1
|
Haemophilin-Producing Strains of Haemophilus haemolyticus Protect Respiratory Epithelia from NTHi Colonisation and Internalisation. Pathogens 2021; 10:pathogens10010029. [PMID: 33401487 PMCID: PMC7823694 DOI: 10.3390/pathogens10010029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a significant respiratory tract pathogen responsible for infections that collectively pose a substantial health and socioeconomic burden. The clinical course of these infections is largely dictated by NTHi interactions with host respiratory epithelia, and thus, approaches that disrupt colonisation and invasion may have significant therapeutic potential. Survival, successful host–cell interactions, and pathogenesis are reliant on NTHi’s ability to sequester host-derived haem. Previously, we demonstrated the therapeutic potential of exploiting this haem-dependence using a closely related competitor bacterium, Haemophilus haemolyticus (Hh). Hh strains capable of producing the novel haem-binding protein haemophilin (Hpl) possessed potent inhibitory activity by restricting NTHi access to haem in a broth co-culture environment. Here, we extend this work to cell culture models that more closely represent the human respiratory epithelium and show that Hh strains with high levels of hpl expression protect epithelial cell line monolayers against adhesion and invasion by NTHi. Inhibitory activity was dependent on the level of Hpl production, which was stimulated by NTHi challenge and nasopharyngeal cell exposure. Provided these protective benefits translate to in vivo applications, Hpl-producing Hh may have probiotic utility against NTHi infections by inhibiting requisite nasopharyngeal colonisation.
Collapse
|
2
|
In Vitro Anti-NTHi Activity of Haemophilin-Producing Strains of Haemophilus haemolyticus. Pathogens 2020; 9:pathogens9040243. [PMID: 32218184 PMCID: PMC7238096 DOI: 10.3390/pathogens9040243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 12/21/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a leading causative organism of opportunistic respiratory tract infections. However, there are currently no effective vaccination strategies, and existing treatments are compromised by antibiotic resistance. We previously characterized Haemophilus haemolyticus (Hh) strains capable of producing haemophilin (HPL), a heme-binding protein that restricts NTHi growth by limiting its access to an essential growth factor, heme. Thus, these strains may have utility as a probiotic therapy against NTHi infection by limiting colonization, migration and subsequent infection in susceptible individuals. Here, we assess the preliminary feasibility of this approach by direct in vitro competition assays between NTHi and Hh strains with varying capacity to produce HPL. Subsequent changes in NTHi growth rate and fitness, in conjunction with HPL expression analysis, were employed to assess the NTHi-inhibitory capacity of Hh strains. HPL-producing strains of Hh not only outcompeted NTHi during short-term and extended co-culture, but also demonstrated a growth advantage compared with Hh strains unable to produce the protein. Additionally, HPL expression levels during competition correlated with the NTHi-inhibitory phenotype. HPL-producing strains of Hh demonstrate significant probiotic potential against NTHi colonization in the upper respiratory tract, however, further investigations are warranted to demonstrate a range of other characteristics that would support the eventual development of a probiotic.
Collapse
|
3
|
Osman KL, Jefferies JMC, Woelk CH, Devos N, Pascal TG, Mortier MC, Devaster JM, Wilkinson TMA, Cleary DW, Clarke SC. Patients with Chronic Obstructive Pulmonary Disease harbour a variation of Haemophilus species. Sci Rep 2018; 8:14734. [PMID: 30282975 PMCID: PMC6170463 DOI: 10.1038/s41598-018-32973-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 02/04/2023] Open
Abstract
H. haemolyticus is often misidentified as NTHi due to their close phylogenetic relationship. Differentiating between the two is important for correct identification and appropriate treatment of infective organism and to ensure any role of H. haemolyticus in disease is not being overlooked. Speciation however is not completely reliable by culture and PCR methods due to the loss of haemolysis by H. haemolyticus and the heterogeneity of NTHi. Haemophilus isolates from COPD as part of the AERIS study (ClinicalTrials - NCT01360398) were speciated by analysing sequence data for the presence of molecular markers. Further investigation into the genomic relationship was carried out using average nucleotide identity and phylogeny of allelic and genome alignments. Only 6.3% were identified as H. haemolyticus. Multiple in silico methods were able to distinguish H. haemolyticus from NTHi. However, no single gene target was found to be 100% accurate. A group of omp2 negative NTHi were observed to be phylogenetically divergent from H. haemolyticus and remaining NTHi. The presence of an atypical group from a geographically and disease limited set of isolates supports the theory that the heterogeneity of NTHi may provide a genetic continuum between NTHi and H. haemolyticus.
Collapse
Affiliation(s)
- Karen L Osman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK
| | - Johanna M C Jefferies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK.,Merck Exploratory Science Center, Merck Research Laboratories, Cambridge, MA, USA
| | | | | | | | | | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK.,NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom.,Wessex Investigational Sciences Hub, University of Southampton, Southampton, United Kingdom
| | - David W Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK.,NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom
| | - Stuart C Clarke
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK. .,NIHR Biomedical Research Centre, University of Southampton, Southampton, United Kingdom. .,Wessex Investigational Sciences Hub, University of Southampton, Southampton, United Kingdom. .,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom. .,Global Health Research Institute, University of Southampton, Southampton, United Kingdom.
| | | |
Collapse
|
4
|
Rapid Differentiation of Haemophilus influenzae and Haemophilus haemolyticus by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry with ClinProTools Mass Spectrum Analysis. J Clin Microbiol 2017. [PMID: 28637909 DOI: 10.1128/jcm.00267-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Haemophilus influenzae is associated with severe invasive disease, while Haemophilus haemolyticus is considered part of the commensal flora in the human respiratory tract. Although the addition of a custom mass spectrum library into the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system could improve identification of these two species, the establishment of such a custom database is technically complicated and requires a large amount of resources, which most clinical laboratories cannot afford. In this study, we developed a mass spectrum analysis model with 7 mass peak biomarkers for the identification of H. influenzae and H. haemolyticus using the ClinProTools software. We evaluated the diagnostic performance of this model using 408 H. influenzae and H. haemolyticus isolates from clinical respiratory specimens from 363 hospitalized patients and compared the identification results with those obtained with the Bruker IVD MALDI Biotyper. The IVD MALDI Biotyper identified only 86.9% of H. influenzae (311/358) and 98.0% of H. haemolyticus (49/50) clinical isolates to the species level. In comparison, the ClinProTools mass spectrum model could identify 100% of H. influenzae (358/358) and H. haemolyticus (50/50) clinical strains to the species level and significantly improved the species identification rate (McNemar's test, P < 0.0001). In conclusion, the use of ClinProTools demonstrated an alternative way for users lacking special expertise in mass spectrometry to handle closely related bacterial species when the proprietary spectrum library failed. This approach should be useful for the differentiation of other closely related bacterial species.
Collapse
|
5
|
Pickering JL, Prosser A, Corscadden KJ, de Gier C, Richmond PC, Zhang G, Thornton RB, Kirkham LAS. Haemophilus haemolyticus Interaction with Host Cells Is Different to Nontypeable Haemophilus influenzae and Prevents NTHi Association with Epithelial Cells. Front Cell Infect Microbiol 2016; 6:50. [PMID: 27242968 PMCID: PMC4860508 DOI: 10.3389/fcimb.2016.00050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/18/2016] [Indexed: 02/02/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that resides in the upper respiratory tract and contributes to a significant burden of respiratory related diseases in children and adults. Haemophilus haemolyticus is a respiratory tract commensal that can be misidentified as NTHi due to high levels of genetic relatedness. There are reports of invasive disease from H. haemolyticus, which further blurs the species boundary with NTHi. To investigate differences in pathogenicity between these species, we optimized an in vitro epithelial cell model to compare the interaction of 10 H. haemolyticus strains with 4 NTHi and 4 H. influenzae-like haemophili. There was inter- and intra-species variability but overall, H. haemolyticus had reduced capacity to attach to and invade nasopharyngeal and bronchoalveolar epithelial cell lines (D562 and A549) within 3 h when compared with NTHi. H. haemolyticus was cytotoxic to both cell lines at 24 h, whereas NTHi was not. Nasopharyngeal epithelium challenged with some H. haemolyticus strains released high levels of inflammatory mediators IL-6 and IL-8, whereas NTHi did not elicit an inflammatory response despite higher levels of cell association and invasion. Furthermore, peripheral blood mononuclear cells stimulated with H. haemolyticus or NTHi released similar and high levels of IL-6, IL-8, IL-10, IL-1β, and TNFα when compared with unstimulated cells but only NTHi elicited an IFNγ response. Due to the relatedness of H. haemolyticus and NTHi, we hypothesized that H. haemolyticus may compete with NTHi for colonization of the respiratory tract. We observed that in vitro pre-treatment of epithelial cells with H. haemolyticus significantly reduced NTHi attachment, suggesting interference or competition between the two species is possible and warrants further investigation. In conclusion, H. haemolyticus interacts differently with host cells compared to NTHi, with different immunostimulatory and cytotoxic properties. This study provides an in vitro model for further investigation into the pathogenesis of Haemophilus species and the foundation for exploring whether H. haemolyticus can be used to prevent NTHi disease.
Collapse
Affiliation(s)
- Janessa L Pickering
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western AustraliaPerth, WA, Australia; School of Paediatrics and Child Health, The University of Western AustraliaPerth, WA, Australia
| | - Amy Prosser
- School of Paediatrics and Child Health, The University of Western Australia Perth, WA, Australia
| | - Karli J Corscadden
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia Perth, WA, Australia
| | - Camilla de Gier
- School of Paediatrics and Child Health, The University of Western Australia Perth, WA, Australia
| | - Peter C Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western AustraliaPerth, WA, Australia; School of Paediatrics and Child Health, The University of Western AustraliaPerth, WA, Australia; Department of Paediatrics, Princess Margaret Hospital for ChildrenPerth, WA, Australia
| | - Guicheng Zhang
- School of Public Health, Curtin University Perth, WA, Australia
| | - Ruth B Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western AustraliaPerth, WA, Australia; School of Paediatrics and Child Health, The University of Western AustraliaPerth, WA, Australia
| | - Lea-Ann S Kirkham
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western AustraliaPerth, WA, Australia; School of Paediatrics and Child Health, The University of Western AustraliaPerth, WA, Australia
| |
Collapse
|
6
|
Complete Deletion of the Fucose Operon in Haemophilus influenzae Is Associated with a Cluster in Multilocus Sequence Analysis-Based Phylogenetic Group II Related to Haemophilus haemolyticus: Implications for Identification and Typing. J Clin Microbiol 2015; 53:3773-8. [PMID: 26378279 DOI: 10.1128/jcm.01969-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/09/2015] [Indexed: 11/20/2022] Open
Abstract
Nonhemolytic variants of Haemophilus haemolyticus are difficult to differentiate from Haemophilus influenzae despite a wide difference in pathogenic potential. A previous investigation characterized a challenging set of 60 clinical strains using multiple PCRs for marker genes and described strains that could not be unequivocally identified as either species. We have analyzed the same set of strains by multilocus sequence analysis (MLSA) and near-full-length 16S rRNA gene sequencing. MLSA unambiguously allocated all study strains to either of the two species, while identification by 16S rRNA sequence was inconclusive for three strains. Notably, the two methods yielded conflicting identifications for two strains. Most of the "fuzzy species" strains were identified as H. influenzae that had undergone complete deletion of the fucose operon. Such strains, which are untypeable by the H. influenzae multilocus sequence type (MLST) scheme, have sporadically been reported and predominantly belong to a single branch of H. influenzae MLSA phylogenetic group II. We also found evidence of interspecies recombination between H. influenzae and H. haemolyticus within the 16S rRNA genes. Establishing an accurate method for rapid and inexpensive identification of H. influenzae is important for disease surveillance and treatment.
Collapse
|
7
|
Coughlan H, Reddington K, Tuite N, Boo TW, Cormican M, Barrett L, Smith TJ, Clancy E, Barry T. Comparative genome analysis identifies novel nucleic acid diagnostic targets for use in the specific detection of Haemophilus influenzae. Diagn Microbiol Infect Dis 2015; 83:112-6. [PMID: 26166209 DOI: 10.1016/j.diagmicrobio.2015.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 11/25/2022]
Abstract
Haemophilus influenzae is recognised as an important human pathogen associated with invasive infections, including bloodstream infection and meningitis. Currently used molecular-based diagnostic assays lack specificity in correctly detecting and identifying H. influenzae. As such, there is a need to develop novel diagnostic assays for the specific identification of H. influenzae. Whole genome comparative analysis was performed to identify putative diagnostic targets, which are unique in nucleotide sequence to H. influenzae. From this analysis, we identified 2H. influenzae putative diagnostic targets, phoB and pstA, for use in real-time PCR diagnostic assays. Real-time PCR diagnostic assays using these targets were designed and optimised to specifically detect and identify all 55H. influenzae strains tested. These novel rapid assays can be applied to the specific detection and identification of H. influenzae for use in epidemiological studies and could also enable improved monitoring of invasive disease caused by these bacteria.
Collapse
Affiliation(s)
- Helena Coughlan
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland; Biomedical Diagnostics Institute Programme, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Kate Reddington
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Nina Tuite
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Teck Wee Boo
- Department of Clinical Microbiology, University College Hospital, Galway, Ireland
| | - Martin Cormican
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Louise Barrett
- National Centre of Sensor Research, School of Physical Sciences, Biomedical Diagnostics Institute, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Terry J Smith
- Biomedical Diagnostics Institute Programme, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Molecular Diagnostics Research Group (MDRG), School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Eoin Clancy
- Biomedical Diagnostics Institute Programme, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Molecular Diagnostics Research Group (MDRG), School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Thomas Barry
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
8
|
Hinz R, Zautner AE, Hagen RM, Frickmann H. Difficult identification of Haemophilus influenzae, a typical cause of upper respiratory tract infections, in the microbiological diagnostic routine. Eur J Microbiol Immunol (Bp) 2015; 5:62-7. [PMID: 25883794 PMCID: PMC4397848 DOI: 10.1556/eujmi-d-14-00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022] Open
Abstract
Haemophilus influenzae is a key pathogen of upper respiratory tract infections. Its reliable discrimination from nonpathogenic Haemophilus spp. is necessary because merely colonizing bacteria are frequent at primarily unsterile sites. Due to close phylogenetic relationship, it is not easy to discriminate H. influenzae from the colonizer Haemophilus haemolyticus. The frequency of H. haemolyticus isolations depends on factors like sampling site, patient condition, and geographic region. Biochemical discrimination has been shown to be nonreliable. Multiplex PCR including marker genes like sodC, fucK, and hpd or sequencing of the 16S rRNA gene, the P6 gene, or multilocus-sequence-typing is more promising. For the diagnostic routine, such techniques are too expensive and laborious. If available, matrix-assisted laser-desorption-ionization time-of-flight mass spectrometry is a routine-compatible option and should be used in the first line. However, the used database should contain well-defined reference spectra, and the spectral difference between H. influenzae and H. haemolyticus is small. Fluorescence in-situ hybridization is an option for less well-equipped laboratories, but the available protocol will not lead to conclusive results in all instances. It can be used as a second line approach. Occasional ambiguous results have to be resolved by alternative molecular methods like 16S rRNA gene sequencing.
Collapse
|
9
|
Zhang B, Kunde D, Tristram S. Haemophilus haemolyticus is infrequently misidentified as Haemophilus influenzae in diagnostic specimens in Australia. Diagn Microbiol Infect Dis 2014; 80:272-3. [PMID: 25266675 DOI: 10.1016/j.diagmicrobio.2014.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/27/2014] [Accepted: 08/31/2014] [Indexed: 11/24/2022]
Abstract
The commensal Haemophilus haemolyticus is difficult to differentiate from the respiratory pathogen Haemophilus influenzae using phenotypic tests. In a study that used molecular tests to retrospectively identify 447 phenotypically identified H. influenzae isolates from diagnostic specimens in Australia, only 7 (1.5%) H. haemolyticus were identified.
Collapse
Affiliation(s)
- Bowen Zhang
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dale Kunde
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia.
| |
Collapse
|
10
|
Trafny EA, Olszewska-Sosińska O, Antos-Bielska M, Kozłowska K, Stępińska M, Lau-Dworak M, Zielnik-Jurkiewicz B. Carriage of antibiotic-resistant Haemophilus influenzae strains in children undergoing adenotonsillectomy. Int J Med Microbiol 2014; 304:554-64. [PMID: 24767868 DOI: 10.1016/j.ijmm.2014.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 02/17/2014] [Accepted: 03/24/2014] [Indexed: 12/31/2022] Open
Abstract
Haemophilus influenzae is one of the major pathogenic bacteria in upper respiratory tract of children. In this study, the presence of various H. influenzae genotypes were followed-up for at least 13 weeks, starting from one week before surgery. Forty-one children with chronic adenoid hypertrophy were prospectively enrolled to the study. The consecutive swabs of adenoid and tonsils, two before adenotonsillectomy and two after the surgery together with homogenates of adenotonsillar tissues and lysates of the CD14(+) cells fraction were acquired from 34 children undergoing adenotonsillectomy. Up to ten isolates from each patient at each collection period were genotyped using a PFGE method and their capsular type and antibiotic susceptibility was determined. Of the 1001 isolates examined, we identified 325 isolates grouped into 16 persistent genotypes, which colonized throats for more than seven weeks and were not eliminated by the surgery. The other 506 isolates grouped into 48 transient genotypes that had been eliminated by the surgery. The resistance to ampicillin were found in 23.8% of the transient strains, and 4.7% of the newly acquired strains following the surgical intervention. In contrast, none of the persistent strains were resistant to ampicillin; however, these strains showed apparently higher level of resistance to co-trimoxazole when compared to transient strains. The transient and persistent strains did not significantly differ in bacterial viability in the biofilms formed in vitro. Some of the strains were identified in two or three different patients and were considered as the strains circulating in the region between 2010 and 2012.
Collapse
Affiliation(s)
- Elżbieta A Trafny
- Department of Microbiology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| | | | - Małgorzata Antos-Bielska
- Department of Microbiology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Krystyna Kozłowska
- Department of Microbiology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Małgorzata Stępińska
- Department of Microbiology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Magdalena Lau-Dworak
- Department of Laboratory Diagnostics, Children's Hospital, Niekłańska 4/24, 03-924 Warsaw, Poland
| | | |
Collapse
|
11
|
Nørskov-Lauritsen N. Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clin Microbiol Rev 2014; 27:214-40. [PMID: 24696434 PMCID: PMC3993099 DOI: 10.1128/cmr.00103-13] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this review is to provide a comprehensive update on the current classification and identification of Haemophilus and Aggregatibacter species with exclusive or predominant host specificity for humans. Haemophilus influenzae and some of the other Haemophilus species are commonly encountered in the clinical microbiology laboratory and demonstrate a wide range of pathogenicity, from life-threatening invasive disease to respiratory infections to a nonpathogenic, commensal lifestyle. New species of Haemophilus have been described (Haemophilus pittmaniae and Haemophilus sputorum), and the new genus Aggregatibacter was created to accommodate some former Haemophilus and Actinobacillus species (Aggregatibacter aphrophilus, Aggregatibacter segnis, and Aggregatibacter actinomycetemcomitans). Aggregatibacter species are now a dominant etiology of infective endocarditis caused by fastidious organisms (HACEK endocarditis), and A. aphrophilus has emerged as an important cause of brain abscesses. Correct identification of Haemophilus and Aggregatibacter species based on phenotypic characterization can be challenging. It has become clear that 15 to 20% of presumptive H. influenzae isolates from the respiratory tracts of healthy individuals do not belong to this species but represent nonhemolytic variants of Haemophilus haemolyticus. Due to the limited pathogenicity of H. haemolyticus, the proportion of misidentified strains may be lower in clinical samples, but even among invasive strains, a misidentification rate of 0.5 to 2% can be found. Several methods have been investigated for differentiation of H. influenzae from its less pathogenic relatives, but a simple method for reliable discrimination is not available. With the implementation of identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry, the more rarely encountered species of Haemophilus and Aggregatibacter will increasingly be identified in clinical microbiology practice. However, identification of some strains will still be problematic, necessitating DNA sequencing of multiple housekeeping gene fragments or full-length 16S rRNA genes.
Collapse
|
12
|
Witherden EA, Kunde D, Tristram SG. PCR screening for the N526K substitution in isolates of Haemophilus influenzae and Haemophilus haemolyticus. J Antimicrob Chemother 2013; 68:2255-8. [PMID: 23645583 DOI: 10.1093/jac/dkt189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Firstly, to evaluate the current PBP3-S primers of Hasegawa et al. (Microb Drug Resist 2003; 9: 39-46) and develop new primers for the amplification of N526 in isolates of Haemophilus haemolyticus. Secondly, to develop a new PCR assay for the detection (by amplification) of the N526K substitution, encoded by either the AAA or AAG single nucleotide polymorphism (SNP) at position 1576-1578 of the ftsI gene, in isolates of both Haemophilus influenzae and H. haemolyticus. METHODS A total of 50 H. influenzae and 50 H. haemolyticus isolates, comprising N526 and N526K genotypes, were used to evaluate the performance of SNP-based PCR primers for the detection of the β-lactamase-negative ampicillin resistance (BLNAR)-defining N526K substitution in H. influenzae and H. haemolyticus, using a real-time PCR platform. RESULTS The PBP3-S primers of Hasegawa et al. failed to amplify H. haemolyticus isolates, irrespective of their N526/N526K status, owing to an inability of the forward primer to bind the H. haemolyticus ftsI sequence, giving an overall sensitivity of 100% and a specificity of 40% when using all of the isolates. However, the PBP3-N526 and PBP3-N526K PCR primers designed in this study were 100% sensitive and specific, and 84% sensitive and 100% specific, respectively, for the detection of N526K-positive isolates. CONCLUSIONS Although antibiotic resistance surveillance studies on H. influenzae should include a definitive test for H. influenzae/H. haemolyticus identification, the new primers from this study will not only allow for PCR characterization of both H. influenzae and H. haemolyticus with respect to the N526K BLNAR substitutions, they will also stop incorrect characterization of susceptible H. haemolyticus isolates as low-BLNAR H. influenzae.
Collapse
Affiliation(s)
- Elizabeth A Witherden
- School of Human Life Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | | | | |
Collapse
|