1
|
Fernandez-Brando RJ, Sacerdoti F, Amaral MM, Bernal AM, Da Rocha M, Belardo M, Palermo MS, Ibarra CA. Detection of plasma anti-lipopolysaccharide (LPS) antibodies against enterohemorrhagic Escherichia coli (EHEC) in asymptomatic kindergarten teachers from Buenos Aires province. Rev Argent Microbiol 2024; 56:25-32. [PMID: 37704516 DOI: 10.1016/j.ram.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 09/15/2023] Open
Abstract
In Argentina, hemolytic uremic syndrome (HUS) caused by EHEC has the highest incidence in the world. EHEC infection has an endemo-epidemic behavior, causing 20-30% of acute bloody diarrhea syndrome in children under 5 years old. In the period 2016-2020, 272 new cases per year were notified to the National Health Surveillance System. Multiple factors are responsible for HUS incidence in Argentina including person-to-person transmission. In order to detect possible EHEC carriers, we carried out a preliminary study of the frequency of kindergarten teachers with anti-LPS antibodies against the most prevalent EHEC serotypes in Argentina. We analyzed 61 kindergarten teachers from 26 institutions from José C. Paz district, located in the suburban area of Buenos Aires province, Argentina. Fifty-one percent of the plasma samples had antibodies against O157, O145, O121 and O103 LPS: 6.4% of the positive samples had IgM isotype (n=2), 61.3% IgG isotype (n=19) and 32.3% IgM and IgG (n=10). Given that antibodies against LPS antigens are usually short-lived specific IgM detection may indicate a recent infection. In addition, the high percentage of positive samples may indicate a frequent exposure to EHEC strains in the cohort studied, as well as the existence of a large non-symptomatic population of adults carrying pathogenic strains that could contribute to the endemic behavior through person-to-person transmission. The improvement of continuous educational programs in kindergarten institutions could be a mandatory measure to reduce HUS cases not only in Argentina but also globally.
Collapse
Affiliation(s)
- Romina J Fernandez-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, J.A. Pacheo de Melo 3081, C1425 CABA, Argentina
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, IFIBIO-Houssay (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 CABA, Argentina
| | - María M Amaral
- Laboratorio de Fisiopatogenia, IFIBIO-Houssay (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 CABA, Argentina
| | - Alan M Bernal
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, J.A. Pacheo de Melo 3081, C1425 CABA, Argentina
| | - Marcelo Da Rocha
- Asociación Lucha contra el Síndrome Urémico Hemolítico (LUSUH), Carlos Pellegrini 781 Piso 8, C1009 CABA, Argentina
| | - Marcela Belardo
- Instituto de Estudios Sociales en Contexto de Desigualdades (IESCODE-CONICET), Universidad Nacional de José C. Paz, Leandro N. Alem 4731, B1665, José C. Paz, Buenos Aires, Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, J.A. Pacheo de Melo 3081, C1425 CABA, Argentina.
| | - Cristina A Ibarra
- Laboratorio de Fisiopatogenia, IFIBIO-Houssay (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 CABA, Argentina.
| |
Collapse
|
2
|
Bernal AM, Sosa FN, Todero MF, Montagna DR, Vermeulen ME, Fernández-Brando RJ, Ramos MV, Errea AJ, Rumbo M, Palermo MS. Nasal immunization with H7 flagellin protects mice against hemolytic uremic syndrome secondary to Escherichia coli O157:H7 gastrointestinal infection. Front Cell Infect Microbiol 2023; 13:1143918. [PMID: 37260706 PMCID: PMC10227447 DOI: 10.3389/fcimb.2023.1143918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Shiga-toxin (Stx) producing Escherichia coli (STEC) O157:H7 is the most frequent serotype associated with hemolytic uremic syndrome (HUS) after gastrointestinal infections. Protection against HUS secondary to STEC infections has been experimentally assayed through the generation of different vaccine formulations. With focus on patients, the strategies have been mainly oriented to inhibit production of Stx or its neutralization. However, few approaches have been intended to block gastrointestinal phase of this disease, which is considered the first step in the pathogenic cascade of HUS. The aim of this work was to assay H7 flagellin as a mucosal vaccine candidate to prevent the systemic complications secondary to E. coli O157:H7 infections. Materials and methods The cellular and humoral immune response after H7 nasal immunization in mice were studied by the analysis of systemic and intestinal specific antibody production, as well as cytokine production and lymphocyte proliferation against H7 flagellin ex vivo. Results Immunized mice developed a strong and specific anti-H7 IgG and IgA response, at systemic and mucosal level, as well as a cellular Th1/Th2/Th17 response. H7 induced activation of bone marrow derived dendritic cells in vitro and a significant delayed-type hypersensitivity (DTH) response in immunized mice. Most relevant, immunized mice were completely protected against the challenge with an E. coli O157:H7 virulent strain in vivo, and surviving mice presented high titres of anti-H7 and Stx antibodies. Discussion These results suggest that immunization avoids HUS outcome and allows to elicit a specific immune response against other virulence factors.
Collapse
Affiliation(s)
- Alan Mauro Bernal
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Fernando Nicolás Sosa
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Florencia Todero
- Laboratorio de Fisiología de Procesos Inflamatorios, IMEX CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Daniela Romina Montagna
- Laboratorio de Oncología Experimental, IMEX CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Mónica Elba Vermeulen
- Laboratorio de Células Presentadoras de Antígenos y Respuesta Inflamatoria, IMEX CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Romina Jimena Fernández-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Agustina Juliana Errea
- Instituto de Estudios Inmunológicos y Fisiopatológicos - CONICET - Universidad Nacional de La Plata, La Plata, Argentina
| | - Martin Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - CONICET - Universidad Nacional de La Plata, La Plata, Argentina
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
3
|
Manfredi E, Rocca MF, Zintgraff J, Irazu L, Miliwebsky E, Carbonari C, Deza N, Prieto M, Chinen I. Rapid and accurate detection of Shiga toxin-producing Escherichia coli (STEC) serotype O157 : H7 by mass spectrometry directly from the isolate, using 10 potential biomarker peaks and machine learning predictive models. J Med Microbiol 2023; 72. [PMID: 37130048 DOI: 10.1099/jmm.0.001675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Introduction. The different pathotypes of Escherichia coli can produce a large number of human diseases. Surveillance is complex since their differentiation is not easy. In particular, the detection of Shiga toxin-producing Escherichia coli (STEC) serotype O157 : H7 consists of stool culture of a diarrhoeal sample on enriched and/or selective media and identification of presumptive colonies and confirmation, which require a certain level of training and are time-consuming and expensive.Hypothesis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a quick and easy way to obtain the protein spectrum of a microorganism, identify the genus and species, and detect potential biomarker peaks of certain characteristics.Aim. To verify the usefulness of MALDI-TOF MS to rapidly identify and differentiate STEC O157 : H7 from other E. coli pathotypes.Methodology. The direct method was employed, and the information obtained using Microflex LT platform-based analysis from 60 clinical isolates (training set) was used to detect differences between the peptide fingerprints of STEC O157 : H7 and other E. coli strains. The protein profiles detected laid the foundations for the development and evaluation of machine learning predictive models in this study.Results. The detection of potential biomarkers in combination with machine learning predictive models in a new set of 142 samples, called 'test set', achieved 99.3 % (141/142) correct classification, allowing us to distinguish between the isolates of STEC O157 : H7 and the other E. coli group. Great similarity was also observed with respect to this last group and the Shigella species when applying the potential biomarkers algorithm, allowing differentiation from STEC O157 : H7Conclusion. Given that STEC O157 : H7 is the main causal agent of haemolytic uremic syndrome, and based on the performance values obtained in the present study (sensitivity=98.5 % and specificity=100.0 %), the implementation of this technique provides a proof of principle for MALDI-TOF MS and machine learning to identify biomarkers to rapidly screen or confirm STEC O157 : H7 versus other diarrhoeagenic E. coli in the future.
Collapse
Affiliation(s)
- Eduardo Manfredi
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas (INEI) - Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
| | - María Florencia Rocca
- Instituto Nacional de Enfermedades Infecciosas (INEI) - Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
- Red Nacional de Espectrometría de Masas aplicada a la Microbiología Clínica (RNEM Argentina), Buenos Aires, Argentina
| | - Jonathan Zintgraff
- Instituto Nacional de Enfermedades Infecciosas (INEI) - Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
- Red Nacional de Espectrometría de Masas aplicada a la Microbiología Clínica (RNEM Argentina), Buenos Aires, Argentina
| | - Lucía Irazu
- Instituto Nacional de Enfermedades Infecciosas (INEI) - Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
| | - Elizabeth Miliwebsky
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas (INEI) - Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
| | - Carolina Carbonari
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas (INEI) - Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
| | - Natalia Deza
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas (INEI) - Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
| | - Monica Prieto
- Instituto Nacional de Enfermedades Infecciosas (INEI) - Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
- Red Nacional de Espectrometría de Masas aplicada a la Microbiología Clínica (RNEM Argentina), Buenos Aires, Argentina
| | - Isabel Chinen
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas (INEI) - Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
| |
Collapse
|
4
|
Fiorentino GA, Miliwebsky E, Ramos MV, Zolezzi G, Chinen I, Guzmán G, Nocera R, Fernández-Brando R, Santiago A, Exeni R, Palermo MS. Etiological diagnosis of post-diarrheal hemolytic uremic syndrome (HUS): humoral response contribution. Pediatr Nephrol 2023; 38:739-748. [PMID: 35802271 DOI: 10.1007/s00467-022-05671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Hemolytic uremic syndrome (HUS) is characterized by microangiopathic hemolysis, thrombocytopenia, and thrombus formation leading to tissue injury. HUS is classified according to its etiology as post-diarrheal or atypical HUS. Differential diagnosis of both entities continues to be a challenge for pediatric physicians. METHODS The aim was to improve the rapid etiological diagnosis of post-diarrheal HUS cases based on the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection by screening of stx1/stx2 and rfbO157 in cultured stools by multiplex PCR, and the additional detection of anti-lipopolysaccharide (anti-LPS) O157, O145, and O121 antibodies by Glyco-iELISA test. In addition, we studied patients' relatives to detect circulating pathogenic strains that could contribute to HUS diagnosis and/or lead to the implementation of measures to prevent dissemination of familial outbreaks. This study describes the diagnosis of 31 HUS patients admitted to Hospital Municipal de Niños Prof Dr Ramón Exeni during the 2017-2020 period. RESULTS Stool PCR confirmed the diagnosis of STEC associated with HUS in 38.7% of patients (12/31), while anti-LPS serology did in 88.9% (24/27). In those patients in which both methods were carried out (n = 27), a strong association between the results obtained was found. We found that 30.4% of HUS patients had at least one relative positive for STEC. CONCLUSIONS We could identify 96.3% (26/27) of HUS cases as secondary to STEC infections when both methods (genotyping and serology) were used. The results demonstrated a high circulation of STEC in HUS families and the prevalence of the STEC O157 serotype (83%) in our pediatric cohort. A higher-resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Gabriela A Fiorentino
- Laboratorio del Hospital de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Elizabeth Miliwebsky
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - María Victoria Ramos
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gisela Zolezzi
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Isabel Chinen
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Glenda Guzmán
- Laboratorio del Hospital de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Rubén Nocera
- Laboratorio del Hospital de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Romina Fernández-Brando
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Adriana Santiago
- Departamento de Nefrología, Hospital Municipal de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Ramón Exeni
- Departamento de Nefrología, Hospital Municipal de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Marina S Palermo
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Weiler N, Martínez LJ, Campos J, Poklepovich T, Orrego MV, Ortiz F, Alvarez M, Putzolu K, Zolezzi G, Miliwebsky E, Chinen I. First molecular characterization of Escherichia coli O157:H7 isolates from clinical samples in Paraguay using whole-genome sequencing. Rev Argent Microbiol 2023:S0325-7541(22)00101-8. [PMID: 36599753 DOI: 10.1016/j.ram.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 09/07/2022] [Accepted: 11/16/2022] [Indexed: 01/04/2023] Open
Abstract
Escherichia coli O157:H7 is a foodborne pathogen implicated in numerous outbreaks worldwide that has the ability to cause extra-intestinal complications in humans. The Enteropathogens Division of the Central Public Health Laboratory (CPHL) in Paraguay is working to improve the genomic characterization of Shiga toxin-producing E. coli (STEC) to enhance laboratory-based surveillance and investigation of foodborne disease outbreaks. Whole genome sequencing (WGS) is proposed worldwide to be used in the routine laboratory as a high-resolution tool that allows to have all the results in a single workflow. This study aimed to carry out for the first time, the genomic characterization by WGS of nine STEC O157:H7 strains isolated from human samples in Paraguay. We were able to identify virulence and resistance mechanisms, MLST subtype, and even establish the phylogenetic relationships between isolates. Furthermore, we detected the presence of strains belonging to hypervirulent clade 8 in most of the isolates studied.
Collapse
Affiliation(s)
- Natalia Weiler
- Central Public Health Laboratory, 1535 Asunción, Paraguay.
| | | | - Josefina Campos
- National Institute of Infectious Diseases - ANLIS "Dr. Carlos G Malbrán", C1282 AFF Buenos Aires, Argentina
| | - Tomas Poklepovich
- National Institute of Infectious Diseases - ANLIS "Dr. Carlos G Malbrán", C1282 AFF Buenos Aires, Argentina
| | | | - Flavia Ortiz
- Central Public Health Laboratory, 1535 Asunción, Paraguay
| | | | - Karina Putzolu
- National Institute of Infectious Diseases - ANLIS "Dr. Carlos G Malbrán", C1282 AFF Buenos Aires, Argentina
| | - Gisela Zolezzi
- National Institute of Infectious Diseases - ANLIS "Dr. Carlos G Malbrán", C1282 AFF Buenos Aires, Argentina
| | - Elisabeth Miliwebsky
- National Institute of Infectious Diseases - ANLIS "Dr. Carlos G Malbrán", C1282 AFF Buenos Aires, Argentina
| | - Isabel Chinen
- National Institute of Infectious Diseases - ANLIS "Dr. Carlos G Malbrán", C1282 AFF Buenos Aires, Argentina
| |
Collapse
|
6
|
Wang Z, Xu H, Gu B, Jin Y, Wang T, Ma J, Lu Y, Yu X, Zheng B, Zhang Y. Flavorubredoxin, a Candidate Trigger Related to Thrombotic Thrombocytopenic Purpura: Screening of the Complete Genome of a Salmonella enterica Serovar Typhimurium Isolate From an AIDS Case. Front Cell Infect Microbiol 2022; 12:864087. [PMID: 35755834 PMCID: PMC9226561 DOI: 10.3389/fcimb.2022.864087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is one of the two classic thrombotic microangiopathy (TMA) diseases which could be induced by infections. To the best of our knowledge, this is the first report of an acquired immunodeficiency syndrome (AIDS) patient with acquired TTP induced by infection with Salmonella enterica serovar Typhimurium (hereafter, S. Typhimurium) isolate, S. Typhimurium_zhang, which was confirmed by serology and genetic taxonomy. The literature review identified 17 TMA-related genes encoding the candidate triggers, which were searched in the annotated genome sequence of S. Typhimurium_zhang. Anaerobic nitric oxide reductase flavorubredoxin (FlRd), encoded by norV which is related to another TMA, haemolytic uraemic syndrome (HUS), was found in S. Typhimurium_zhang. Basic local alignment search tool (BLAST) analysis revealed that norV and FlRd in S. Typhimurium_zhang, as well as eight S. Typhimurium type strains, have high identity with HUS-related Escherichia coli O157:H7 strain TW14359. Similar results were obtained from the BLAST analysis of 73 S. enterica isolates for congenital TTP which was also previously reported to be triggered by S. enterica. Phylogenetic analysis and amino acid sequence alignment revealed that FlRd was functional and highly conservative on 69 Enterobacteriaceae, including S. Typimurium_zhang and TW14359. In brief, we found norV in the genome of a S. Typhimurium clinical isolate that induced TTP in an AIDS patient. FlRd, the protein encoded by norV, probably triggered the TTP and was highly conservative, functional, and widespread in S. enterica and Enterobacteriaceae. More in vitro and in vivo studies are required to confirm our findings and determine the underlying mechanism.
Collapse
Affiliation(s)
- Zhouhan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiqing Gu
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Medicine, Zhejiang University, Haining, China
| | - Yanqi Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianyuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jindi Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yimin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
7
|
Juliana G, Jimena C, Mariel S, Ana B. Molecular subtyping and clonal relatedness of human and cattle verotoxin-producing Escherichia coli O157:H7 isolates. Microb Pathog 2020; 145:104183. [PMID: 32247643 DOI: 10.1016/j.micpath.2020.104183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022]
Abstract
Verotoxin-producing Escherichia coli O157:H7 is the dominant serotype isolated from patients with hemolytic-uremic syndrome (HUS) and, Argentina has the highest rate of HUS in the world. However, not all O157:H7 isolates have the same ability to infect and cause disease in humans. It has been postulated that O157:H7 strains integrate subpopulations related to the origin and virulence. In order to study the population structure and genetic diversity of VTEC O157:H7 from Argentina, a combination of molecular subtyping methods such as multiple loci VNTR analysis (MLVA), single nucleotide polymorphisms (SNP) and phylogroups assignment were used. According to MLVA, high genetic diversity was found among strains isolated from cattle, humans and food. On the other hand, 92% of the isolates presented the allele tir 255 T > A T and 95% were assigned to phylogroup E. We did not find a significant association between the isolates origin and the allele T presence (P > 0,05) postulated as significantly overrepresented in human isolates. Our results show that human and cattle VTEC O157:H7 isolates from Argentina are a homogeneous group and, although it presents high genetic diversity in relation to their MLVA and virulence profiles, it is not possible to distinguish divergent populations. The presence in all the strains of a high number of T3SS effectors genes and the no association of genetic subtypes with strain source, is an alert about the potential risk in public health that VTEC O157:H7 cattle strains possess and, at less, a partial explication about the high incidence of HUS in Argentina.
Collapse
Affiliation(s)
- González Juliana
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CIC-UNCPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina; Laboratorio de Microbiología de Los Alimentos, Departamento de Tecnología y Calidad de Los Alimentos, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina
| | - Cadona Jimena
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CIC-UNCPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina
| | - Sanso Mariel
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CIC-UNCPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina
| | - Bustamante Ana
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CIC-UNCPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Burgán J, Krüger A, Lucchesi PMA. Comparable stx 2a expression and phage production levels between Shiga toxin-producing Escherichia coli strains from human and bovine origin. Zoonoses Public Health 2019; 67:44-53. [PMID: 31868306 DOI: 10.1111/zph.12653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/21/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause diarrhoea and severe diseases in humans, such as haemolytic uraemic syndrome. STEC virulence is considered to correlate with the amount of Shiga toxins (Stx) produced, especially Stx2, whose subtype Stx2a is most frequently associated with high virulence. Stx are encoded in prophages, which play an important role in STEC pathogenesis. The aim of this study was to evaluate stx2a expression levels and Stx2a phage production using qPCR and the double-agar-layer method in 29 STEC strains, corresponding to serotypes O26:H11 (6), O91:H21 (1), O145:H- (11) and O157:H7 (11), isolated from cattle and humans. Results were then tested for possible associations with serotype, origin or some genetic features. We observed heterogeneous levels of stx2a expression and Stx2a phage production. However, statistical comparisons identified a higher stx2a expression in response to mitomycin C in strains isolated from cattle than in those from humans. At the same time, compared to stx2a /stx2c strains, stx2a strains showed a higher increase in phage production under induced conditions. Notably, most of the strains studied, regardless of serotype and origin, carried inducible Stx2a phages and evidenced expression of stx2a that increased along with phage production levels under induced conditions.
Collapse
Affiliation(s)
- Julia Burgán
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CIC-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Alejandra Krüger
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CIC-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Paula M A Lucchesi
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CIC-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| |
Collapse
|
9
|
Inactivation of Escherichia coli O157:H7 by ozone in different substrates. Braz J Microbiol 2018; 50:247-253. [PMID: 30637637 DOI: 10.1007/s42770-018-0025-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/01/2018] [Indexed: 10/27/2022] Open
Abstract
Ozone has a broad antimicrobial spectrum and each microorganism species has inherent sensitivity to the gas. The objective of this study was to evaluate the effect of ozone gas on Escherichia coli O157:H7 inoculated on an organic substrate, and the efficacy of ozonated water in controlling the pathogen. For the first experiment, E. coli O157:H7 (ATCC® 43890™) was inoculated in milk with different compositions and in water, which was ozonated at concentrations of 35 and 45 mg L-1 for 0, 5, 15, and 25 min. In the second experiment, water was ozonated at 45 mg L-1 for 15 min. E. coli O157:H7 was exposed for 5 min to the ozonated water immediately after ozonation, and after storage for 0.5, 1.0, 1.5, 3.0, and 24 h at 8 °C. The results showed that the composition of the organic substrate interfered with the action of ozone on E. coli O157:H7. In lactose-free homogenized skim milk, reductions of 1.5 log cycles were obtained for ozonation periods of 25 min at the concentrations tested. Ozonated water was effective in inactivating of E. coli O157:H7 in all treatments. The efficiency of ozone on E. coli O157:H7 is influenced by the composition of the organic substrates, reinforcing the need for adequate removal of organic matter before sanitization. Furthermore, refrigerated ozonated water stored for up to 24 h is effective in the control of E. coli O157:H7.
Collapse
|
10
|
Tarr GAM, Shringi S, Oltean HN, Mayer J, Rabinowitz P, Wakefield J, Tarr PI, Besser TE, Phipps AI. Importance of case age in the purported association between phylogenetics and hemolytic uremic syndrome in Escherichia coli O157:H7 infections. Epidemiol Infect 2018; 146:1550-1555. [PMID: 29914582 PMCID: PMC6092231 DOI: 10.1017/s0950268818001632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/13/2018] [Accepted: 05/18/2018] [Indexed: 11/05/2022] Open
Abstract
Escherichia coli O157:H7 is the largest cause of hemolytic uremic syndrome (HUS). Previous studies proposed that HUS risk varies across the E. coli O157:H7 phylogenetic tree (hypervirulent clade 8), but the role of age in the association is unknown. We determined phylogenetic lineage of E. coli O157:H7 isolates from 1160 culture-confirmed E. coli O157:H7 cases reported in Washington State, 2004-2015. Using generalised estimating equations, we tested the association between phylogenetic lineage and HUS. Age was evaluated as an effect modifier. Among 1082 E. coli O157:H7 cases with both phylogenetic lineage and HUS status (HUS n = 76), stratified analysis suggested effect modification by age. Lineages IIa and IIb, relative to Ib, did not appear associated with HUS in children 0-9-years-old. For cases 10-59-years-old, lineages IIa and IIb appeared to confer increased risk of HUS, relative to lineage Ib. The association reversed in ⩾60-year-olds. Results were similar for clade 8. Phylogenetic lineage appears to be associated with HUS risk only among those ⩾10-years-old. Among children <10, the age group most frequently affected, lineage does not explain progression to HUS. However, lineage frequency varied across age groups, suggesting differences in exposure and/or early disease manifestation.
Collapse
Affiliation(s)
- G. A. M. Tarr
- Department of Pediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, CA
| | - S. Shringi
- Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - H. N. Oltean
- Washington State Department of Health, Shoreline, Washington, USA
| | - J. Mayer
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Geography, University of Washington, Seattle, Washington, USA
| | - P. Rabinowitz
- Department of Environmental and Occupational Health Sciences and Center for One Health Research, University of Washington, Seattle, Washington, USA
| | - J. Wakefield
- Departments of Biostatistics and Statistics, University of Washington, Seattle, Washington, USA
| | - P. I. Tarr
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - T. E. Besser
- Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - A. I. Phipps
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Aas CG, Drabløs F, Haugum K, Afset JE. Comparative Transcriptome Profiling Reveals a Potential Role of Type VI Secretion System and Fimbriae in Virulence of Non-O157 Shiga Toxin-Producing Escherichia coli. Front Microbiol 2018; 9:1416. [PMID: 30008706 PMCID: PMC6033998 DOI: 10.3389/fmicb.2018.01416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause both sporadic infections and outbreaks of enteric disease in humans, with symptoms ranging from asymptomatic carriage to severe disease like haemolytic uremic syndrome (HUS). Bacterial virulence factors like subtypes of the Shiga toxin (Stx) and the locus of enterocyte effacement (LEE) pathogenicity island, as well as host factors like young age, are strongly associated with development of HUS. However, these factors alone do not accurately differentiate between strains that cause HUS and those that do not cause severe disease, which is important in the context of diagnosis, treatment, as well as infection control. We have used RNA sequencing to compare transcriptomes of 30 stx2a and eae positive STEC strains of non-O157 serogroups isolated from children <5 years of age. The strains were from children with HUS (HUS group, n = 15), and children with asymptomatic or mild disease (non-HUS group, n = 15), either induced with mitomycin C or non-induced, to reveal potential differences in gene expression levels between groups. When the HUS and non-HUS group were compared for differential expression of protein-encoding gene families, 399 of 6,119 gene families were differentially expressed (log2 fold change ≥ 1, FDR < 0.05) in the non-induced condition, whereas only one gene family was differentially expressed in the induced condition. Gene ontology and cluster analysis showed that several fimbrial operons, as well as a putative type VI secretion system (T6SS) were more highly expressed in the HUS group than in the non-HUS group, indicating a role of these in the virulence of STEC strains causing severe disease.
Collapse
Affiliation(s)
- Christina G Aas
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjersti Haugum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan E Afset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
12
|
Martorelli L, Garimano N, Fiorentino GA, Vilte DA, Garbaccio SG, Barth SA, Menge C, Ibarra C, Palermo MS, Cataldi A. Efficacy of a recombinant Intimin, EspB and Shiga toxin 2B vaccine in calves experimentally challenged with Escherichia coli O157:H7. Vaccine 2018; 36:3949-3959. [PMID: 29807709 DOI: 10.1016/j.vaccine.2018.05.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022]
Abstract
Escherichia coli O157:H7 is a zoonotic pathogen of global importance and the serotype of Shiga toxin-producing E.coli (STEC) most frequently associated with Hemolytic Uremic Syndrome (HUS) in humans. The main STEC reservoir is cattle. Vaccination of calves with the carboxy-terminal fraction of Intimin γ (IntC280) and EspB can reduce E.coli O157:H7 fecal shedding after experimental challenge. Shiga toxin (Stx) exerts local immunosuppressive effects in the bovine intestine and Stx2B fused to Brucella lumazine synthase (BLS-Stx2B) induces Stx2-neutralizing antibodies. To determine if an immune response against Stx could improve a vaccine's effect on fecal shedding, groups of calves were immunized with EspB + IntC280, with EspB + IntC280 + BLS-Stx2B, or kept as controls. At 24 days post vaccination calves were challenged with E.coli O157:H7. Shedding of E.coli O157:H7 was assessed in recto-anal mucosal swabs by direct plating and enrichment followed by immunomagnetic separation and multiplex PCR. Calves were euthanized 15 days after the challenge and intestinal segments were obtained to assess mucosal antibodies. Vaccination induced a significant increase of IntC280 and EspB specific antibodies in serum and intestinal mucosa in both vaccinated groups. Antibodies against Stx2B were detected in serum and intestinal mucosa of animals vaccinated with 3 antigens. Sera and intestinal homogenates were able to neutralize Stx2 verocytotoxicity compared to the control and the 2-antigens vaccinated group. Both vaccines reduced E.coli O157:H7 shedding compared to the control group. The addition of Stx2B to the vaccine formulation did not result in a superior level of protection compared to the one conferred by IntC280 and EspB alone. It remains to be determined if the inclusion of Stx2B in the vaccine alters E.coli O157:H7 shedding patterns in the long term and after recurrent low dose exposure as occurring in cattle herds.
Collapse
Affiliation(s)
- Luisina Martorelli
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Nicolás Garimano
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela A Fiorentino
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Daniel A Vilte
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Sergio G Garbaccio
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Angel Cataldi
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina.
| |
Collapse
|
13
|
Pianciola L, Rivas M. Genotypic Features of Clinical and Bovine Escherichia coli O157 Strains Isolated in Countries with Different Associated-Disease Incidences. Microorganisms 2018; 6:microorganisms6020036. [PMID: 29702577 PMCID: PMC6027531 DOI: 10.3390/microorganisms6020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 01/19/2023] Open
Abstract
There is great geographical variation in the frequency of Escherichia coli O157 infections that correlates with important differences in the bovine reservoir of each country. Our group carried out a broad molecular characterization of human and bovine E. coli O157 strains circulating in Argentina using different methodologies. Our data allows us to conclude that in Argentina, a high homogeneity is observed in both cattle and human strains, with almost exclusive circulation of strains belonging to the hypervirulent clade 8 described by Manning. The aim of this review was to compare the genetic background of E. coli O157 strains isolated in countries that have conducted similar studies, to try to correlate specific O157 genotypes with the incidence and severity of E. coli O157 associated diseases. The characteristics of the strains that cause disease in humans reflect the predominant genotypes in cattle in each of the countries analyzed. The main features clearly linked to high incidence or severity of E. coli O157 infections are lineage-specific polymorphism assay-6 lineage I/II, clade 8 strains and probably, clade 6 strains, the stx2a/stx2c genotype, the presence of q933 and q21 simultaneously, and putative virulence factor EC_3286. In countries with an absence of these features in O157 strains, the overall incidence of O157 disease is low. Argentina, where these characteristics are detected in most strains, shows the highest incidence of hemolytic uremic syndrome (HUS) worldwide.
Collapse
Affiliation(s)
- Luis Pianciola
- Laboratorio Central, Subsecretaría de Salud de Neuquén, Gregorio Martínez 65, Neuquén 8300, Argentina.
| | - Marta Rivas
- Servicio Fisiopatogenia, INEI-ANLIS "Carlos G. Malbrán", Av. Vélez Sarsfield 563, Buenos Aires 1281, Argentina.
| |
Collapse
|
14
|
Virulence traits and different nle profiles in cattle and human verotoxin-producing Escherichia coli O157:H7 strains from Argentina. Microb Pathog 2017; 102:102-108. [DOI: 10.1016/j.micpath.2016.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/28/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
|
15
|
Amigo N, Zhang Q, Amadio A, Zhang Q, Silva WM, Cui B, Chen Z, Larzabal M, Bei J, Cataldi A. Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to E. coli O157:H7 EDL933 Clade 3 Strain. PLoS One 2016; 11:e0166883. [PMID: 27880834 PMCID: PMC5120812 DOI: 10.1371/journal.pone.0166883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli O157:H7 is responsible for severe diarrhea and hemolytic uremic syndrome (HUS), and predominantly affects children under 5 years. The major virulence traits are Shiga toxins, necessary to develop HUS and the Type III Secretion System (T3SS) through which bacteria translocate effector proteins directly into the host cell. By SNPs typing, E. coli O157:H7 was separated into nine different clades. Clade 8 and clade 6 strains were more frequently associated with severe disease and HUS. In this study, we aimed to identify differentially expressed proteins in two strains of E. coli O157:H7 (clade 8 and clade 6), obtained from cattle and compared them with the well characterized reference EDL933 strain (clade 3). Clade 8 and clade 6 strains show enhanced pathogenicity in a mouse model and virulence-related properties. Proteins were extracted and analyzed using the TMT-6plex labeling strategy associated with two dimensional liquid chromatography and mass spectrometry in tandem. We detected 2241 proteins in the cell extract and 1787 proteins in the culture supernatants. Attention was focused on the proteins related to virulence, overexpressed in clade 6 and 8 strains compared to EDL933 strain. The proteins relevant overexpressed in clade 8 strain were the curli protein CsgC, a transcriptional activator (PchE), phage proteins, Stx2, FlgM and FlgD, a dienelactone hydrolase, CheW and CheY, and the SPATE protease EspP. For clade 6 strain, a high overexpression of phage proteins was detected, mostly from Stx2 encoding phage, including Stx2, flagellin and the protease TagA, EDL933_p0016, dienelactone hydrolase, and Haemolysin A, amongst others with unknown function. Some of these proteins were analyzed by RT-qPCR to corroborate the proteomic data. Clade 6 and clade 8 strains showed enhanced transcription of 10 out of 12 genes compared to EDL933. These results may provide new insights in E. coli O157:H7 mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Natalia Amigo
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| | - Qi Zhang
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Ariel Amadio
- Rafaela Experimental Station, National Institute of Agricultural Technology. Rafaela, Santa Fe, Argentina
| | - Qunjie Zhang
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Wanderson M. Silva
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| | - Baiyuan Cui
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Zhongjian Chen
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Mariano Larzabal
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| | - Jinlong Bei
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
- * E-mail:
| | - Angel Cataldi
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
16
|
Prevention of renal damage caused by Shiga toxin type 2: Action of Miglustat on human endothelial and epithelial cells. Toxicon 2015; 105:27-33. [PMID: 26335361 DOI: 10.1016/j.toxicon.2015.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 11/20/2022]
Abstract
Typical hemolytic uremic syndrome (HUS) is responsible for acute and chronic renal failure in children younger than 5 years old in Argentina. Renal damages have been associated with Shiga toxin type 1 and/or 2 (Stx1, Stx2) produced by Escherichia coli O157:H7, although strains expressing Stx2 are highly prevalent in Argentina. Human glomerular endothelial cells (HGEC) and proximal tubule epithelial cells are very Stx-sensitive since they express high levels of Stx receptor (Gb3). Nowadays, there is no available therapy to protect patients from acute toxin-mediated cellular injury. New strategies have been developed based on the Gb3 biosynthesis inhibition through blocking the enzyme glucosylceramide (GL1) synthase. We assayed the action of a GL1 inhibitor (Miglustat: MG), on the prevention of the renal damage induced by Stx2. HGEC primary cultures and HK-2 cell line were pre-treated with MG and then incubated with Stx2. HK- 2 and HGEC express Gb3 and MG was able to decrease the levels of this receptor. As a consequence, both types of cells were protected from Stx2 cytotoxicity and morphology damage. MG was able to avoid Stx2 effects in human renal cells and could be a feasible strategy to protect kidney tissues from the cytotoxic effects of Stx2 in vivo.
Collapse
|