1
|
Neoh CF, Chen SCA, Lanternier F, Tio SY, Halliday CL, Kidd SE, Kong DCM, Meyer W, Hoenigl M, Slavin MA. Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections. Clin Microbiol Rev 2024; 37:e0000423. [PMID: 38551323 PMCID: PMC11237582 DOI: 10.1128/cmr.00004-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Shio Yen Tio
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - David C M Kong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Waurn Ponds, Geelong, Australia
| | - Wieland Meyer
- The University of Sydney, Sydney, Australia
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Douglas AP, Stewart AG, Halliday CL, Chen SCA. Outbreaks of Fungal Infections in Hospitals: Epidemiology, Detection, and Management. J Fungi (Basel) 2023; 9:1059. [PMID: 37998865 PMCID: PMC10672668 DOI: 10.3390/jof9111059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Nosocomial clusters of fungal infections, whilst uncommon, cannot be predicted and are associated with significant morbidity and mortality. Here, we review reports of nosocomial outbreaks of invasive fungal disease to glean insight into their epidemiology, risks for infection, methods employed in outbreak detection including genomic testing to confirm the outbreak, and approaches to clinical and infection control management. Both yeasts and filamentous fungi cause outbreaks, with each having general and specific risks. The early detection and confirmation of the outbreak are essential for diagnosis, treatment of affected patients, and termination of the outbreak. Environmental sampling, including the air in mould outbreaks, for the pathogen may be indicated. The genetic analysis of epidemiologically linked isolates is strongly recommended through a sufficiently discriminatory approach such as whole genome sequencing or a method that is acceptably discriminatory for that pathogen. An analysis of both linked isolates and epidemiologically unrelated strains is required to enable genetic similarity comparisons. The management of the outbreak encompasses input from a multi-disciplinary team with epidemiological investigation and infection control measures, including screening for additional cases, patient cohorting, and strict hygiene and cleaning procedures. Automated methods for fungal infection surveillance would greatly aid earlier outbreak detection and should be a focus of research.
Collapse
Affiliation(s)
- Abby P. Douglas
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Adam G. Stewart
- Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women’s Hospital Campus, The University of Queensland, Herston, QLD 4006, Australia;
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
3
|
Menu E, Filori Q, Dufour JC, Ranque S, L’Ollivier C. A Repertoire of Clinical Non-Dermatophytes Moulds. J Fungi (Basel) 2023; 9:jof9040433. [PMID: 37108888 PMCID: PMC10146755 DOI: 10.3390/jof9040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Humans are constantly exposed to micromycetes, especially filamentous fungi that are ubiquitous in the environment. In the presence of risk factors, mostly related to an alteration of immunity, the non-dermatophyte fungi can then become opportunistic pathogens, causing superficial, deep or disseminated infections. With new molecular tools applied to medical mycology and revisions in taxonomy, the number of fungi described in humans is rising. Some rare species are emerging, and others more frequent are increasing. The aim of this review is to (i) inventory the filamentous fungi found in humans and (ii) provide details on the anatomical sites where they have been identified and the semiology of infections. Among the 239,890 fungi taxa and corresponding synonyms, if any, retrieved from the Mycobank and NCBI Taxonomy databases, we were able to identify 565 moulds in humans. These filamentous fungi were identified in one or more anatomical sites. From a clinical point of view, this review allows us to realize that some uncommon fungi isolated in non-sterile sites may be involved in invasive infections. It may present a first step in the understanding of the pathogenicity of filamentous fungi and the interpretation of the results obtained with the new molecular diagnostic tools.
Collapse
Affiliation(s)
- Estelle Menu
- Laboratoire de Parasitologie-Mycologie, IHU Méditerranée Infection, 13385 Marseille, France
- Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs-Infections Tropicales et Méditerra-néennes, Aix Marseille Université, 13385 Marseille, France
| | - Quentin Filori
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, Aix Marseille University, 13385 Marseille, France
| | - Jean-Charles Dufour
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, Aix Marseille University, 13385 Marseille, France
- APHM, Hôpital de la Timone, Service Biostatistique et Technologies de l’Information et de la Communication, 13385 Marseille, France
| | - Stéphane Ranque
- Laboratoire de Parasitologie-Mycologie, IHU Méditerranée Infection, 13385 Marseille, France
- Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs-Infections Tropicales et Méditerra-néennes, Aix Marseille Université, 13385 Marseille, France
| | - Coralie L’Ollivier
- Laboratoire de Parasitologie-Mycologie, IHU Méditerranée Infection, 13385 Marseille, France
- Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs-Infections Tropicales et Méditerra-néennes, Aix Marseille Université, 13385 Marseille, France
| |
Collapse
|
4
|
Schwarz C, Brandt C, Melichar V, Runge C, Heuer E, Sahly H, Schebek M, Köster H, Bouchara JP, Biedermann T, Meißner P, Große-Onnebrink J, Skopnik H, Hartl D, Sedlacek L, Tintelnot K. Combined antifungal therapy is superior to monotherapy in pulmonary scedosporiosis in cystic fibrosis. J Cyst Fibros 2019; 18:227-232. [DOI: 10.1016/j.jcf.2018.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/06/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
|
5
|
Ramirez-Garcia A, Pellon A, Rementeria A, Buldain I, Barreto-Bergter E, Rollin-Pinheiro R, de Meirelles JV, Xisto MIDS, Ranque S, Havlicek V, Vandeputte P, Govic YL, Bouchara JP, Giraud S, Chen S, Rainer J, Alastruey-Izquierdo A, Martin-Gomez MT, López-Soria LM, Peman J, Schwarz C, Bernhardt A, Tintelnot K, Capilla J, Martin-Vicente A, Cano-Lira J, Nagl M, Lackner M, Irinyi L, Meyer W, de Hoog S, Hernando FL. Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med Mycol 2018. [PMID: 29538735 DOI: 10.1093/mmy/myx113] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Species of Scedosporium and Lomentospora are considered as emerging opportunists, affecting immunosuppressed and otherwise debilitated patients, although classically they are known from causing trauma-associated infections in healthy individuals. Clinical manifestations range from local infection to pulmonary colonization and severe invasive disease, in which mortality rates may be over 80%. These unacceptably high rates are due to the clinical status of patients, diagnostic difficulties, and to intrinsic antifungal resistance of these fungi. In consequence, several consortia have been founded to increase research efforts on these orphan fungi. The current review presents recent findings and summarizes the most relevant points, including the Scedosporium/Lomentospora taxonomy, environmental distribution, epidemiology, pathology, virulence factors, immunology, diagnostic methods, and therapeutic strategies.
Collapse
Affiliation(s)
- Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aize Pellon
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | | | | | | | - Stephane Ranque
- Laboratoire de Parasitologie-Mycologie, AP-HM / CHU Timone, Marseille, France
| | - Vladimir Havlicek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Patrick Vandeputte
- Laboratoire de Parasitologie-Mycologie, CHU, Angers, France.,Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Yohann Le Govic
- Laboratoire de Parasitologie-Mycologie, CHU, Angers, France.,Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Jean-Philippe Bouchara
- Laboratoire de Parasitologie-Mycologie, CHU, Angers, France.,Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Sandrine Giraud
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, The University of Sydney, New South Wales, Australia
| | - Johannes Rainer
- Institute of Microbiology, Leopold-Franzens University Innsbruck, Austria
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology. Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | | | | | - Javier Peman
- Microbiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carsten Schwarz
- Cystic Fibrosis Centre Berlin/Charité-Universitätsmedizin Berlin, Germany
| | - Anne Bernhardt
- Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Kathrin Tintelnot
- Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Javier Capilla
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Adela Martin-Vicente
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain.,Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN USA
| | - Jose Cano-Lira
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Markus Nagl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
6
|
Identification of 14-α-Lanosterol Demethylase (CYP51) in Scedosporium Species. Antimicrob Agents Chemother 2018; 62:AAC.02599-17. [PMID: 29891611 DOI: 10.1128/aac.02599-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Scedosporium spp. cause infections (scedosporiosis) in both immunocompetent and immunocompromised individuals and may persistently colonize the respiratory tract in patients with cystic fibrosis (CF). They are less susceptible against azoles than are other molds, such as Aspergillus spp., suggesting the presence of resistance mechanisms. It can be hypothesized that the decreased susceptibility of Scedosporium spp. to azoles is also CYP51 dependent. Analysis of the Scedosporium apiospermum and Scedosporiumaurantiacum genomes revealed one CYP51 gene encoding the 14-α-lanosterol demethylase. This gene from 159 clinical or environmental Scedosporium isolates and three Lomentospora prolificans isolates has been sequenced and analyzed. The Scedosporium CYP51 protein clustered with the group of known CYP51B orthologues and showed species-specific polymorphisms. A tandem repeat in the 5' upstream region of Scedosporium CYP51 like that in Aspergillus fumigatus could not be detected. Species-specific amino acid alterations in CYP51 of Scedosporium boydii, Scedosporiumellipsoideum, Scedosporium dehoogii, and Scedosporiumminutisporum isolates were located at positions that have not been described as having an impact on azole susceptibility. In contrast, two of the three Sapiospermum-specific amino acid changes (Y136F and G464S) corresponded to respective mutations in A. fumigatus CYP51A at amino acid positions 121 and 448 (Y121F and G448S, respectively) that had been linked to azole resistance.
Collapse
|
7
|
Wongsuk T, Pumeesat P, Luplertlop N. Genetic variation analysis and relationships among environmental strains of Scedosporium apiospermum sensu stricto in Bangkok, Thailand. PLoS One 2017; 12:e0181083. [PMID: 28704511 PMCID: PMC5507518 DOI: 10.1371/journal.pone.0181083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/26/2017] [Indexed: 11/26/2022] Open
Abstract
The Scedosporium apiospermum species complex is an emerging filamentous fungi that has been isolated from environment. It can cause a wide range of infections in both immunocompetent and immunocompromised individuals. We aimed to study the genetic variation and relationships between 48 strains of S. apiospermum sensu stricto isolated from soil in Bangkok, Thailand. For PCR, sequencing and phylogenetic analysis, we used the following genes: actin; calmodulin exons 3 and 4; the second largest subunit of the RNA polymerase II; ß-tubulin exon 2–4; manganese superoxide dismutase; internal transcribed spacer; transcription elongation factor 1α; and beta-tubulin exons 5 and 6. The present study is the first phylogenetic analysis of relationships among S. apiospermum sensu stricto in Thailand and South-east Asia. This result provides useful information for future epidemiological study and may be correlated to clinical manifestation.
Collapse
Affiliation(s)
- Thanwa Wongsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Potjaman Pumeesat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Chowdhary A, Masih A, Sharma C. Azole Resistance in Moulds—Approach to Detection in a Clinical Laboratory. CURRENT FUNGAL INFECTION REPORTS 2016. [DOI: 10.1007/s12281-016-0265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Vogel U, Beermann S, Gerlich W, Hamouda O, Kempf VAJ, Slack M. Twenty years of National Reference and Consultant laboratories for infectious diseases in Germany. Int J Med Microbiol 2015; 305:591-4. [PMID: 26363622 DOI: 10.1016/j.ijmm.2015.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ulrich Vogel
- University of Würzburg, Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, Josef-Schneider-Str. 2 (E1), 97080 Würzburg, Germany.
| | - Sandra Beermann
- Robert Koch Institute, Department of Infectious Diseases Epidemiology, Berlin, Germany
| | - Wolfram Gerlich
- Justus Liebig University Giessen, Institute for Medical Virology, National Reference Centre for Hepatitis B and D, Giessen, Germany
| | - Osamah Hamouda
- Robert Koch Institute, Department of Infectious Diseases Epidemiology, Berlin, Germany
| | - Volkhard A J Kempf
- University Hospital of Frankfurt am Main, Institute for Medical Microbiology and Infection Control, National Consultant Laboratory for Bartonella spp., Frankfurt am Main, Germany
| | - Mary Slack
- School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|