1
|
Kalule JB, Fortuin S, Calder B, Robberts L, Keddy KH, Nel AJM, Garnett S, Nicol M, Warner DF, Soares NC, Blackburn JM. Proteomic comparison of three clinical diarrhoeagenic drug-resistant Escherichia coli isolates grown on CHROMagar™STEC media. J Proteomics 2017; 180:25-35. [PMID: 28887208 DOI: 10.1016/j.jprot.2017.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/21/2017] [Accepted: 09/02/2017] [Indexed: 02/06/2023]
Abstract
Shiga-toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) are key diarrhoea-causing foodborne pathogens. We used proteomics to characterize the virulence and antimicrobial resistance protein profiles of three clinical pathogenic E. coli isolates (two EPEC [one resistant to ciprofloxacin] and one STEC) cultured on CHROMagar™STEC solid media after minimal laboratory passage. We identified 4767 unique peptides from 1630 protein group across all three clinical E. coli strains. Label-free proteomic analysis allowed the identification of virulence and drug resistance proteins that were unique to each of the clinical isolates compared in this study. The B subunit of Shiga toxin, ToxB, was uniquely detected in the STEC strain while several other virulence factors including SheA, OmpF, OmpC and OmpX were significantly more abundant in the STEC strain. The ciprofloxacin resistant EPEC isolate possessed reduced levels of key virulence proteins compared to the ciprofloxacin susceptible EPEC and STEC strains. Parallel reaction monitoring assays validated the presence of biologically relevant proteins across biologically-replicated cultures. Propagation of clinical isolates on a relevant solid medium followed by mass spectrometry analysis represents a convenient means to quantify virulence factors and drug resistance determinants that might otherwise be lost through extensive in vitro passage in enteropathogenic bacteria. SIGNIFICANCE Through the use of quantitative proteomics, we have characterized the virulence and antimicrobial resistance attributes of three clinically isolated, pathogenic E. coli strains cultured on solid media. Our results provide new, quantitative data on the expressed proteomes of these tellurite-resistant, diarrhoeagenic E. coli strains and reveal a subset of antimicrobial resistance and virulence proteins that are differentially abundant between these clinical strains. Our quantitative proteomics-based approach should thus have applicability in microbiological diagnostic labs for the identification of pathogenic/drug resistant E. coli in the future.
Collapse
Affiliation(s)
- John Bosco Kalule
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, South Africa
| | - Suereta Fortuin
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Bridget Calder
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Lourens Robberts
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, South Africa
| | - Karen H Keddy
- Bacteriology Division, Centre for Enteric Diseases, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew J M Nel
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Shaun Garnett
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark Nicol
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, South Africa
| | - Digby F Warner
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, South Africa; MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Medical Microbiology, Department of Pathology, University of Cape Town, South Africa
| | - Nelson C Soares
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| | - Jonathan M Blackburn
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, South Africa.
| |
Collapse
|
2
|
Inhibition of Antigen-Specific and Nonspecific Stimulation of Bovine T and B Cells by Lymphostatin from Attaching and Effacing Escherichia coli. Infect Immun 2017; 85:IAI.00845-16. [PMID: 27920212 PMCID: PMC5278176 DOI: 10.1128/iai.00845-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are enteric bacterial pathogens of worldwide importance. Most EPEC and non-O157 EHEC strains express lymphostatin (also known as LifA), a chromosomally encoded 365-kDa protein. We previously demonstrated that lymphostatin is a putative glycosyltransferase that is important in intestinal colonization of cattle by EHEC serogroup O5, O111, and O26 strains. However, the nature and consequences of the interaction between lymphostatin and immune cells from the bovine host are ill defined. Using purified recombinant protein, we demonstrated that lymphostatin inhibits mitogen-activated proliferation of bovine T cells and, to a lesser extent, proliferation of cytokine-stimulated B cells, but not NK cells. It broadly affected the T cell compartment, inhibiting all cell subsets (CD4, CD8, WC-1, and γδ T cell receptor [γδ-TCR]) and cytokines examined (interleukin 2 [IL-2], IL-4, IL-10, IL-17A, and gamma interferon [IFN-γ]) and rendered T cells refractory to mitogen for a least 18 h after transient exposure. Lymphostatin was also able to inhibit proliferation of T cells stimulated by IL-2 and by antigen presentation using a Theileria-transformed cell line and autologous T cells from Theileria-infected cattle. We conclude that lymphostatin is likely to act early in T cell activation, as stimulation of T cells with concanavalin A, but not phorbol 12-myristate 13-acetate combined with ionomycin, was inhibited. Finally, a homologue of lymphostatin from E. coli O157:H7 (ToxB; L7095) was also found to possess comparable inhibitory activity against T cells, indicating a potentially conserved strategy for interference in adaptive responses by attaching and effacing E. coli.
Collapse
|
3
|
Michelacci V, Orsini M, Knijn A, Delannoy S, Fach P, Caprioli A, Morabito S. Development of a High Resolution Virulence Allelic Profiling (HReVAP) Approach Based on the Accessory Genome of Escherichia coli to Characterize Shiga-Toxin Producing E. coli (STEC). Front Microbiol 2016; 7:202. [PMID: 26941726 PMCID: PMC4763077 DOI: 10.3389/fmicb.2016.00202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/05/2016] [Indexed: 11/13/2022] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) strains possess a large accessory genome composed of virulence genes existing in multiple allelic variants, which sometimes segregate with specific STEC subpopulations. We analyzed the allelic variability of 91 virulence genes of STEC by Real Time PCR followed by melting curves analysis in 713 E. coli strains including 358 STEC. The 91 genes investigated were located on the locus of enterocyte effacement (LEE), OI-57, and OI-122 pathogenicity islands and displayed a total of 476 alleles in the study population. The combinations of the 91 alleles of each strain were termed allelic signatures and used to perform cluster analyses. We termed such an approach High Resolution Virulence Allelic Profiling (HReVAP) and used it to investigate the phylogeny of STEC of multiple serogroups. The dendrograms obtained identified groups of STEC segregating approximately with the serogroups and allowed the identification of subpopulations within the single groups. The study of the allelic signatures provided further evidence of the coevolution of the LEE and OI-122, reflecting the occurrence of their acquisition through a single event. The HReVAP analysis represents a sensitive tool for studying the evolution of LEE-positive STEC.
Collapse
Affiliation(s)
- Valeria Michelacci
- European Reference Laboratory for Escherichia coli, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità Rome, Italy
| | - Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale Teramo, Italy
| | - Arnold Knijn
- Servizio Informatico, Documentazione, Biblioteca e Attività Editoriali, Istituto Superiore di Sanità Rome, Italy
| | - Sabine Delannoy
- Platform IdentyPath, Food Safety Laboratory, ANSES, Université Paris-Est Maisons-Alfort, France
| | - Patrick Fach
- Platform IdentyPath, Food Safety Laboratory, ANSES, Université Paris-Est Maisons-Alfort, France
| | - Alfredo Caprioli
- European Reference Laboratory for Escherichia coli, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità Rome, Italy
| | - Stefano Morabito
- European Reference Laboratory for Escherichia coli, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
4
|
Askari Badouei M, Morabito S, Najafifar A, Mazandarani E. Molecular characterization of enterohemorrhagic Escherichia coli hemolysin gene (EHEC-hlyA)-harboring isolates from cattle reveals a diverse origin and hybrid diarrheagenic strains. INFECTION GENETICS AND EVOLUTION 2016; 39:342-348. [PMID: 26855346 DOI: 10.1016/j.meegid.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
In the present study we investigated the occurrence of Escherichia coli strains harboring the gene encoding enterohemorrhagic E. coli hemolysin (EHEC-HlyA) in cattle and the association of this gene with various diarrheagenic E. coli (DEC) pathotypes. First, the bovine E. coli isolates were screened for EHEC-hlyA gene by PCR, and then they were characterized for the phylogenetic groups and the presence of the major virulence genes of different DEC pathotypes. In total, 25 virulence gene profiles were observed in 54 EHEC-hlyA+ isolates that reflect a considerable heterogeneity. The EHEC-hlyA+ strains were mostly associated with EHEC (72%), while only 7.4% were enteropathogenic E. coli (EPEC). We also showed the presence of estA gene of enterotoxigenic E. coli (ETEC) in 6 isolates (11.1%). Interestingly, two of the estA+ strains showed hybrid pathotypes with one carrying eae/estA (EPEC/ETEC), and the other one stx2/astA/estA (EHEC/ETEC). None of the isolates were related to enteroaggregative E. coli (EAggEC), enteroinvasive E. coli (EIEC), and necrotoxigenic E. coli (NTEC). The EHEC-plasmid encoded genes occurred in seven different combinations with EHEC-hlyA/saa/subA/espP being the most prevalent (46.3%). All stx-/eae+ strains carried O island 57 (OI-57) molecular marker(s) that may indicate these to be the progenitors of EHEC or strains losing stx. The most prevalent phylogroup was B1 (61.1%), but the most heterogeneous strains including the hybrid strains belonged to A phylogroup. Overall, our results indicate that cattle EHEC-hlyA encoding E. coli isolates consist of diverse diarrheagenic strains with the possible existence of hybrid pathotypes. Future studies are required to clarify the evolutionary aspects and clinical significance of these strains in humans and domestic animals.
Collapse
Affiliation(s)
- Mahdi Askari Badouei
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran.
| | - Stefano Morabito
- European Union Reference Laboratory for Escherichia coli, Istituto Superiore di Sanita, Dipartimento di Sanita Pubblica Veterinaria e Sicurezza Alimentare, Rome, Italy
| | - Arash Najafifar
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Emad Mazandarani
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| |
Collapse
|
5
|
Krüger A, Lucchesi PMA, Sanso AM, Etcheverría AI, Bustamante AV, Burgán J, Fernández L, Fernández D, Leotta G, Friedrich AW, Padola NL, Rossen JWA. Genetic characterization of Shiga toxin-producing Escherichia coli O26:H11 strains isolated from animal, food, and clinical samples. Front Cell Infect Microbiol 2015; 5:74. [PMID: 26539413 PMCID: PMC4612136 DOI: 10.3389/fcimb.2015.00074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/05/2015] [Indexed: 11/16/2022] Open
Abstract
The Shiga-toxin producing Escherichia coli (STEC) may cause serious illness in human. Here we analyze O26:H11 strains known to be among the most reported STEC strains causing human infections. Genetic characterization of strains isolated from animal, food, and clinical specimens in Argentina showed that most carried either stx1a or stx2a subtypes. Interestingly, stx2a-positive O26:H11 rarely isolated from cattle in other countries showed to be an important proportion of O26:H11 strains circulating in cattle and food in our region. Seventeen percent of the isolates harbored more than one gene associated with antimicrobial resistance. In addition to stx, all strains contained the virulence genes eae-β, tir, efa, iha, espB, cif, espA, espF, espJ, nleA, nleB, nleC, and iss; and all except one contained ehxA, espP, and cba genes. On the other hand, toxB and espI genes were exclusively observed in stx2-positive isolates, whereas katP was only found in stx1a-positive isolates. Our results show that O26:H11 STEC strains circulating in Argentina, including those isolated from humans, cattle, and meat products, present a high pathogenic potential, and evidence that cattle can be a reservoir of O26:H11 strains harboring stx2a.
Collapse
Affiliation(s)
- Alejandra Krüger
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Paula M A Lucchesi
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - A Mariel Sanso
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Analía I Etcheverría
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Ana V Bustamante
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Julia Burgán
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Luciana Fernández
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Daniel Fernández
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Gerardo Leotta
- Línea Seguridad Alimentaria, Instituto de Genética Veterinaria Ing. F.N. Dulout, Consejo Nacional de Investigaciones Científicas y Técnicas La Plata, Argentina
| | - Alexander W Friedrich
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Nora L Padola
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - John W A Rossen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| |
Collapse
|