: 23824373 DOI: 10.1128/cmr.00072-12] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.
Collapse
|
16
|
Multicenter validation of the VITEK MS v2.0 MALDI-TOF mass spectrometry system for the identification of fastidious gram-negative bacteria. Diagn Microbiol Infect Dis 2013; 78:129-31. [PMID: 24321357 DOI: 10.1016/j.diagmicrobio.2013.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/12/2013] [Accepted: 08/23/2013] [Indexed: 11/21/2022]
Abstract
The VITEK MS v2.0 MALDI-TOF mass spectrometry system's performance in identifying fastidious gram-negative bacteria was evaluated in a multicenter study. Compared with the reference method (DNA sequencing), the VITEK MS system provided an accurate, species-level identification for 96% of 226 isolates; an additional 1% were accurately identified to the genus level.
Collapse
|
17
|
Low occurrence of ‘non-haemolytic Haemophilus haemolyticus’ misidentified as Haemophilus influenzae in cystic fibrosis respiratory specimens, and frequent recurrence of persistent H. influenzae clones despite antimicrobial treatment. Int J Med Microbiol 2012. [DOI: 10.1016/j.ijmm.2012.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
18
|
List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2012. [DOI: 10.1099/ijs.0.044636-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper, to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below, and these authors’ names will be included in the author index of the present issue. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in bacteriological nomenclature. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
|