1
|
Abdinia FS, Javadi K, Rajabnia M, Ferdosi-Shahandashti E. A Comprehensive Study on the Distribution of Integrons and Their Gene Cassettes in Clinical Isolates. DNA Cell Biol 2024; 43:579-595. [PMID: 39419631 DOI: 10.1089/dna.2024.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Antibiotic resistance is a significant global health concern, leading to increased morbidity, mortality, and health care costs. Integrons are genetic elements that could acquire and express gene cassettes, including those that confer antibiotic resistance. This comprehensive study focused on the distribution of integrons and their gene cassettes in clinical isolates. This study explored the structure and classification of integrons with particular emphasis on Class I, II, III, and IV integrons. It also discussed the role of integrons in antibiotic resistance. The findings of this study contribute to a better understanding of the mechanisms underlying antibiotic resistance and provide valuable insights for developing strategies to combat this public health crisis.
Collapse
Affiliation(s)
- Fatemeh Sarina Abdinia
- Department of Nanotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
2
|
de Sousa T, Carvalho M, Beyrouthy R, Bonnet R, Martins Â, Hebraud M, Dapkevicius MLNE, Igrejas G, Poeta P. Decoding Pseudomonas aeruginosa: Genomic insights into adaptation, antibiotic resistance, and the enigmatic role of T6SS in interbacterial dynamics. Microb Pathog 2024; 196:106932. [PMID: 39303957 DOI: 10.1016/j.micpath.2024.106932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Pseudomonas aeruginosa demonstrates a remarkable capacity for adaptation and survival in diverse environments. Furthermore, its clinical importance is underscored by its intrinsic and acquired resistance to a wide range of antimicrobial agents, posing a substantial challenge in healthcare settings. Amidst this complex landscape of resistance, the Type VI Secretion System (T6SS) in P. aeruginosa adds yet another layer of intricacy and allows bacteria to engage in interbacterial competition, potentially influencing their resilience and pathogenicity. Whole genome sequencing (WGS) was conducted on the five isolates under investigation, enabling the identification of antibiotic resistance genes (ARGs) and mutations associated with resistance. All isolates exhibit class C and D β-lactamases, displaying variant differences. The Resistance-nodulation-division (RND) antibiotic efflux pumps, crucial for multidrug resistance, have been encoded chromosomally. When exploring the role of the T6SS in urinary tract infections involving other bacteria, it was noted that P. aeruginosa isolates exhibited reduced counts when co-cultivated with other bacteria. The downregulation of the tssJ gene, associated with the T6SS under bacterial stress, and the exclusion of several cluster genes in this study suggest the hypothesis of a basal state rather than an attack/defence mechanism in the initial contact.
Collapse
Affiliation(s)
- Telma de Sousa
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085, Caparica, Portugal.
| | - Márcia Carvalho
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801, Vila Real, Portugal; Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801, Vila Real, Portugal.
| | - Racha Beyrouthy
- Institut National de la Santé et de la Recherche Médicale, (UMR1071), Institut National de la Recherche Agronomique (USC-2018), Université Clermont Auvergne, 63000, Clermont-Ferrand, France; Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire, 63000, Clermont-Ferrand, France.
| | - Richard Bonnet
- Institut National de la Santé et de la Recherche Médicale, (UMR1071), Institut National de la Recherche Agronomique (USC-2018), Université Clermont Auvergne, 63000, Clermont-Ferrand, France; Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire, 63000, Clermont-Ferrand, France.
| | - Ângela Martins
- Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal; CECAV - Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| | - Michel Hebraud
- INRAE, Université Clermont Auvergne, UMR Microbiologie Environnement Digestif Santé (MEDiS), 63122, Saint-Genès-Champanelle, France.
| | - Maria L N Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9700-042, Angra do Heroísmo, Portugal; Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042, Angra do Heroísmo, Portugal.
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085, Caparica, Portugal.
| | - Patrícia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085, Caparica, Portugal; CECAV - Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
3
|
Delgadillo-Valles R, Marquez-Salazar DA, Rechy-Iruretagoyena DA, Hernandez-Acevedo GN, Arauz-Cabrera JI, Barrios-Villa E. [Investigation of the beta-lactam resistance profile in Pseudomonas aeruginosa strains in Mexicali: 2019-2021]. Rev Argent Microbiol 2024; 56:368-372. [PMID: 39572364 DOI: 10.1016/j.ram.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 12/09/2024] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacillus capable of developing in humid environments and animal tissue. The interest in this bacterium lies in its ability to cause opportunistic diseases in patients with cystic fibrosis and healthcare-associated infections (HAIs). The objective of our study was to characterize the resistance profile of strains causing HAIs isolated in hospitals within our community, from January 2019 to December 2021. This descriptive, prospective, and cross-sectional study involved the isolation of strains from January 2019 to December 2021 at the Autonomous University of Baja California (UABC). The identification of the strains was carried out using Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectrometry, and the detection of beta-lactam resistance was performed according to the criteria of the Clinical and Laboratory Standards Institute as stipulated in the CLSI M100-S27 document. A total of 649 samples were obtained from January 2019 to December 2021, including sputum (335 samples), urine (119 samples), and wounds (91 samples). Resistance to carbapenems was 38.94% for meropenem and 21.97% for imipenem. For cephalosporins, there was a 21.05% resistance rate for cefepime, 22.9% for ceftazidime, and 24.78% for ceftolozane-tazobactam. The prevalence of antimicrobial resistance has increased over time, which is attributable to both selective pressure and the evolution of the microorganisms themselves.
Collapse
Affiliation(s)
- Ricardo Delgadillo-Valles
- Departamento de Microbiología y Parasitología Clínica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Dolores A Marquez-Salazar
- Departamento de Microbiología y Parasitología Clínica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Donato A Rechy-Iruretagoyena
- Departamento de Farmacología, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Gerson N Hernandez-Acevedo
- Departamento de Farmacología, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, México.
| | - Jonathan I Arauz-Cabrera
- Departamento de Microbiología y Parasitología Clínica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Edwin Barrios-Villa
- Laboratorio de Biología Molecular y Genómica, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Campus Caborca, Caborca, Sonora, México
| |
Collapse
|
4
|
Arfaoui A, Rojo-Bezares B, Fethi M, López M, Toledano P, Sayem N, Ben Khelifa Melki S, Ouzari HI, Klibi N, Sáenz Y. Molecular characterization of Pseudomonas aeruginosa from diabetic foot infections in Tunisia. J Med Microbiol 2024; 73. [PMID: 38963417 DOI: 10.1099/jmm.0.001851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Background. Pseudomonas aeruginosa is an invasive organism that frequently causes severe tissue damage in diabetic foot ulcers.Gap statement. The characterisation of P. aeruginosa strains isolated from diabetic foot infections has not been carried out in Tunisia.Purpose. The aim was to determine the prevalence of P. aeruginosa isolated from patients with diabetic foot infections (DFIs) in Tunisia and to characterize their resistance, virulence and molecular typing.Methods. Patients with DFIs admitted to the diabetes department of the International Hospital Centre of Tunisia, from September 2019 to April 2021, were included in this prospective study. P. aeruginosa were obtained from the wound swabs, aspiration and soft tissue biopsies during routine clinical care and were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing, serotyping, integron and OprD characterization, virulence, biofilm production, pigment quantification, elastase activity and molecular typing were analysed in all recovered P. aeruginosa isolates by phenotypic tests, specific PCRs, sequencing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing.Results. Sixteen P. aeruginosa isolates (16.3 %) were recovered from 98 samples of 78 diabetic patients and were classified into 6 serotypes (O:11 the most frequent), 11 different PFGE patterns and 10 sequence types (three of them new ones). The high-risk clone ST235 was found in two isolates. The highest resistance percentages were observed to netilmicin (69 %) and cefepime (43.8 %). Four multidrug-resistant (MDR) isolates (25 %) were detected, three of them being carbapenem-resistant. The ST235-MDR strain harboured the In51 class 1 integron (intI1 +aadA6+orfD+qacED1-sul1). According to the detection of 14 genes involved in virulence or quorum sensing, 5 virulotypes were observed, including 5 exoU-positive, 9 exoS-positive and 2 exoU/exoS-positive strains. The lasR gene was truncated by ISPpu21 insertion sequence in one isolate, and a deletion of 64 bp in the rhlR gene was detected in the ST235-MDR strain. Low biofilm, pyoverdine and elastase production were detected in all P. aeruginosa; however, the lasR-truncated strain showed a chronic infection phenotype characterized by loss of serotype-specific antigenicity, high production of phenazines and high biofilm formation.Conclusions. Our study demonstrated for the first time the prevalence and the molecular characterization of P. aeruginosa strains from DFIs in Tunisia, showing a high genetic diversity, moderate antimicrobial resistance, but a high number of virulence-related traits, highlighting their pathological importance.
Collapse
Affiliation(s)
- Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Meha Fethi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maria López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Paula Toledano
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Noureddine Sayem
- Service of Biology, Carthagene International Hospital of Tunisia, Tunis, Tunisia
| | | | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
5
|
Rojo-Bezares B, Casado C, Ceniceros T, López M, Chichón G, Lozano C, Ruiz-Roldán L, Sáenz Y. Pseudomonas aeruginosa from river water: antimicrobial resistance, virulence and molecular typing. FEMS Microbiol Ecol 2024; 100:fiae028. [PMID: 38444209 PMCID: PMC11004943 DOI: 10.1093/femsec/fiae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/04/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
Pseudomonas aeruginosa isolates were recovered from surface river water samples in La Rioja region (Spain) to characterise their antibiotic resistance, molecular typing and virulence mechanisms. Fifty-two P. aeruginosa isolates were isolated from 15 different water samples (45.4%) and belonged to 23 different pulsed-field electrophoresis (PFGE) patterns. All isolates were susceptible to all antibiotics tested, except one carbapenem-resistant P. aeruginosa that showed a premature stop codon in OprD porin. Twenty-two sequence types (STs) (six new ones) were detected among 29 selected P. aeruginosa (one strain with a different PFGE pattern per sample), with ST274 (14%) being the most frequent one. O:6 and O:3 were the predominant serotypes (31%). Seven virulotypes were detected, being 59% exoS-exoY-exoT-exoA-lasA-lasB-lasI-lasR-rhlAB-rhlI-rhlR-aprA-positive P. aeruginosa. It is noteworthy that the exlA gene was identified in three strains (10.3%), and the exoU gene in seven (24.1%), exoS in 18 (62.1%), and both exoS and exoU genes in one strain. High motility ranges were found in these strains. Twenty-seven per cent of strains produced more biofilm biomass, 90% more pyorubin, 83% more pyocyanin and 65.5% more than twice the elastase activity compared with the PAO1 strain. These results highlight the importance of rivers as temporary reservoirs and sources of P. aeruginosa transmission, and show the importance of their epidemiological surveillance in the environment.
Collapse
Affiliation(s)
- Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Cristina Casado
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Tania Ceniceros
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Gabriela Chichón
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Carmen Lozano
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Lidia Ruiz-Roldán
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
6
|
Chichón G, López M, de Toro M, Ruiz-Roldán L, Rojo-Bezares B, Sáenz Y. Spread of Pseudomonas aeruginosa ST274 Clone in Different Niches: Resistome, Virulome, and Phylogenetic Relationship. Antibiotics (Basel) 2023; 12:1561. [PMID: 37998763 PMCID: PMC10668709 DOI: 10.3390/antibiotics12111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023] Open
Abstract
Pseudomonas aeruginosa ST274 is an international epidemic high-risk clone, mostly associated with hospital settings and appears to colonize cystic fibrosis (CF) patients worldwide. To understand the relevant mechanisms for its success, the biological and genomic characteristics of 11 ST274-P. aeruginosa strains from clinical and non-clinical origins were analyzed. The extensively drug-resistant (XDR/DTR), the non-susceptible to at least one agent (modR), and the lasR-truncated (by ISPsp7) strains showed a chronic infection phenotype characterized by loss of serotype-specific antigenicity and low motility. Furthermore, the XDR/DTR and modR strains presented low pigment production and biofilm formation, which were very high in the lasR-truncated strain. Their whole genome sequences were compared with other 14 ST274-P. aeruginosa genomes available in the NCBI database, and certain associations have been primarily detected: blaOXA-486 and blaPDC-24 genes, serotype O:3, exoS+/exoU- genotype, group V of type IV pili, and pyoverdine locus class II. Other general molecular markers highlight the absence of vqsM and pldA/tleS genes and the presence of the same mutational pattern in genes involving two-component sensor-regulator systems PmrAB and CreBD, exotoxin A, quorum-sensing RhlI, beta-lactamase expression regulator AmpD, PBP1A, or FusA2 elongation factor G. The proportionated ST274-P. aeruginosa results could serve as the basis for more specific studies focused on better antibiotic stewardship and new therapeutic developments.
Collapse
Affiliation(s)
- Gabriela Chichón
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | - Lidia Ruiz-Roldán
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology I2SysBio (CSIC-UV), Av. de Catalunya 21, 46020 Valencia, Spain
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| |
Collapse
|
7
|
Lee JH, Kim NH, Jang KM, Jin H, Shin K, Jeong BC, Kim DW, Lee SH. Prioritization of Critical Factors for Surveillance of the Dissemination of Antibiotic Resistance in Pseudomonas aeruginosa: A Systematic Review. Int J Mol Sci 2023; 24:15209. [PMID: 37894890 PMCID: PMC10607276 DOI: 10.3390/ijms242015209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas aeruginosa is the primary opportunistic human pathogen responsible for a range of acute and chronic infections; it poses a significant threat to immunocompromised patients and is the leading cause of morbidity and mortality for nosocomial infections. Its high resistance to a diverse array of antimicrobial agents presents an urgent health concern. Among the mechanisms contributing to resistance in P. aeruginosa, the horizontal acquisition of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) has gained recognition as a substantial concern in clinical settings, thus indicating that a comprehensive understanding of ARG dissemination within the species is strongly required for surveillance. Here, two approaches, including a systematic literature analysis and a genome database survey, were employed to gain insights into ARG dissemination. The genome database enabled scrutinizing of all the available sequence information and various attributes of P. aeruginosa isolates, thus providing an extensive understanding of ARG dissemination within the species. By integrating both approaches, with a primary focus on the genome database survey, mobile ARGs that were linked or correlated with MGEs, important sequence types (STs) carrying diverse ARGs, and MGEs responsible for ARG dissemination were identified as critical factors requiring strict surveillance. Although human isolates play a primary role in dissemination, the importance of animal and environmental isolates has also been suggested. In this study, 25 critical mobile ARGs, 45 critical STs, and associated MGEs involved in ARG dissemination within the species, are suggested as critical factors. Surveillance and management of these prioritized factors across the One Health sectors are essential to mitigate the emergence of multidrug-resistant (MDR) and extensively resistant (XDR) P. aeruginosa in clinical settings.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Nam-Hoon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Hyeonku Jin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Kyoungmin Shin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Dae-Wi Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| |
Collapse
|
8
|
Dos Santos PAS, Silva MJA, Gouveia MIM, Lima LNGC, Quaresma AJPG, De Lima PDL, Brasiliense DM, Lima KVB, Rodrigues YC. The Prevalence of Metallo-Beta-Lactamese-(MβL)-Producing Pseudomonas aeruginosa Isolates in Brazil: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:2366. [PMID: 37764210 PMCID: PMC10534863 DOI: 10.3390/microorganisms11092366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
The purpose of the current study is to describe the prevalence of Pseudomonas aeruginosa (PA)-producing MβL among Brazilian isolates and the frequency of blaSPM-1 in MβL-PA-producing isolates. From January 2009 to August 2023, we carried out an investigation on this subject in the internet databases SciELO, PubMed, Science Direct, and LILACS. A total of 20 papers that met the eligibility requirements were chosen by comprehensive meta-analysis software v2.2 for data retrieval and analysis by one meta-analysis using a fixed-effects model for the two investigations. The prevalence of MβL-producing P. aeruginosa was 35.8% or 0.358 (95% CI = 0.324-0.393). The studies' differences were significantly different from one another (x2 = 243.15; p < 0.001; I2 = 92.18%), so they were divided into subgroups based on Brazilian regions. There was indication of asymmetry in the meta-analyses' publishing bias funnel plot; so, a meta-regression was conducted by the study's publication year. According to the findings of Begg's test, no discernible publishing bias was found. blaSPM-1 prevalence was estimated at 66.9% or 0.669 in MβL-PA isolates (95% CI = 0.593-0.738). The analysis of this one showed an average heterogeneity (x2 = 90.93; p < 0.001; I2 = 80.20%). According to the results of Begg's test and a funnel plot, no discernible publishing bias was found. The research showed that MβL-P. aeruginosa and SPM-1 isolates were relatively common among individuals in Brazil. P. aeruginosa and other opportunistic bacteria are spreading quickly and causing severe infections, so efforts are needed to pinpoint risk factors, reservoirs, transmission pathways, and the origin of infection.
Collapse
Affiliation(s)
- Pabllo Antonny Silva Dos Santos
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Maria Isabel Montoril Gouveia
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
| | - Luana Nepomuceno Gondim Costa Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
| | - Patrícia Danielle Lima De Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
| | - Danielle Murici Brasiliense
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Karla Valéria Batista Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Yan Corrêa Rodrigues
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Department of Natural Science, State University of Pará (DCNA/UEPA), Belém 66050-540, PA, Brazil
| |
Collapse
|
9
|
Fethi M, Rojo-Bezares B, Arfaoui A, Dziri R, Chichón G, Barguellil F, López M, El Asli MS, Toledano P, Ouzari HI, Sáenz Y, Klibi N. High Prevalence of GES-5 Variant and Co-Expression of VIM-2 and GES-45 among Clinical Pseudomonas aeruginosa Strains in Tunisia. Antibiotics (Basel) 2023; 12:1394. [PMID: 37760691 PMCID: PMC10525555 DOI: 10.3390/antibiotics12091394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) are a global health concern. The antimicrobial resistance, virulence, and molecular typing of 57 CRPA isolated from 43 patients who attended a specific Tunisian hospital from September 2018 to July 2019 were analyzed. All but one were multidrug-resistant CRPA, and 77% were difficult-to-treat-resistant (DTR) isolates. The blaVIM-2 gene was detected in four strains (6.9%), and among the 36 blaGES-positive CRPA (62%), the blaGES-5 gene was the predominant variant (86%). Three strains co-harbored the blaVIM-2 and blaGES-45 genes, and seven CRPA carried the blaSHV-2a gene (14%). OprD alterations, including truncations by insertion sequences, were observed in 18 strains. Regarding the 46 class 1 integron-positive CRPA (81%), the blaGES-5 gene was located in integron In717, while the blaGES-29 and blaGES-45 genes were found in two new integrons (In2122 and In4879), and the blaVIM-2 gene was found in In1183 and the new integron In2142. Twenty-four PFGE patterns and thirteen sequence types (three new ones) were identified. The predominant serotype O:11 and exoU (81%) were mostly associated with ST235 and the new ST3385 clones. The seven blaSHV-2a-CRPA from different patients belonged to ST3385 and the same PFGE pattern. The blaGES-5- and blaVIM-2 + blaGES-45-positive CRPA recovered mostly from ICU patients belonged to the high-risk clone ST235. Our results highlight the alarming prevalence of blaGES-5- and ST235-CRPA, the co-existence of blaGES-45 and blaVIM-2, and their location within integrons favoring their dissemination.
Collapse
Affiliation(s)
- Meha Fethi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Raoudha Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Gabriela Chichón
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Farouk Barguellil
- Laboratory of Bacteriology, Military Hospital of Tunis, Tunis 1008, Tunisia
- Laboratory of Microorganisms and Environment, Molecular Diagnostic Tools and Emerging and Re-Emerging Infections (LR19DN03), Military Hospital of Tunis, Tunis 1008, Tunisia
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Mohamed Selim El Asli
- Laboratory of Bacteriology, Military Hospital of Tunis, Tunis 1008, Tunisia
- Laboratory of Microorganisms and Environment, Molecular Diagnostic Tools and Emerging and Re-Emerging Infections (LR19DN03), Military Hospital of Tunis, Tunis 1008, Tunisia
| | - Paula Toledano
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Hadda-Imen Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| |
Collapse
|
10
|
Zaidi SEZ, Zaheer R, Thomas K, Abeysekara S, Haight T, Saville L, Stuart-Edwards M, Zovoilis A, McAllister TA. Genomic Characterization of Carbapenem-Resistant Bacteria from Beef Cattle Feedlots. Antibiotics (Basel) 2023; 12:960. [PMID: 37370279 DOI: 10.3390/antibiotics12060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Carbapenems are considered a last resort for the treatment of multi-drug-resistant bacterial infections in humans. In this study, we investigated the occurrence of carbapenem-resistant bacteria in feedlots in Alberta, Canada. The presumptive carbapenem-resistant isolates (n = 116) recovered after ertapenem enrichment were subjected to antimicrobial susceptibility testing against 12 different antibiotics, including four carbapenems. Of these, 72% of the isolates (n = 84) showed resistance to ertapenem, while 27% of the isolates (n = 31) were resistant to at least one other carbapenem, with all except one isolate being resistant to at least two other drug classes. Of these 31 isolates, 90% were carbapenemase positive, while a subset of 36 ertapenem-only resistant isolates were carbapenemase negative. The positive isolates belonged to three genera; Pseudomonas, Acinetobacter, and Stenotrophomonas, with the majority being Pseudomonas aeruginosa (n = 20) as identified by 16S rRNA gene sequencing. Whole genome sequencing identified intrinsic carbapenem resistance genes, including blaOXA-50 and its variants (P. aeruginosa), blaOXA-265 (A. haemolyticus), blaOXA-648 (A. lwoffii), blaOXA-278 (A. junii), and blaL1 and blaL2 (S. maltophilia). The acquired carbapenem resistance gene (blaPST-2) was identified in P. saudiphocaensis and P. stutzeri. In a comparative genomic analysis, clinical P. aeruginosa clustered separately from those recovered from bovine feces. In conclusion, despite the use of selective enrichment methods, finding carbapenem-resistant bacteria within a feedlot environment was a rarity.
Collapse
Affiliation(s)
- Sani-E-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Krysty Thomas
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Sujeema Abeysekara
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Travis Haight
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Luke Saville
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Matthew Stuart-Edwards
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
11
|
Udaondo Z, Abram KZ, Kothari A, Jun SR. Insertion sequences and other mobile elements associated with antibiotic resistance genes in Enterococcus isolates from an inpatient with prolonged bacteraemia. Microb Genom 2022; 8. [PMID: 35921144 PMCID: PMC9484755 DOI: 10.1099/mgen.0.000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insertion sequences (ISs) and other transposable elements are associated with the mobilization of antibiotic resistance determinants and the modulation of pathogenic characteristics. In this work, we aimed to investigate the association between ISs and antibiotic resistance genes, and their role in the dissemination and modification of the antibiotic-resistant phenotype. To that end, we leveraged fully resolved Enterococcus faecium and Enterococcus faecalis genomes of isolates collected over 5 days from an inpatient with prolonged bacteraemia. Isolates from both species harboured similar IS family content but showed significant species-dependent differences in copy number and arrangements of ISs throughout their replicons. Here, we describe two inter-specific IS-mediated recombination events and IS-mediated excision events in plasmids of E. faecium isolates. We also characterize a novel arrangement of the ISs in a Tn1546-like transposon in E. faecalis isolates likely implicated in a vancomycin genotype–phenotype discrepancy. Furthermore, an extended analysis revealed a novel association between daptomycin resistance mutations in liaSR genes and a putative composite transposon in E. faecium, offering a new paradigm for the study of daptomycin resistance and novel insights into its dissemination. In conclusion, our study highlights the role ISs and other transposable elements play in the rapid adaptation and response to clinically relevant stresses such as aggressive antibiotic treatment in enterococci.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kaleb Z Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Atul Kothari
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Arkansas Dept of Health, Healthcare Associated Infections and Outbreak Response Sections, Little Rock, AR 72205, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
12
|
Comparative Genomic Analyses of Flavobacterium psychrophilum Isolates Reveals New Putative Genetic Determinants of Virulence Traits. Microorganisms 2021; 9:microorganisms9081658. [PMID: 34442736 PMCID: PMC8400371 DOI: 10.3390/microorganisms9081658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
The fish pathogen Flavobacterium psychrophilum is currently one of the main pathogenic bacteria hampering the productivity of salmonid farming worldwide. Although putative virulence determinants have been identified, the genetic basis for variation in virulence of F. psychrophilum is not fully understood. In this study, we analyzed whole-genome sequences of a collection of 25 F. psychrophilum isolates from Baltic Sea countries and compared genomic information with a previous determination of their virulence in juvenile rainbow trout. The results revealed a conserved population of F. psychrophilum that were consistently present across the Baltic Sea countries, with no clear association between genomic repertoire, phylogenomic, or gene distribution and virulence traits. However, analysis of the entire genome of four F. psychrophilum isolates by hybrid assembly provided an unprecedented resolution for discriminating even highly related isolates. The results showed that isolates with different virulence phenotypes harbored genetic variances on a number of consecutive leucine-rich repeat (LRR) proteins, repetitive motifs in gliding motility-associated protein, and the insertion of transposable elements into intergenic and genic regions. Thus, these findings provide novel insights into the genetic variation of these elements and their putative role in the modulation of F. psychrophilum virulence.
Collapse
|
13
|
In Vitro Susceptibility of Multidrug-Resistant Pseudomonas aeruginosa following Treatment-Emergent Resistance to Ceftolozane-Tazobactam. Antimicrob Agents Chemother 2021; 65:AAC.00084-21. [PMID: 33820773 DOI: 10.1128/aac.00084-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
We compared the in vitro susceptibility of multidrug-resistant Pseudomonas aeruginosa isolates collected before and after treatment-emergent resistance to ceftolozane-tazobactam. Median baseline and postexposure ceftolozane-tazobactam MICs were 2 and 64 μg/ml, respectively. Whole-genome sequencing identified treatment-emergent mutations in ampC among 79% (11/14) of paired isolates. AmpC mutations were associated with cross-resistance to ceftazidime-avibactam but increased susceptibility to piperacillin-tazobactam and imipenem. A total of 81% (12/16) of ceftolozane-tazobactam-resistant isolates with ampC mutations were susceptible to imipenem-relebactam.
Collapse
|
14
|
González-Vázquez MC, Rocha-Gracia RDC, Carabarín-Lima A, Bello-López E, Huerta-Romano F, Martínez-Laguna Y, Lozano-Zarain P. Location of OprD porin in Pseudomonas aeruginosa clinical isolates. APMIS 2021; 129:213-224. [PMID: 33471435 DOI: 10.1111/apm.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
Multidrug-resistant Pseudomonas aeruginosa is one of the main opportunistic pathogens causing severe infection. One of the mechanisms involved in the resistance to imipenem in clinical isolates is the loss of the OprD porin. Changes like substitutions, deletions, insertions, or mutations in the oprD gene can modify the conformation of OprD porin or inhibit its presence and generate resistance to carbapenems. The aim of this work was to obtain anti-OprD polyclonal antibodies and to determine by both immunofluorescence microscopy (IFI) and Western blot assays, the presence of the OprD porin in resistant-carbapenem P. aeruginosa strains with different changes in the oprD gene. Changes in the gene oprD were identified in clinical isolates of P. aeruginosa. When proteins were translated, several polymorphisms were found; however, these did not affect the presence of OprD porin (PCM25, PCM36, and PCM78). Also it was detected an insertion sequence ISPa1328 (PCM52) and a premature stop codon (PCM91), which inhibited the presence of the OprD porin. This study shows how changes in the oprD gene of P. aeruginosa clinical isolates affect the presence of the OprD porin detected by Western blot and indirect immunofluorescence assays using specific polyclonal anti-OprD antibodies generated in this work.
Collapse
Affiliation(s)
- María Cristina González-Vázquez
- Instituto de Ciencias, Centro de Investigaciones de Ciencias Microbiológicas, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Rosa Del Carmen Rocha-Gracia
- Instituto de Ciencias, Centro de Investigaciones de Ciencias Microbiológicas, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Alejandro Carabarín-Lima
- Instituto de Ciencias, Centro de Investigaciones de Ciencias Microbiológicas, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México.,Instituto de Ciencias, Licenciatura en Biotecnología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Elena Bello-López
- Instituto de Ciencias, Centro de Investigaciones de Ciencias Microbiológicas, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Ygnacio Martínez-Laguna
- Instituto de Ciencias, Centro de Investigaciones de Ciencias Microbiológicas, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Patricia Lozano-Zarain
- Instituto de Ciencias, Centro de Investigaciones de Ciencias Microbiológicas, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
15
|
Ruiz-Roldán L, de Toro M, Sáenz Y. Whole Genome Analysis of Environmental Pseudomonas mendocina Strains: Virulence Mechanisms and Phylogeny. Genes (Basel) 2021; 12:115. [PMID: 33477842 PMCID: PMC7832885 DOI: 10.3390/genes12010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas mendocina is an environmental bacterium, rarely isolated in clinical specimens, although it has been described as producing endocarditis and sepsis. Little is known about its genome. Whole genome sequencing can be used to learn about the phylogeny, evolution, or pathogenicity of these isolates. Thus, the aim of this study was to analyze the resistome, virulome, and phylogenetic relationship of two P. mendocina strains, Ps542 and Ps799, isolated from a healthy Anas platyrhynchos fecal sample and a lettuce, respectively. Among all of the small number of P.mendocina genomes available in the National Center for Biotechnology Information (NCBI) repository, both strains were placed within one of two well-defined phylogenetic clusters. Both P. mendocina strains lacked antimicrobial resistance genes, but the Ps799 genome showed a MOBP3 family relaxase. Nevertheless, this study revealed that P. mendocina possesses an important number of virulence factors, including a leukotoxin, flagella, pili, and the Type 2 and Type 6 Secretion Systems, that could be responsible for their pathogenesis. More phenotypical and in vivo studies are needed to deepen the association with human infections and the potential P. mendocina pathogenicity.
Collapse
Affiliation(s)
- Lidia Ruiz-Roldán
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain;
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain;
| |
Collapse
|
16
|
Antimicrobial resistance and virulence of Pseudomonas spp. among healthy animals: concern about exolysin ExlA detection. Sci Rep 2020; 10:11667. [PMID: 32669597 PMCID: PMC7363818 DOI: 10.1038/s41598-020-68575-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas is a ubiquitous genus that also causes human, animal and plant diseases. Most studies have focused on clinical P. aeruginosa strains from humans, but they are scarce on animal strains. This study was aimed to determine the occurrence of Pseudomonas spp. among faecal samples of healthy animals, and to analyse their antimicrobial resistance, and pathogenicity. Among 704 animal faecal samples analysed, 133 Pseudomonas spp. isolates (23 species) were recovered from 46 samples (6.5%), and classified in 75 different PFGE patterns. Low antimicrobial resistance levels were found, being the highest to aztreonam (50.3%). Five sequence-types (ST1648, ST1711, ST2096, ST2194, ST2252), two serotypes (O:3, O:6), and three virulotypes (analysing 15 virulence and quorum-sensing genes) were observed among the 9 P. aeruginosa strains. Type-3-Secretion System genes were absent in the six O:3-serotype strains that additionally showed high cytotoxicity and produced higher biofilm biomass, phenazine pigments and motility than PAO1 control strain. In these six strains, the exlAB locus, and other virulence genotypes (e.g. RGP69 pathogenicity island) exclusive of PA7 outliers were detected by whole genome sequencing. This is the first description of the presence of the ExlA exolysin in P. aeruginosa from healthy animals, highlighting their pathological importance.
Collapse
|
17
|
Xu Y, Zheng X, Zeng W, Chen T, Liao W, Qian J, Lin J, Zhou C, Tian X, Cao J, Zhou T. Mechanisms of Heteroresistance and Resistance to Imipenem in Pseudomonas aeruginosa. Infect Drug Resist 2020; 13:1419-1428. [PMID: 32523360 PMCID: PMC7234976 DOI: 10.2147/idr.s249475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022] Open
Abstract
Background Heteroresistance is a phenomenon that occurs in all bacteria and can cause treatment failure. Yet, the exact mechanisms responsible for heteroresistance still remain unknown. The following study investigated the mechanisms of imipenem-heteroresistance and -resistance in Pseudomonas aeruginosa clinical isolates from Wenzhou, China. Methods Imipenem resistance was detected by the agar dilution method; heteroresistance was determined by population analysis profiles. Biofilm formation assay and modified carbapenem inactivation methods were also performed. Polymerase chain reaction (PCR) was conducted to detect oprD, and quantitative real-time PCR was used to determine expression levels of oprD, ampC and four efflux pump coding genes (mexB, mexD, mexE and mexY). Results Six imipenem-heteroresistant and -resistant P. aeruginosa isolates were selected respectively. Deficient oprD was detected in all resistant isolates and two heteroresistant isolates. No strains produced carbapenemases. Expression levels of oprD were down-regulated in heteroresistant isolates. Transcription levels of the mexE and mexY were significantly increased in all heterogeneous subpopulations compared with their respective native ones. Compared with the susceptible group, increased mean relative expression levels of mexE and mexY or the decreased mean relative expression levels of oprD were observed in the resistant group (P < 0.05), whereas transcription levels of the mexB and mexD remained unchanged. Conclusion Down-regulation of oprD contributed to the resistance and heteroresistance of imipenem in our P. aeruginosa clinical isolates. In addition, the marginal up-regulation of efflux systems may indirectly affect imipenem resistance. Contrarily, defective oprD was less common in our experimental heteroresistant strains than resistant strains.
Collapse
Affiliation(s)
- Ye Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiangkuo Zheng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Weiliang Zeng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jiao Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jie Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xuebin Tian
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
18
|
|
19
|
Kaushik M, Kumar S, Kapoor RK, Gulati P. Integrons and antibiotic resistance genes in water-borne pathogens: threat detection and risk assessment. J Med Microbiol 2019; 68:679-692. [DOI: 10.1099/jmm.0.000972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Megha Kaushik
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Sanjay Kumar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Rajeev Kr. Kapoor
- Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
20
|
Chairat S, Ben Yahia H, Rojo-Bezares B, Sáenz Y, Torres C, Ben Slama K. High prevalence of imipenem-resistant and metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Burns Hospital in Tunisia: detection of a novel class 1 integron. J Chemother 2019; 31:120-126. [PMID: 30849001 DOI: 10.1080/1120009x.2019.1582168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pseudomonas aeruginosa is one of the most important causes of nosocomial infections, and its eradication is very difficult due to its multidrug resistance. The objective of the present study was to characterize the metallo-beta-lactamases (MBLs), integrons, OprD modifications and virulence factors of P. aeruginosa strains isolated from burn patients and to analyze their genetic relatedness by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Sixty-seven P. aeruginosa isolates were recovered from different clinical samples of burn patients hospitalized in the Intensive Care Burn Unit of the Centre de Traumatologie et des Grands Brulés (Ben Arous, Tunisia), and MBLs and alterations in porin OprD were analyzed among imipenem-resistant isolates. Class 1 and 2 integrons were studied by PCR and sequencing of corresponding variable regions. The presence of eight genes involved in the virulence of P. aeruginosa was investigated by PCR. Fourteen of the 36 imipenem-resistant P. aeruginosa (IRPA) isolates (38.8%) were MBLs producers and harbored the blaVIM-2 gene, in all cases included into class 1 integrons. A new class 1 integron was identified (intI1-blaOXA-10-aadB-blaVIM-2-aadB-blaOXA-10). Five sequence types were detected among IRPA isolates: ST1, ST112, ST238, ST308 and ST395. P. aeruginosa is a major nosocomial pathogen in patients suffering burns, and the spreading of multidrugs resistant and MBL-producing isolates should be controlled in burn units. Moreover, the implantation of infection control guidelines is crucial to decrease the morbidity and mortality of nosocomial infections due to multidrug resistant P. aeruginosa.
Collapse
Affiliation(s)
- Sarra Chairat
- a Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis , Université de Tunis El Manar , Tunis , Tunisia
| | - Houssem Ben Yahia
- a Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis , Université de Tunis El Manar , Tunis , Tunisia
| | - Beatriz Rojo-Bezares
- b Área de Microbiología Molecular , Centro de Investigación Biomédica de La Rioja (CIBIR) , Logroño , Spain
| | - Yolanda Sáenz
- b Área de Microbiología Molecular , Centro de Investigación Biomédica de La Rioja (CIBIR) , Logroño , Spain
| | - Carmen Torres
- c Área de Bioquímica y Biología Molecular , Universidad de La Rioja , Logroño , Spain
| | - Karim Ben Slama
- a Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis , Université de Tunis El Manar , Tunis , Tunisia.,d Institut Supérieur des Sciences Biologiques Appliquées de Tunis , Université de Tunis El Manar , Tunis , Tunisia
| |
Collapse
|
21
|
López-García A, Rocha-Gracia RDC, Bello-López E, Juárez-Zelocualtecalt C, Sáenz Y, Castañeda-Lucio M, López-Pliego L, González-Vázquez MC, Torres C, Ayala-Nuñez T, Jiménez-Flores G, Arenas-Hernández MMDLP, Lozano-Zarain P. Characterization of antimicrobial resistance mechanisms in carbapenem-resistant Pseudomonas aeruginosa carrying IMP variants recovered from a Mexican Hospital. Infect Drug Resist 2018; 11:1523-1536. [PMID: 30288063 PMCID: PMC6160278 DOI: 10.2147/idr.s173455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Pseudomonas aeruginosa infections in hospitals constitute an important problem due to the increasing multidrug resistance (MDR) and carbapenems resistance. The knowledge of resistance mechanisms in Pseudomonas strains is an important issue for an adequate antimicrobial treatment. Therefore, the objective was to investigate other antimicrobial resistance mechanisms in MDR P. aeruginosa strains carrying blaIMP, make a partial plasmids characterization, and determine if modifications in oprD gene affect the expression of the OprD protein. Methodology Susceptibility testing was performed by Kirby Baüer and by Minimum Inhibitory Concentration (presence/absence of efflux pump inhibitor); molecular typing by Pulsed-field gel electrophoresis (PFGE), resistance genotyping and integrons by PCR and sequencing; OprD expression by Western blot; plasmid characterization by MOB Typing Technique, molecular size by PFGE-S1; and blaIMP location by Southern blot. Results Among the 59 studied P. aeruginosa isolates, 41 multidrug resistance and carbapenems resistance isolates were detected and classified in 38 different PFGE patterns. Thirteen strains carried blaIMP; 16 blaGES and four carried both genes. This study centered on the 17 strains har-boring blaIMP. New variants of β-lactamases were identified (blaGES-32, blaIMP-56, blaIMP-62) inside of new arrangements of class 1 integrons. The presence of blaIMP gene was detected in two plasmids in the same strain. The participation of the OprD protein and efflux pumps in the resistance to carbapenems and quinolones is shown. No expression of the porin OprD due to stop codon or IS in the gene was found. Conclusions This study shows the participation of different resistance mechanisms, which are reflected in the levels of MIC to carbapenems. This is the first report of the presence of three new variants of β-lactamases inside of new arrangements of class 1 integrons, as well as the presence of two plasmids carrying blaIMP in the same P. aeruginosa strain isolated in a Mexican hospital.
Collapse
Affiliation(s)
- Alma López-García
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Rosa Del Carmen Rocha-Gracia
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Elena Bello-López
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Claudia Juárez-Zelocualtecalt
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Yolanda Sáenz
- Area de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Miguel Castañeda-Lucio
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Liliana López-Pliego
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - María Cristina González-Vázquez
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Carmen Torres
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Teolincacihuatl Ayala-Nuñez
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Guadalupe Jiménez-Flores
- Laboratorio de Análisis Clínicos, Sección de Microbiología, Hospital Regional Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Puebla, Mexico
| | - Margarita María de la Paz Arenas-Hernández
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Patricia Lozano-Zarain
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| |
Collapse
|
22
|
Bellés A, Bueno J, Rojo-Bezares B, Torres C, Javier Castillo F, Sáenz Y, Seral C. Characterisation of VIM-2-producing Pseudomonas aeruginosa isolates from lower tract respiratory infections in a Spanish hospital. Eur J Clin Microbiol Infect Dis 2018; 37:1847-1856. [DOI: 10.1007/s10096-018-3318-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|
23
|
Pseudomonas aeruginosa Isolates from Spanish Children: Occurrence in Faecal Samples, Antimicrobial Resistance, Virulence, and Molecular Typing. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8060178. [PMID: 29992165 PMCID: PMC6016177 DOI: 10.1155/2018/8060178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/02/2018] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa is a major opportunistic human pathogen, responsible for nosocomial infections and infections in patients with impaired immune systems. Little data exist about the faecal colonisation by P. aeruginosa isolates in healthy humans. The occurrence, antimicrobial resistance phenotype, virulence genotype, and genetic lineages of P. aeruginosa from faecal samples of children from two different Spanish regions were characterised. Seventy-two P. aeruginosa were isolated from 1,443 faecal samples. Low antimicrobial resistance levels were detected: ceftazidime (8%), cefepime (7%), aztreonam (7%), gentamicin (3%), ciprofloxacin (1%), and imipenem (1%); susceptibility to meropenem, amikacin, tobramycin, levofloxacin, and colistin. Four multidrug-resistant strains were found. Important differences were detected between both geographical regions. Forty-one sequence types were detected among the 48 tested strains. Virulence and quorum sensing genes were analysed and 13 virulotypes were detected, being 26 exoU-positive strains. Alteration in protein OprD showed eight different patterns. The unique imipenem-resistant strain showed a premature stop codon in OprD. Intestinal colonisation by P. aeruginosa, mainly by international clones (as ST244, ST253, and ST274), is an important factor for the systemic infections development and the environmental dissemination. Periodic active surveillance is useful to identify these community human reservoirs and to control the evolution of antibiotic resistance and virulence activity.
Collapse
|
24
|
Yin S, Chen P, You B, Zhang Y, Jiang B, Huang G, Yang Z, Chen Y, Chen J, Yuan Z, Zhao Y, Li M, Hu F, Gong Y, Peng Y. Molecular Typing and Carbapenem Resistance Mechanisms of Pseudomonas aeruginosa Isolated From a Chinese Burn Center From 2011 to 2016. Front Microbiol 2018; 9:1135. [PMID: 29896186 PMCID: PMC5987737 DOI: 10.3389/fmicb.2018.01135] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is the leading cause of infection in burn patients. The increasing carbapenem resistance of P. aeruginosa has become a serious challenge to clinicians. The present study investigated the molecular typing and carbapenem resistance mechanisms of 196 P. aeruginosa isolates from the bloodstream and wound surface of patients in our burn center over a period of 6 years. By multilocus sequence typing (MLST), a total of 58 sequence types (STs) were identified. An outbreak of ST111, a type that poses a high international risk, occurred in 2014. The isolates from wound samples of patients without bacteremia were more diverse and more susceptible to antibiotics than strains collected from the bloodstream or the wound surface of patients with bacteremia. Importantly, a large proportion of the patients with multisite infection (46.51%) were simultaneously infected by different STs in the bloodstream and wound surface. Antimicrobial susceptibility testing of these isolates revealed high levels of resistance to carbapenems, with 35.71% susceptibility to imipenem and 32.14% to meropenem. To evaluate mechanisms associated with carbapenem resistance, experiments were conducted to determine the prevalence of carbapenemase genes, detect alterations of the oprD porin gene, and measure expression of the ampC β-lactamase gene and the mexB multidrug efflux gene. The main mechanism associated with carbapenem resistance was mutational inactivation of oprD (88.65%), accompanied by overexpression of ampC (68.09%). In some cases, oprD was inactivated by insertion sequence element IS1411, which has not been found previously in P. aeruginosa. These findings may help control nosocomial P. aeruginosa infections and improve clinical practice.
Collapse
Affiliation(s)
- Supeng Yin
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bo You
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Number 324 Hospital, People's Liberation Army, Chongqing, China
| | - Yulong Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Number 474 Hospital, People's Liberation Army, Ürümqi, China
| | - Bei Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guangtao Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zichen Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiqiang Yuan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yali Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yizhi Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
25
|
Ellappan K, Belgode Narasimha H, Kumar S. Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in South India. J Glob Antimicrob Resist 2018; 12:37-43. [DOI: 10.1016/j.jgar.2017.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022] Open
|
26
|
The quick loss of carbapenem susceptibility in Pseudomonas aeruginosa at intensive care units. Int J Clin Pharm 2017; 40:175-182. [DOI: 10.1007/s11096-017-0524-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/04/2017] [Indexed: 10/18/2022]
|
27
|
Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709-730. [PMID: 28407717 DOI: 10.1080/1040841x.2017.1303661] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transposable elements (TE), small mobile genetic elements unable to exist independently of the host genome, were initially believed to be exclusively deleterious genomic parasites. However, it is now clear that they play an important role as bacterial mutagenic agents, enabling the host to adapt to new environmental challenges and to colonize new niches. This review focuses on the impact of insertion sequences (IS), arguably the smallest TE, on bacterial genome plasticity and concomitant adaptability of phenotypic traits, including resistance to antibacterial agents, virulence, pathogenicity and catabolism. The direct consequence of IS transposition is the insertion of one DNA sequence into another. This event can result in gene inactivation as well as in modulation of neighbouring gene expression. The latter is usually mediated by de-repression or by the introduction of a complete or partial promoter located within the element. Furthermore, transcription and transposition of IS are affected by host factors and in some cases by environmental signals offering the host an adaptive strategy and promoting genetic variability to withstand the environmental challenges.
Collapse
Affiliation(s)
- Joachim Vandecraen
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium.,b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Michael Chandler
- c Laboratoire de Microbiologie et Génétique Moléculaires, Centre national de la recherche scientifique , Toulouse , France
| | - Abram Aertsen
- b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Rob Van Houdt
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| |
Collapse
|
28
|
Caracterización de mecanismos de resistencia a carbapenémicos en aislados clínicos de Pseudomonas aeruginosa en un hospital español. Enferm Infecc Microbiol Clin 2017; 35:141-147. [DOI: 10.1016/j.eimc.2015.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022]
|
29
|
Li J, Zou M, Dou Q, Hu Y, Wang H, Yan Q, Liu WE. Characterization of clinical extensively drug-resistant Pseudomonas aeruginosa in the Hunan province of China. Ann Clin Microbiol Antimicrob 2016; 15:35. [PMID: 27215335 PMCID: PMC4877936 DOI: 10.1186/s12941-016-0148-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 01/09/2023] Open
Abstract
Background Pseudomonas aeruginosa strains that are classed as extensively drug resistant (XDR-PA) are resistant to all antibiotics except for one or two classes and are frequently the cause of hard-to-treat infections worldwide. Our study aimed to characterize clinical XDR-PA isolates recovered during 2011–2012 at nine hospitals in the Hunan province of China. Methods Thirty-seven non-repetitive XDR-PA strains from 37 patients were investigated for genes encoding antimicrobial resistance determinants, efflux pumps, outer membrane proteins, and movable genetic elements using polymerase chain reaction (PCR). The expression of genes encoding the efflux pump component MexA and the outer membrane protein OprD was measured using real-time PCR. In addition, clonal relatedness of these XDR-PA isolates was analyzed by pulsed-field gel electrophoresis (PFGE). Results Various genes encoding antimicrobial resistance determinants were found in all isolates. In particular, the blaTEM-1, blaCARB, armA, blaIMP-4, blaVIM-2, and rmtB, were found in 100, 37.8, 22, 22, 19 and 5 % of the isolates, respectively. Remarkably, two isolates coharbored blaIMP-4, blaVIM-2, and armA. In all 37 antibiotic-resistant strains, the relative expression of oprD was decreased while mexA was increased compared to the expression of these genes in antibiotic-susceptible P. aeruginosa strains. All of the XDR-PA isolates harbored class I integrons as well as multiple other mobile genetic elements, such as tnpU, tnp513, tnpA (Tn21), and merA. A high genotypic diversity among the strains was detected by PFGE. Conclusions Multiple antibiotic-resistance mechanisms contributed to the drug resistance of the XDR-PA isolates investigated in this study. Thus, the XDR-PA isolates in this area were not clonally related. Instead, multiple types of movable genetic elements were coharbored within each XDR-PA isolate, which may have aided the rapid development of these XDR-PA strains. This is the first report of XDR-PA strains that coharbor blaIMP-4, blaVIM-2, and armA.
Collapse
Affiliation(s)
- Jun Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| | - Mingxiang Zou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China.
| | - Qingya Dou
- Department of Infection Control Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongmei Hu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| | - Haichen Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| | - Wen' En Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| |
Collapse
|
30
|
Pan YP, Xu YH, Wang ZX, Fang YP, Shen JL. Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa. Arch Microbiol 2016; 198:565-71. [PMID: 27060003 DOI: 10.1007/s00203-016-1215-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/12/2016] [Accepted: 03/28/2016] [Indexed: 11/27/2022]
Abstract
Efflux pump systems are one of the most important mechanisms conferring multidrug resistance in Pseudomonas aeruginosa. MexAB-OprM efflux pump is one of the largest multi-drug resistant efflux pumps with high-level expression, which is controlled by regulatory genes mexR, nalC, and nalD. This study investigated the role of efflux pump MexAB-OprM in 75 strains of carbapenem-resistant P. aeruginosa and evaluated the influence of point mutation of the regulatory genes. The minimum inhibitory concentrations of imipenem and meropenem, with or without MC207110, an efflux pump inhibitor, were determined by agar dilution method to select the positive strains for an overexpressed active efflux pump. Carba NP test and EDTA-disk synergy test were used for the detection of carbapenemase and metallo-β-lactamases, respectively. The gene mexA, responsible for the fusion protein structure, and the reference gene rpoD of the MexAB-OprM pump were amplified by real-time PCR. The quantity of relative mRNA expression was determined simultaneously. By PCR method, the efflux regulatory genes mexR, nalC, and nalD and outer membrane protein OprD2 were amplified for the strains showing overexpression of MexAB-OprM and subsequently analyzed by BLAST. Among the 75 P. aeruginosa strains, the prevalence of efflux pump-positive phenotype was 17.3 % (13/75). Carba NP test and EDTA-disk synergy test were all negative in the 13 strains. PCR assay results showed that ten strains overexpressed the MexAB-OprM efflux pump and were all positive for the regulatory genes mexR, nalC, and nalD. Sequence analysis indicated that of the ten isolates, nine had a mutation (Gly → Glu) at 71st amino acid position in NalC, and eight also had a mutation (Ser → Arg) at 209th position in NalC. Only one strain had a mutation (Thr → Ile) at the 158th amino acid position in NalD, whereas eight isolates had mutations in MexR. In conclusion, overexpression of efflux pump MexAB-OprM plays an important role in carbapenem-resistant P. aeruginosa. The mutations of regulatory genes may be a main factor contributing to overexpression of MexAB-OprM.
Collapse
Affiliation(s)
- Ya-Ping Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Yuan-Hong Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Zhong-Xin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Ya-Ping Fang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Ji-Lu Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
31
|
Rojo-Bezares B, Cavalié L, Dubois D, Oswald E, Torres C, Sáenz Y. Characterization of carbapenem resistance mechanisms and integrons in Pseudomonas aeruginosa strains from blood samples in a French hospital. J Med Microbiol 2016; 65:311-319. [DOI: 10.1099/jmm.0.000225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Beatriz Rojo-Bezares
- Centro de Investigación Biomédica de La Rioja (CIBIR), Área de Microbiología Molecular, Logroño, Spain
| | - Laurent Cavalié
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Inserm UMR1043 – CNRS UMR5282 – INRA USC1360, Université Toulouse III, Toulouse, France
| | - Damien Dubois
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Inserm UMR1043 – CNRS UMR5282 – INRA USC1360, Université Toulouse III, Toulouse, France
| | - Eric Oswald
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Inserm UMR1043 – CNRS UMR5282 – INRA USC1360, Université Toulouse III, Toulouse, France
| | - Carmen Torres
- Centro de Investigación Biomédica de La Rioja (CIBIR), Área de Microbiología Molecular, Logroño, Spain
- Universidad de La Rioja, Área de Bioquímica y Biología Molecular, Logroño, Spain
| | - Yolanda Sáenz
- Centro de Investigación Biomédica de La Rioja (CIBIR), Área de Microbiología Molecular, Logroño, Spain
| |
Collapse
|
32
|
Role of the Outer Membrane Protein OprD2 in Carbapenem-Resistance Mechanisms of Pseudomonas aeruginosa. PLoS One 2015; 10:e0139995. [PMID: 26440806 PMCID: PMC4595132 DOI: 10.1371/journal.pone.0139995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022] Open
Abstract
We investigated the relationship between the outer membrane protein OprD2 and carbapenem-resistance in 141 clinical isolates of Pseudomonas aeruginosa collected between January and December 2013 from the First Affiliated Hospital of Anhui Medical University in China. Agar dilution methods were employed to determine the minimum inhibitory concentration of meropenem (MEM) and imipenem (IMP) for P. aeruginosa. The gene encoding OprD2 was amplified from141 P. aeruginosa isolates and analyzed by PCR and DNA sequencing. Differences between the effects of IMPR and IMPS groups on the resistance of the P. aeruginosa were observed by SDS-poly acrylamide gel electrophoresis (SDS-PAGE). Three resistance types were classified in the 141 carbapenem-resistant P. aeruginosa (CRPA) isolates tested, namely IMPRMEMR (66.7%), IMPRMEMS (32.6%), and IMPRMEMS (0.7%). DNA sequencing revealed significant diverse gene mutations in the OprD2-encoding gene in these strains. Thirty-four strains had large fragment deletions in the OprD2gene, in 6 strains the gene contained fragment inserts, and in 96 resistant strains, the gene featured small fragment deletions or multi-site mutations. Only 4 metallo-β-lactamase strains and 1 imipenem-sensitive (meropenem-resistant) strain showed a normal OprD2 gene. Using SDS-PAGE to detect the outer membrane protein in 16 CRPA isolates, it was found that 10 IMPRMEMR strains and 5 IMPRMEMS strains had lost the OprD2 protein, while the IMPSMEMR strain contained a normal 46-kDa protein. In conclusion, mutation or loss of the OprD2-encoding gene caused the loss of OprD2, which further led to carbapenem-resistance of P. aeruginosa. Our findings provide insights into the mechanism of carbapenem resistance in P. aeruginosa.
Collapse
|
33
|
Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 2015; 21-22:41-59. [PMID: 26304792 DOI: 10.1016/j.drup.2015.08.002] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/04/2015] [Indexed: 01/01/2023]
Abstract
The increasing prevalence of chronic and hospital-acquired infections produced by multidrug-resistant (MDR) or extensively drug-resistant (XDR) Pseudomonas aeruginosa strains is associated with significant morbidity and mortality. This growing threat results from the extraordinary capacity of this pathogen for developing resistance through chromosomal mutations and from the increasing prevalence of transferable resistance determinants, particularly those encoding carbapenemases or extended-spectrum β-lactamases (ESBLs). P. aeruginosa has a nonclonal epidemic population structure, composed of a limited number of widespread clones which are selected from a background of a large quantity of rare and unrelated genotypes that are recombining at high frequency. Indeed, recent concerning reports have provided evidence of the existence of MDR/XDR global clones, denominated high-risk clones, disseminated in hospitals worldwide; ST235, ST111, and ST175 are likely those more widespread. Noteworthy, the vast majority of infections by MDR, and specially XDR, strains are produced by these and few other clones worldwide. Moreover, the association of high-risk clones, particularly ST235, with transferable resistance is overwhelming; nearly 100 different horizontally-acquired resistance elements and up to 39 different acquired β-lactamases have been reported so far among ST235 isolates. Likewise, MDR internationally-disseminated epidemic strains, such as the Liverpool Epidemic Strain (LES, ST146), have been noted as well among cystic fibrosis patients. Here we review the population structure, epidemiology, antimicrobial resistance mechanisms and virulence of the P. aeruginosa high-risk clones. The phenotypic and genetic factors potentially driving the success of high-risk clones, the aspects related to their detection in the clinical microbiology laboratory and the implications for infection control and public health are also discussed.
Collapse
Affiliation(s)
- Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Ctra. Valldemossa 79, 07010 Palma de Mallorca, Spain.
| | - Xavier Mulet
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Ctra. Valldemossa 79, 07010 Palma de Mallorca, Spain
| | - Carla López-Causapé
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Ctra. Valldemossa 79, 07010 Palma de Mallorca, Spain
| | - Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Ctra. Valldemossa 79, 07010 Palma de Mallorca, Spain
| |
Collapse
|
34
|
Mathlouthi N, Areig Z, Al Bayssari C, Bakour S, Ali El Salabi A, Ben Gwierif S, Zorgani AA, Ben Slama K, Chouchani C, Rolain JM. Emergence of Carbapenem-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Clinical Isolates Collected from Some Libyan Hospitals. Microb Drug Resist 2015; 21:335-41. [DOI: 10.1089/mdr.2014.0235] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Najla Mathlouthi
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Campus Universitaire, Université de Tunis El-Manar, El-Manar, Tunisie
| | - Zaynab Areig
- Infection Control Office, Benghazi Medical Centre, Benghazi, Libya
- Department of Microbiology, The Libyan Academy, Benghazi, Libya
| | - Charbel Al Bayssari
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Sofiane Bakour
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Allaaeddin Ali El Salabi
- Infection Control Office, Benghazi Medical Centre, Benghazi, Libya
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Salha Ben Gwierif
- Department of Microbiology, The Libyan Academy, Benghazi, Libya
- Department of Botany, University of Benghazi, Benghazi, Libya
| | - Abdulaziz A. Zorgani
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Tripoli, Libya
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Campus Universitaire, Université de Tunis El-Manar, El-Manar, Tunisie
| | - Chedly Chouchani
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Campus Universitaire, Université de Tunis El-Manar, El-Manar, Tunisie
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Hammam-Lif, Tunisie
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| |
Collapse
|
35
|
Estepa V, Rojo-Bezares B, Torres C, Sáenz Y. Genetic Lineages and Antimicrobial Resistance inPseudomonasspp. Isolates Recovered from Food Samples. Foodborne Pathog Dis 2015; 12:486-91. [DOI: 10.1089/fpd.2014.1928] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Vanesa Estepa
- Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
36
|
Zhao WH, Hu ZQ. Acquired metallo-β-lactamases and their genetic association with class 1 integrons and ISCR elements in Gram-negative bacteria. Future Microbiol 2015; 10:873-87. [DOI: 10.2217/fmb.15.18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Metallo-β-lactamases (MBLs) can hydrolyze almost all β-lactam antibiotics and are resistant to clinically available β-lactamase inhibitors. Numerous types of acquired MBLs have been identified, including IMP, VIM, NDM, SPM, GIM, SIM, DIM, KHM, TMB, FIM and AIM. IMPs and VIMs are the most frequent MBLs and disseminate in members of the family Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp. Acquired MBL genes are often embedded in integrons, and some are associated with insertion sequence (IS) elements. The class 1 integrons and IS common region (ISCR) elements are usually harbored in transposons and/or plasmids, forming so-called mobile vesicles for horizontal transfer of captured genes between bacteria. Here, we review the MBL superfamily identified in Gram-negative bacteria, with an emphasis on the phylogeny of acquired MBLs and their genetic association with class 1 integrons and IS common region elements.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- Department of Microbiology & Immunology, Showa University School of Medicine, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| | - Zhi-Qing Hu
- Department of Microbiology & Immunology, Showa University School of Medicine, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| |
Collapse
|
37
|
Estepa V, Rojo-Bezares B, Torres C, Sáenz Y. Faecal carriage of Pseudomonas aeruginosa in healthy humans: antimicrobial susceptibility and global genetic lineages. FEMS Microbiol Ecol 2014; 89:15-9. [PMID: 25121169 DOI: 10.1111/1574-6941.12301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to analyse the Pseudomonas aeruginosa faecal carriage rate in 98 healthy humans and to perform the phenotypic and genotypic characterization of recovered isolates. The genetic relatedness among the isolates was analysed by pulsed-field gel electrophoresis and multilocus sequence typing that was compared with worldwide epidemic clones. Pseudomonas aeruginosa was isolated from eight healthy individuals (8.2%), and two of them remained colonized after 5 months (in one case by the same clone). All 10 isolates (one/sample) were susceptible to 14 tested antipseudomonal agents and lacked integron structures. Six pulsed-field gel electrophoresis patterns and six sequence types (ST245, ST253, ST254, ST274, ST663 and the new one, ST1059) were identified among them. Four groups of OprD alterations were detected based on mutations and deletions related to PAO1 reference strain in our carbapenem-susceptible strains. This is the first study focused on P. aeruginosa from faecal samples of healthy humans that provides additional insights into the antimicrobial resistance and genetic diversity of P. aeruginosa. Although the isolates were antimicrobial susceptible, most of the sequence types detected were genetically related to Spanish epidemic clones or globally spread sequence types, such as ST274 and ST253.
Collapse
|
38
|
Sequence types 235, 111, and 132 predominate among multidrug-resistant pseudomonas aeruginosa clinical isolates in Croatia. Antimicrob Agents Chemother 2014; 58:6277-83. [PMID: 25070098 DOI: 10.1128/aac.03116-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A population analysis of 103 multidrug-resistant Pseudomonas aeruginosa isolates from Croatian hospitals was performed. Twelve sequence types (STs) were identified, with a predominance of international clones ST235 (serotype O11 [41%]), ST111 (serotype O12 [15%]), and ST132 (serotype O6 [11%]). Overexpression of the natural AmpC cephalosporinase was common (42%), but only a few ST235 or ST111 isolates produced VIM-1 or VIM-2 metallo-β-lactamases or PER-1 or GES-7 extended-spectrum β-lactamases.
Collapse
|
39
|
First description of a blaVIM-2-carrying Citrobacter freundii isolate in Spain. Antimicrob Agents Chemother 2014; 58:6331-2. [PMID: 25022585 DOI: 10.1128/aac.03168-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Comparison of local features from two Spanish hospitals reveals common and specific traits at multiple levels of the molecular epidemiology of metallo-β-lactamase-producing Pseudomonas spp. Antimicrob Agents Chemother 2014; 58:2454-8. [PMID: 24492368 DOI: 10.1128/aac.02586-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Twenty-seven well-characterized metallo-β-lactamase (MBL)-producing Pseudomonas strains from two distantly located hospitals were analyzed. The results revealed specific features defining the multilevel epidemiology of strains from each hospital in terms of species, clonality, predominance of high-risk clones, composition/diversity of integrons, and linkages of Tn402-related structures. Therefore, despite the global trends driving the epidemiology of MBL-producing Pseudomonas spp., the presence of local features has to be considered in order to understand this threat and implement proper control strategies.
Collapse
|