1
|
Glasgow HL, Zhu H, Xie H, Kenkel EJ, Lee C, Huang ML, Greninger AL. Genotypic testing improves detection of antiviral resistance in human herpes simplex virus. J Clin Virol 2023; 167:105554. [PMID: 37586184 DOI: 10.1016/j.jcv.2023.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Antiviral resistance in human herpes simplex viruses (HSV) remains a significant clinical challenge in immunocompromised populations. Although molecular tests have largely replaced viral culture for HSV diagnosis and molecular antiviral resistance testing is available for many viruses, HSV resistance testing continues to rely on phenotypic, viral culture-based methods, requiring weeks for results. Consequently, treatment of suspected HSV resistance remains largely empiric. METHODS We used HSV whole genome sequencing and a database of previously characterized HSV acyclovir and foscarnet resistance mutations to evaluate the performance of genotypic antiviral resistance testing among 19 control strains compared to in-house plaque reduction assay (PRA) and 25 clinical isolates sent for reference lab PRA antiviral resistance testing. RESULTS Among control strains, 23/29 (79.3%) results were concordant, 5 (17.2%) were indeterminate, and 1 (3.4%) was discordant. Indeterminate results were caused by variants of uncertain significance (VUS), including mutations without published phenotypes and mutations with contradictory results. Among clinical isolates, 14/40 (35%) results were concordant, 17 (42.5%) were indeterminate, and 9 (22.5%) were discordant. All discordant results were in reportedly phenotypically-susceptible HSV-1 strains yet possessed resistance mutations. Three contained resistant subpopulations. 6/8 (75%) discordant phenotypes were concordant with resistant genotypes upon repeat PRA. CONCLUSIONS These data support the combination of genotypic and phenotypic testing to diagnose HSV resistance more accurately and likely more rapidly than phenotypic testing alone. Genotypic context of resistance mutations and the ability of viral strains to form plaques in culture may affect phenotypic resistance results, highlighting the limitations of PRA alone as a gold standard method.
Collapse
Affiliation(s)
- Heather L Glasgow
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, United States.
| | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, United States
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, United States
| | - Elizabeth J Kenkel
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, United States
| | - Carrie Lee
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, United States
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, United States
| |
Collapse
|
2
|
Muller EE, Maseko DV, Kularatne RS. Phenotypic and genotypic acyclovir resistance surveillance of genital herpes simplex virus 2 in South Africa. Antiviral Res 2022; 200:105277. [PMID: 35271913 DOI: 10.1016/j.antiviral.2022.105277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023]
Abstract
Acyclovir (ACV) is currently included in the syndromic management algorithm for genital ulcer disease in South Africa, and is the recommended first-line treatment for herpes simplex virus 2 (HSV-2). In the majority of cases, HSV-2 resistance to ACV is due to amino acid changes within the viral thymidine kinase (TK). Phenotypic and genotypic ACV resistance surveillance of HSV-2 derived from genital ulcer disease swab specimens was conducted at a primary healthcare facility in Johannesburg between 2018 and 2020. The objectives of this surveillance were to identify ACV resistance-associated mutations and polymorphisms in HSV-2 TK, and to determine the phenotypic ACV resistance profiles of the corresponding clinical HSV-2 isolates. Genotypic analysis of TK from 67 HSV-2 positive genital ulcer swabs revealed 48 specimens with TK mutations, conferring 113 nucleotide changes. No resistance-associated mutations were found, however, we identified nine known natural polymorphisms (R26H, A27T, S29A, G39E, N78D, L140F, T159I, R220K and R284S) and five amino acid changes of unknown significance (R18C, G39K, M70R, P75S and L263P). Phenotypic susceptibility testing of 52 cultivable HSV-2 isolates revealed all to be susceptible to ACV with IC50 values of <2 μg/ml. The five amino acid changes of unknown significance identified by genotypic testing were not correlated to phenotypic ACV resistance, and therefore grouped as natural polymorphisms. We did not detect any unknown or resistance-associated mutations in specimens that could not be phenotypically tested for ACV resistance. Our findings will supplement existing databases of HSV antiviral resistance-associated mutations and polymorphisms that could be used for genotypic ACV resistance screening.
Collapse
Affiliation(s)
- Etienne E Muller
- Centre for HIV and Sexually Transmitted Infections, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.
| | - Dumisile V Maseko
- Centre for HIV and Sexually Transmitted Infections, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Ranmini S Kularatne
- Centre for HIV and Sexually Transmitted Infections, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; Department of Clinical Microbiology & Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Schnitzler P. Essential Oils for the Treatment of Herpes Simplex Virus Infections. Chemotherapy 2019; 64:1-7. [PMID: 31234166 DOI: 10.1159/000501062] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/19/2019] [Indexed: 11/19/2022]
Abstract
Infections with herpes simplex virus type (HSV)-1 and HSV-2 are distributed worldwide. Although standard therapies with acyclovir and other synthetic drugs are available, the safety and efficacy of these drugs are limited due to the development of drug resistance and adverse side effects. The literature on essential oils and isolated compounds was reviewed regarding their antiviral activities against HSV-1 and HSV-2. The present overview aims to review experimental data and clinical trials focusing on the antiviral activity of selected essential oils and isolated oil components. HSV was found to be susceptible to many essential oils and their constituents. Whereas some essential oils and compounds exhibit direct virucidal activity or inhibit intracellular replication, many essential oils and compounds interact with HSV particles thereby inhibiting cell adsorption. Ayclovir-resistant HSV strains are also susceptible to essential oils since their mode of action is different from the synthetic drug. There are numerous publications on the antiherpetic activity of essential oils and their isolated active compounds. This field of research is still growing, and more clinical trials are required to explore the full potential of different essential oils for the topical treatment of herpetic infections.
Collapse
Affiliation(s)
- Paul Schnitzler
- Center for Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany,
| |
Collapse
|
4
|
Brunnemann AK, Hoffmann A, Deinhardt-Emmer S, Nagel CH, Rose R, Fickenscher H, Sauerbrei A, Krumbholz A. Relevance of non-synonymous thymidine kinase mutations for antiviral resistance of recombinant herpes simplex virus type 2 strains. Antiviral Res 2018; 152:53-57. [PMID: 29427675 DOI: 10.1016/j.antiviral.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 11/27/2022]
Abstract
Therapy or prophylaxis of herpes simplex virus type 2 (HSV-2) infections with the nucleoside analog aciclovir (ACV) can lead to the emergence of drug-resistant HSV-2 strains, particularly in immunocompromised patients. In this context, multiple amino acid (aa) changes can accumulate in the ACV-converting viral thymidine kinase (TK) which hampers sequence-based diagnostics significantly. In this study, the so far unknown or still doubted relevance of several individual aa changes for drug resistance in HSV-2 was clarified. For this purpose, ten recombinant fluorescent HSV-2 strains differing in the respective aa within their TK were constructed using the bacterial artificial chromosome (BAC) pHSV2(MS)Lox. Similar TK expression levels and similar replication behavior patterns were demonstrated for the mutants as compared to the unmodified BAC-derived HSV-2 strain. Subsequently, the resulting strains were tested for their susceptibility to ACV as well as penciclovir (PCV) in parallel to a modified cytopathic effect (CPE) inhibition assay and by determining the relative fluorescence intensity (quantified using units, RFU) as a measure for the viral replication capacity. While aa changes Y53N and R221H conferred ACV resistance with cross-resistance to PCV, the aa changes G25A, G39E, T131M, Y133F, G150D, A157T, R248W, and L342W maintained a susceptible phenotype against both antivirals. The CPE inhibition assay and the measurement of relative fluorescence intensity yielded comparable results for the phenotypic testing of recombinant viruses. The latter test showed some technical advantages. In conclusion, the significance of single aa changes in HSV-2 TK on ACV/PCV resistance was clarified by the construction and phenotypic testing of recombinant viral strains. This was facilitated by the fluorescence based method.
Collapse
Affiliation(s)
- Anne-Kathrin Brunnemann
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, 24105 Kiel, Germany
| | - Anja Hoffmann
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Stefanie Deinhardt-Emmer
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Claus-Henning Nagel
- Heinrich Pette Institute, Leibniz-Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, 24105 Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, 24105 Kiel, Germany
| | - Andreas Sauerbrei
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, 24105 Kiel, Germany.
| |
Collapse
|
5
|
Mitterreiter JG, Titulaer MJ, van Nierop GP, van Kampen JJA, Aron GI, Osterhaus ADME, Verjans GMGM, Ouwendijk WJD. Prevalence of Intrathecal Acyclovir Resistant Virus in Herpes Simplex Encephalitis Patients. PLoS One 2016; 11:e0155531. [PMID: 27171421 PMCID: PMC4865163 DOI: 10.1371/journal.pone.0155531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/29/2016] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex encephalitis (HSE) is a life-threatening complication of herpes simplex virus (HSV) infection. Acyclovir (ACV) is the antiviral treatment of choice, but may lead to emergence of ACV-resistant (ACVR) HSV due to mutations in the viral UL23 gene encoding for the ACV-targeted thymidine kinase (TK) protein. Here, we determined the prevalence of intrathecal ACVR–associated HSV TK mutations in HSE patients and compared TK genotypes of sequential HSV isolates in paired cerebrospinal fluid (CSF) and blister fluid of mucosal HSV lesions. Clinical samples were obtained from 12 HSE patients, encompassing 4 HSV type 1 (HSV-1) and 8 HSV-2 encephalitis patients. HSV DNA load was determined by real-time PCR and complete HSV TK gene sequences were obtained by nested PCR followed by Sanger sequencing. All HSV-1 HSE patients contained viral TK mutations encompassing 30 unique nucleotide and 13 distinct amino acid mutations. By contrast, a total of 5 unique nucleotide and 4 distinct amino acid changes were detected in 7 of 8 HSV-2 patients. Detected mutations were identified as natural polymorphisms located in non-conserved HSV TK gene regions. ACV therapy did not induce the emergence of ACVR-associated HSV TK mutations in consecutive CSF and mucocutaneous samples of 5 individual patients. Phenotypic susceptibility analysis of these mucocutaneous HSV isolates demonstrated ACV-sensitive virus in 2 HSV-1 HSE patients, whereas in two HSV-2 HSE patients ACVR virus was detected in the absence of known ACVR-associated TK mutations. In conclusion, we did not detect intrathecal ACVR-associated TK mutations in HSV isolates obtained from 12 HSE patients.
Collapse
MESH Headings
- Acyclovir/pharmacology
- Adult
- Amino Acid Substitution/genetics
- Antiviral Agents/pharmacology
- Demography
- Drug Resistance, Viral/drug effects
- Encephalitis, Herpes Simplex/cerebrospinal fluid
- Encephalitis, Herpes Simplex/virology
- Female
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/enzymology
- Herpesvirus 1, Human/isolation & purification
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/enzymology
- Herpesvirus 2, Human/isolation & purification
- Herpesvirus 2, Human/physiology
- Humans
- Male
- Middle Aged
- Phenotype
- Polymorphism, Single Nucleotide/genetics
- Prevalence
- Spinal Cord/pathology
- Spinal Cord/virology
- Thymidine Kinase/genetics
- Young Adult
Collapse
Affiliation(s)
- Johanna G. Mitterreiter
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Gijsbert P. van Nierop
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Georgina I. Aron
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Georges M. G. M. Verjans
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | |
Collapse
|
6
|
Synthetic α-Hydroxytropolones Inhibit Replication of Wild-Type and Acyclovir-Resistant Herpes Simplex Viruses. Antimicrob Agents Chemother 2016; 60:2140-9. [PMID: 26787704 DOI: 10.1128/aac.02675-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/14/2016] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) and HSV-2 remain major human pathogens despite the development of anti-HSV therapeutics as some of the first antiviral drugs. Current therapies are incompletely effective and frequently drive the evolution of drug-resistant mutants. We recently determined that certain natural troponoid compounds such as β-thujaplicinol readily suppress HSV-1 and HSV-2 replication. Here, we screened 26 synthetic α-hydroxytropolones with the goals of determining a preliminary structure-activity relationship for the α-hydroxytropolone pharmacophore and providing a starting point for future optimization studies. Twenty-five compounds inhibited HSV-1 and HSV-2 replication at 50 μM, and 10 compounds inhibited HSV-1 and HSV-2 at 5 μM, with similar inhibition patterns and potencies against both viruses being observed. The two most powerful inhibitors shared a common biphenyl side chain, were capable of inhibiting HSV-1 and HSV-2 with a 50% effective concentration (EC50) of 81 to 210 nM, and also strongly inhibited acyclovir-resistant mutants. Moderate to low cytotoxicity was observed for all compounds (50% cytotoxic concentration [CC50] of 50 to >100 μM). Therapeutic indexes ranged from >170 to >1,200. These data indicate that troponoids and specifically α-hydroxytropolones are a promising lead scaffold for development as anti-HSV drugs provided that toxicity can be further minimized. Troponoid drugs are envisioned to be employed alone or in combination with existing nucleos(t)ide analogs to suppress HSV replication far enough to prevent viral shedding and to limit the development of or treat nucleos(t)ide analog-resistant mutants.
Collapse
|
7
|
Sauerbrei A, Bohn-Wippert K, Kaspar M, Krumbholz A, Karrasch M, Zell R. Database on natural polymorphisms and resistance-related non-synonymous mutations in thymidine kinase and DNA polymerase genes of herpes simplex virus types 1 and 2. J Antimicrob Chemother 2015; 71:6-16. [PMID: 26433780 DOI: 10.1093/jac/dkv285] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of genotypic resistance testing of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) is increasing because the rapid availability of results significantly improves the treatment of severe infections, especially in immunocompromised patients. However, an essential precondition is a broad knowledge of natural polymorphisms and resistance-associated mutations in the thymidine kinase (TK) and DNA polymerase (pol) genes, of which the DNA polymerase (Pol) enzyme is targeted by the highly effective antiviral drugs in clinical use. Thus, this review presents a database of all non-synonymous mutations of TK and DNA pol genes of HSV-1 and HSV-2 whose association with resistance or natural gene polymorphism has been clarified by phenotypic and/or functional assays. In addition, the laboratory methods for verifying natural polymorphisms or resistance mutations are summarized. This database can help considerably to facilitate the interpretation of genotypic resistance findings in clinical HSV-1 and HSV-2 strains.
Collapse
Affiliation(s)
- Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Jena, Germany
| | - Kathrin Bohn-Wippert
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Jena, Germany
| | - Marisa Kaspar
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Jena, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrecht University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Karrasch
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Roland Zell
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Jena, Germany
| |
Collapse
|
8
|
Vogel U, Beermann S, Gerlich W, Hamouda O, Kempf VAJ, Slack M. Twenty years of National Reference and Consultant laboratories for infectious diseases in Germany. Int J Med Microbiol 2015; 305:591-4. [PMID: 26363622 DOI: 10.1016/j.ijmm.2015.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ulrich Vogel
- University of Würzburg, Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, Josef-Schneider-Str. 2 (E1), 97080 Würzburg, Germany.
| | - Sandra Beermann
- Robert Koch Institute, Department of Infectious Diseases Epidemiology, Berlin, Germany
| | - Wolfram Gerlich
- Justus Liebig University Giessen, Institute for Medical Virology, National Reference Centre for Hepatitis B and D, Giessen, Germany
| | - Osamah Hamouda
- Robert Koch Institute, Department of Infectious Diseases Epidemiology, Berlin, Germany
| | - Volkhard A J Kempf
- University Hospital of Frankfurt am Main, Institute for Medical Microbiology and Infection Control, National Consultant Laboratory for Bartonella spp., Frankfurt am Main, Germany
| | - Mary Slack
- School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|