1
|
Peng Z, Yue Y, Xiong S. Mycobacterial PPE36 Modulates Host Inflammation by Promoting E3 Ligase Smurf1-Mediated MyD88 Degradation. Front Immunol 2022; 13:690667. [PMID: 35237255 PMCID: PMC8882603 DOI: 10.3389/fimmu.2022.690667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) PPE36, a cell-wall-associated protein, is highly specific and conserved for the Mtb complex group. Although PPE36 has been proven essential for iron utilization, little is known about it in regulating host immune responses. Here we exhibited that PPE36 was preferentially enriched in Mtb virulent strains and could efficiently inhibit host inflammatory responses and increase bacterial loads in infected macrophages and mice. In exploring the underlying mechanisms, we found that PPE36 could robustly inhibit the activation of inflammatory NF-κB and MAPK (Erk, p38, and Jnk) pathways by promoting E3 ligase Smurf1-mediated ubiquitination and proteasomal degradation of MyD88 protein. Our research revealed a previously unknown function of PPE36 on modulating host immune responses and provided some clues to the development of novel tuberculosis treatment strategies based on immune regulation.
Collapse
Affiliation(s)
- Zhangli Peng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Qi J, Crinier A, Escalière B, Ye Y, Wang Z, Zhang T, Batista L, Liu H, Hong L, Wu N, Zhang M, Chen L, Liu Y, Shen L, Narni-Mancinelli E, Vivier E, Su B. Single-cell transcriptomic landscape reveals tumor specific innate lymphoid cells associated with colorectal cancer progression. CELL REPORTS MEDICINE 2021; 2:100353. [PMID: 34467243 PMCID: PMC8385246 DOI: 10.1016/j.xcrm.2021.100353] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Innate lymphoid cells (ILCs) are tissue-resident lymphocytes differing from conventional T lymphocytes in having no antigen-specific receptors. ILCs include natural killer (NK) cells, helper-like ILC1s, ILC2s, and ILC3s, and lymphoid tissue-inducer (LTi) cells. Tumor ILCs are frequently found in various cancers, but their roles in cancer immunity and immunotherapy remain largely unclear. We report here the single-cell characterization of blood and gut helper-like ILC subsets in healthy conditions and in colorectal cancer (CRC). The healthy gut contains ILC1s, ILC3s, and ILC3/NKs, but no ILC2s. Additional tumor-specific ILC1-like and ILC2 subsets were identified in CRC patients. Signaling lymphocytic activation molecule family member 1 (SLAMF1) was found to be selectively expressed on tumor-specific ILCs, and higher levels of SLAMF1+ ILCs were observed in the blood of CRC patients. The SLAMF1-high group of CRC patients had a significantly higher survival rate than the SLAMF1-low group, suggesting that SLAMF1 is an anti-tumor biomarker in CRC. Healthy gut contains ILC1s, ILC3s, and ILC3/NKs, but no ILC2s Blood and tumor ILCs from CRC patients have unique transcriptomic features Tumor tissue from CRC patients contains a tumor specific ILC1-like subset and ILC2s SLAMF1 is identified as an anti-tumor biomarker in CRC
Collapse
Affiliation(s)
- Jingjing Qi
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Adeline Crinier
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France
| | - Bertrand Escalière
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Luciana Batista
- Innate Pharma Research Laboratories, Innate Pharma, 13009 Marseille, France
| | - Hongzhi Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liwen Hong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingnan Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei Shen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Emilie Narni-Mancinelli
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France
| | - Eric Vivier
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France.,Innate Pharma Research Laboratories, Innate Pharma, 13009 Marseille, France.,Immunology, Marseille Immunopole, Hôpital de la Timone, Assistance Publique des Hôpitaux de 13005 Marseille, France
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Liu L, Deng J, Yang Q, Wei C, Liu B, Zhang H, Xin H, Pan S, Liu Z, Wang D, Pang Y, Chen X, Gao L, Zheng J, Liu R, Jin Q. Urinary proteomic analysis to identify a potential protein biomarker panel for the diagnosis of tuberculosis. IUBMB Life 2021; 73:1073-1083. [PMID: 34048129 DOI: 10.1002/iub.2509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/06/2023]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis and is one of the primary causes of death worldwide. Rapid and accurate diagnosis of TB is one of the most direct means to reduce the incidence of TB. In this study, urinary proteomic profiling of TB patients and non-TB individual controls (HCs) was performed, and differentially expressed urinary proteins between TB and HCs were compared and exclusively expressed proteins in TB patients were selected to establish a clinically useful disease marker panel. In total, these top 11 targeted proteins with 265 peptides were scheduled for multiple reaction monitoring validation analysis by using urine samples from 52 TB patients and 52 HCs. The result demonstrated that a three-protein combination out of the five-protein panel (namely P22352, Q9P121, P15151, Q13291, and Q8NDA2) exhibited sensitivity rate of 82.7% in the diagnosis of TB. Furthermore, the three-protein combination could differentiate TB from the latent tuberculosis (LTB) effectively, which exhibited specificity rate of 92.3% for the diagnosis of TB from the LTB category. Although more numbers of clinical samples are required for further verification, the results provided preliminary evidence that this "three-protein combination" out of the five-protein panel could probably be a novel TB diagnostic biomarker in clinical application.
Collapse
Affiliation(s)
- Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaheng Deng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianting Yang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Lab for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Candong Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoran Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Henan Xin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shouguo Pan
- Center for Diseases Control and Prevention of Zhongmu County, Zhongmu, China
| | - Zisen Liu
- Center for Diseases Control and Prevention of Zhongmu County, Zhongmu, China
| | - Dakuan Wang
- Center for Diseases Control and Prevention of Zhongmu County, Zhongmu, China
| | - Yu Pang
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhua Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongmei Liu
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Sun D, Yin Y, Guo C, Liu L, Mao S, Zhu W, Liu J. Transcriptomic analysis reveals the molecular mechanisms of rumen wall morphological and functional development induced by different solid diet introduction in a lamb model. J Anim Sci Biotechnol 2021; 12:33. [PMID: 33750470 PMCID: PMC7944623 DOI: 10.1186/s40104-021-00556-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Background This study aimed to elucidate the molecular mechanisms of solid diet introduction initiating the cellular growth and maturation of rumen tissues and characterize the shared and unique biological processes upon different solid diet regimes. Methods Twenty-four Hu lambs were randomly allocated to three groups fed following diets: goat milk powder only (M, n = 8), goat milk powder + alfalfa hay (MH, n = 8), and goat milk powder + concentrate starter (MC, n = 8). At 42 days of age, the lambs were slaughtered. Ruminal fluid sample was collected for analysis of concentration of volatile fatty acid (VFA) and microbial crude protein (MCP). The sample of the rumen wall from the ventral sac was collected for analysis of rumen papilla morphology and transcriptomics. Results Compared with the M group, MH and MC group had a higher concentration of VFA, MCP, rumen weight, and rumen papilla area. The transcriptomic results of rumen wall showed that there were 312 shared differentially expressed genes (DEGs) between in “MH vs. M” and “MC vs. M”, and 232 or 796 unique DEGs observed in “MH vs. M” or “MC vs. M”, respectively. The shared DEGs were most enriched in VFA absorption and metabolism, such as peroxisome proliferator-activated receptor (PPAR) signaling pathway, butanoate metabolism, and synthesis and degradation of ketone bodies. Additionally, a weighted gene co-expression network analysis identified M16 (2,052 genes) and M18 (579 genes) modules were positively correlated with VFA and rumen wall morphology. The M16 module was mainly related to metabolism pathway, while the M18 module was mainly associated with signaling transport. Moreover, hay specifically depressed expression of genes involved in cytokine production, immune response, and immunocyte activation, and concentrate starter mainly altered nutrient transport and metabolism, especially ion transport, amino acid, and fatty acid metabolism. Conclusions The energy production during VFA metabolism may drive the rumen wall development directly. The hay introduction facilitated establishment of immune function, while the concentrate starter enhanced nutrient transport and metabolism, which are important biological processes required for rumen development. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00556-4.
Collapse
Affiliation(s)
- Daming Sun
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyang Yin
- Huzhou Academy of Agricultural Sciences, Huzhou, 313000, China
| | - Changzheng Guo
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhua Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China. .,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China. .,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Barbero AM, Trotta A, Genoula M, Pino REHD, Estermann MA, Celano J, Fuentes F, García VE, Balboa L, Barrionuevo P, Pasquinelli V. SLAMF1 signaling induces Mycobacterium tuberculosis uptake leading to endolysosomal maturation in human macrophages. J Leukoc Biol 2020; 109:257-273. [PMID: 32991756 DOI: 10.1002/jlb.4ma0820-655rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis dates back to ancient times but it is not a problem of the past. Each year, millions of people die from tuberculosis. After inhalation of infectious droplet nuclei, Mycobacterium tuberculosis reaches the lungs where it can manipulate the immune system and survive within host macrophages, establishing a persistent infection. The signaling lymphocytic activation molecule family member 1 (SLAMF1) is a self-ligand receptor that can internalize gram-negative bacteria and regulate macrophages' phagosomal functions. In tuberculosis, SLAMF1 promotes Th1-protective responses. In this work, we studied the role of SLAMF1 on macrophages' functions during M. tuberculosis infection. Our results showed that both M. tuberculosis and IFN-γ stimulation induce SLAMF1 expression in macrophages from healthy donor and Tohoku Hospital Pediatrcs-1 cells. Costimulation through SLAMF1 with an agonistic antibody resulted in an enhanced internalization of M. tuberculosis by macrophages. Interestingly, we found that SLAMF1 interacts with M. tuberculosis and colocalizes with the bacteria and with early and late endosomes/lysosomes markers (EEA1 and LAMP2), suggesting that SLAMF1 recognize M. tuberculosis and participate in the endolysosomal maturation process. Notably, increased levels of SLAMF1 were detected in CD14 cells from pleural effusions of tuberculosis patients, indicating that SLAMF1 might have an active function at the site of infection. Taken together, our results provide evidence that SLAMF1 improves the uptake of M. tuberculosis by human monocyte-derived macrophages.
Collapse
Affiliation(s)
- Angela María Barbero
- Center for Basic and Applied Research (CIBA), National University of the Northwest of the Province of Buenos Aires (UNNOBA), B6000DNE, Buenos Aires, Argentina.,Center for Research and Transfers of the Northwest of the Province of Buenos Aires (CIT NOBA), UNNOBA-National University of San Antonio de Areco (UNSAdA) - National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Aldana Trotta
- Institute of Experimental Medicine (CONICET-National Academy of Medicine), C1425ASU, Buenos Aires, Argentina
| | - Melanie Genoula
- Institute of Experimental Medicine (CONICET-National Academy of Medicine), C1425ASU, Buenos Aires, Argentina
| | - Rodrigo Emanuel Hernández Del Pino
- Center for Basic and Applied Research (CIBA), National University of the Northwest of the Province of Buenos Aires (UNNOBA), B6000DNE, Buenos Aires, Argentina.,Center for Research and Transfers of the Northwest of the Province of Buenos Aires (CIT NOBA), UNNOBA-National University of San Antonio de Areco (UNSAdA) - National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Martín Andrés Estermann
- Center for Basic and Applied Research (CIBA), National University of the Northwest of the Province of Buenos Aires (UNNOBA), B6000DNE, Buenos Aires, Argentina.,Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Victoria, Clayton, Australia
| | - Josefina Celano
- Center for Basic and Applied Research (CIBA), National University of the Northwest of the Province of Buenos Aires (UNNOBA), B6000DNE, Buenos Aires, Argentina
| | - Federico Fuentes
- Institute of Experimental Medicine (CONICET-National Academy of Medicine), C1425ASU, Buenos Aires, Argentina
| | - Verónica Edith García
- CONICET-University of Buenos Aires, Institute of Biological Chemistry of Exact and Natural Sciences (IQUIBICEN), C1428EHA, Buenos Aires, Argentina.,University of Buenos Aires, School of Sciences, Department of Biological Chemistry, C1428EHA, Buenos Aires, Argentina
| | - Luciana Balboa
- Institute of Experimental Medicine (CONICET-National Academy of Medicine), C1425ASU, Buenos Aires, Argentina
| | - Paula Barrionuevo
- Institute of Experimental Medicine (CONICET-National Academy of Medicine), C1425ASU, Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Center for Basic and Applied Research (CIBA), National University of the Northwest of the Province of Buenos Aires (UNNOBA), B6000DNE, Buenos Aires, Argentina.,Center for Research and Transfers of the Northwest of the Province of Buenos Aires (CIT NOBA), UNNOBA-National University of San Antonio de Areco (UNSAdA) - National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Lu Q, Zhang W, Fang J, Zheng J, Dong C, Xiong S. Mycobacterium tuberculosis Rv1096, facilitates mycobacterial survival by modulating the NF-κB/MAPK pathway as peptidoglycan N-deacetylase. Mol Immunol 2020; 127:47-55. [PMID: 32927163 DOI: 10.1016/j.molimm.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that can infect and replicate in macrophages. Peptidoglycan (PGN) is a major component of the mycobacterial cell wall and is recognized by host pattern recognition receptors (PRRs). Many bacteria modulate and evade the immune defenses of their hosts through PGN deacetylation. Rv1096 was previously characterized as a PGN N-deacetylase gene in Mtb. However, the underlying mechanism by which Rv1096 regulates host immune defenses during macrophage infection remains unclear. In the present study, we investigated the role of Rv1096 in evading host immunity using a recombinant M. smegmatis expressing exogenous Rv1096 and Rv1096-deleted Mtb strain H37Rv mutant. We found that Rv1096 promoted intracellular bacillary survival and inhibited the inflammatory response in M. smegmatis- or Mtb-infected macrophages. The inhibition of mycobacteria-induced inflammatory response in macrophages was at least partially due to NF-κB and MAPK activation downstream of TLR and NOD signaling pathways. Furthermore, we found that Rv1096 inhibitory effect on inflammatory response was associated with TLR2, TLR4 and NOD2. Finally, we demonstrated the PGN deacetylase activity of Rv1096 by Fourier transform IR and Rv1096 NODB deficient mutant. Our findings suggest that Rv1096 may deacetylate PGNs to evade PRRs recognition, thus protecting Mtb from host immune surveillance and clearance in macrophages.
Collapse
Affiliation(s)
- Qian Lu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jun Fang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jianjian Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Li Z, Cui Y, Feng J, Guo Y. Identifying the pattern of immune related cells and genes in the peripheral blood of ischemic stroke. J Transl Med 2020; 18:296. [PMID: 32746852 PMCID: PMC7398186 DOI: 10.1186/s12967-020-02463-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Background Ischemic stroke (IS) is the second leading cause of death worldwide which is a serious hazard to human health. Evidence suggests that the immune system plays a key role in the pathophysiology of IS. However, the precisely immune related mechanisms were still not been systematically understood. Methods In this study, we aim to identify the immune related modules and genes that might play vital role in the occurrence and development of IS by using the weighted gene co-expression network analysis (WGCNA). Meanwhile, we applied a kind of deconvolution algorithm to reveal the proportions of 22 subsets of immune cells in the blood samples. Results There were total 128 IS patients and 67 healthy control samples in the three Gene Expression Omnibus (GEO) datasets. Under the screening criteria, 1082 DEGs (894 up-regulated and 188 down-regulated) were chosen for further analysis. A total of 11 clinically significant modules were identified, from which immune-related hub modules and hub genes were further explored. Finally, 16 genes were selected as real hub genes for further validation analysis. Furthermore, these CIBERSORT results suggest that detailed analysis of the immune subtype distribution pattern has the potential to enhance clinical prediction and to identify candidates for immunotherapy. More specifically, we identified that neutrophil emerge as a promising target for IS therapies. Conclusions In the present study, we investigated the immune related gene expression modules, in which the SLAMF1, IL7R and NCF4 may be novel therapeutic targets to promote functional and histological recovery after ischemic stroke. Furthermore, these hub genes and neutrophils may become important biological targets in the drug screening and drug designing.
Collapse
Affiliation(s)
- Zijian Li
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yanxia Guo
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
8
|
Jin C, Wu X, Dong C, Li F, Fan L, Xiong S, Dong Y. EspR promotes mycobacteria survival in macrophages by inhibiting MyD88 mediated inflammation and apoptosis. Tuberculosis (Edinb) 2019; 116:22-31. [PMID: 31153514 DOI: 10.1016/j.tube.2019.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/18/2019] [Accepted: 03/30/2019] [Indexed: 12/22/2022]
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), leading to about a million deaths each year. EspR is a DNA binding protein of Mtb which regulates expression of multiple genes and the activity of ESX-1 secretion system of the bacteria, with itself being secreted out as a substrate of ESX-1. We explored the function of secreted EspR in host cells by overexpressing the protein in murine macrophage cell line RAW264.7, infecting the cells with BCG which does not secrete EspR, and evaluating the antimicrobial responses of the cells. We found that EspR resulted in an increased intracellular bacteria load in macrophages. This is due to its inhibition on BCG induced expression of inflammatory cytokines and inducible nitric oxide synthase (iNOS), as well as host cell apoptosis. Mechanism study showed that EspR directly interacted with adaptor protein myeloid differentiation factor 88 (MyD88), suppressed MyD88 dependent Toll-like receptor (TLR) and IL-1R signal activation, thus reduced inflammatory responses and apoptosis in macrophages and promoted mycobacteria survival.
Collapse
Affiliation(s)
- Chunyan Jin
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| | - Xiaoyu Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| | - Fengge Li
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| | - Lingbo Fan
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| | - Yuanshu Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Postal address: 199 Renai Road, SIP, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
Edwardsiella piscicida Type III Secretion System Effector EseK Inhibits Mitogen-Activated Protein Kinase Phosphorylation and Promotes Bacterial Colonization in Zebrafish Larvae. Infect Immun 2018; 86:IAI.00233-18. [PMID: 29986890 DOI: 10.1128/iai.00233-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria utilize type III secretion systems (T3SS) to deliver effectors directly into host cells. Hence, it is very important to identify the functions of bacterial (T3SS) effectors to understand host-pathogen interactions. Edwardsiella piscicida encodes a functional T3SS effector, EseK, which can be translocated into host cells and affect bacterial loads. Here, it was demonstrated that an eseK mutant (the ΔeseK mutant) significantly increased the phosphorylation levels of p38α, c-Jun NH2-terminal kinases (JNK), and extracellular signal-regulated protein kinases 1/2 (ERK1/2) in HeLa cells. Overexpression of EseK directly inhibited mitogen-activated protein kinase (MAPK) signaling pathways in HEK293T cells. The ΔeseK mutant consistently promoted the phosphorylation of MAPKs in zebrafish larva infection models. Further, it was shown that the ΔeseK mutant increased the expression of tumor necrosis factor alpha (TNF-α) in an MAPK-dependent manner. Importantly, the EseK-mediated inhibition of MAPKs in vivo attenuated bacterial clearance in larvae. Taken together, this work reveals that the E. piscicida T3SS effector EseK promotes bacterial infection by inhibiting MAPK activation, which provides insights into the molecular pathogenesis of E. piscicida in fish.
Collapse
|
10
|
Fan L, Wu X, Jin C, Li F, Xiong S, Dong Y. MptpB Promotes Mycobacteria Survival by Inhibiting the Expression of Inflammatory Mediators and Cell Apoptosis in Macrophages. Front Cell Infect Microbiol 2018; 8:171. [PMID: 29888212 PMCID: PMC5981270 DOI: 10.3389/fcimb.2018.00171] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/03/2018] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis is a severe contagious disease caused by Mycobacterium tuberculosis (Mtb). To develop new vaccines and medicine against TB, there is an urgent need to provide insights into the mechanisms by which Mtb induces tuberculosis. In this study, we found that secreted Mtb virulence factor MptpB significantly enhanced the survival of H37Rv in macrophages. MptpB suppressed the production of iNOS, the expression of inflammatory factors IL-1β and IL-6, as well as the apoptosis of the macrophage in Mtb infected RAW264.7 cells. Mechanism investigation showed that MptpB simultaneously hampered the NF-κB and MAPK signal pathways, evidenced by its blocking of p65, IKKα, Erk1/2, and p38 phosphorylation induced by Mtb infection. MptpB also inhibited host cell p53 expression. The results demonstrated that MptpB contributed to the survival of H37Rv by inhibiting host inflammatory responses and apoptosis through impeding the NF-κB and MAPK signal pathways and p53 expression in the macrophage.
Collapse
Affiliation(s)
- Lingbo Fan
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Suzhou, China
| | - Xiaoyu Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Suzhou, China
| | - Chunyan Jin
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Suzhou, China
| | - Fengge Li
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Suzhou, China
| | - Yuanshu Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Suzhou, China
| |
Collapse
|
11
|
Zhang M, Dong C, Xiong S. Vesicular Stomatitis Virus-Vectored Multi-Antigen Tuberculosis Vaccine Limits Bacterial Proliferation in Mice following a Single Intranasal Dose. Front Cell Infect Microbiol 2017; 7:34. [PMID: 28224119 PMCID: PMC5293745 DOI: 10.3389/fcimb.2017.00034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/24/2017] [Indexed: 01/04/2023] Open
Abstract
Tuberculosis (TB) remains a serious health problem worldwide, and an urgent need exists to improve or replace the available vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG). Most vaccination protocols adapt two or three doses to induce long-term lasting immunity. Our previous study showed that the naked DNA encoding the triple-antigen fusion TFP846 (Rv3615c-Mtb10.4-Rv2660c) induced robust T cellular immune responses accompanying four inoculations against mycobacteria infection. However, a number of compliance issues exist in some areas lacking the appropriate medical infrastructure with multiple administrations. In this study, a novel vesicular stomatitis virus expressing TFP846 (VSV-846) was developed and the immune responses elicited by VSV-846 were evaluated. We observed that intranasal delivery of VSV-846 induced a potent antigen-specific T cell response following a single dose and VSV-846 efficiently controlled bacterial growth to levels ~10-fold lower than that observed in the mock group 6 weeks post-infection in BCG-infected mice. Importantly, mice immunized with VSV-846 provided long-term protection against mycobacteria infection compared with those receiving p846 or BCG immunization. Increased memory T cells were also observed in the spleens of VSV-846-vaccinated mice, which could be a potential mechanism associated with long-term protective immune response. These findings supported the use of VSV as an antigen delivery vector with the potential for TB vaccine development.
Collapse
Affiliation(s)
- Ming Zhang
- Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences, Soochow University Suzhou, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences, Soochow University Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences, Soochow University Suzhou, China
| |
Collapse
|