1
|
Wetzstein N, Diricks M, Anton TB, Andres S, Kuhns M, Kohl TA, Schwarz C, Lewin A, Kehrmann J, Kahl BC, Schmidt A, Zimmermann S, Jansson MK, Baron SA, Schulthess B, Hogardt M, Friesen I, Niemann S, Wichelhaus TA. Clinical and genomic features of Mycobacterium avium complex: a multi-national European study. Genome Med 2024; 16:86. [PMID: 38982539 PMCID: PMC11232273 DOI: 10.1186/s13073-024-01359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The Mycobacterium avium complex (MAC) comprises the most frequent non-tuberculous mycobacteria (NTM) in Central Europe and currently includes twelve species. M. avium (MAV), M. intracellulare subsp. intracellulare (MINT), and M. intracellulare subsp. chimaera (MCH) are clinically most relevant. However, the population structure and genomic landscape of MAC linked with potential pathobiological differences remain little investigated. METHODS Whole genome sequencing (WGS) was performed on a multi-national set of MAC isolates from Germany, France, and Switzerland. Phylogenetic analysis was conducted, as well as plasmids, resistance, and virulence genes predicted from WGS data. Data was set into a global context with publicly available sequences. Finally, detailed clinical characteristics were associated with genomic data in a subset of the cohort. RESULTS Overall, 610 isolates from 465 patients were included. The majority could be assigned to MAV (n = 386), MCH (n = 111), and MINT (n = 77). We demonstrate clustering with less than 12 SNPs distance of isolates obtained from different patients in all major MAC species and the identification of trans-European or even trans-continental clusters when set into relation with 1307 public sequences. However, none of our MCH isolates clustered closely with the heater-cooler unit outbreak strain Zuerich-1. Known plasmids were detected in MAV (325/1076, 30.2%), MINT (62/327, 19.0%), and almost all MCH-isolates (457/463, 98.7%). Predicted resistance to aminoglycosides or macrolides was rare. Overall, there was no direct link between phylogenomic grouping and clinical manifestations, but MCH and MINT were rarely found in patients with extra-pulmonary disease (OR 0.12 95% CI 0.04-0.28, p < 0.001 and OR 0.11 95% CI 0.02-0.4, p = 0.004, respectively) and MCH was negatively associated with fulfillment of the ATS criteria when isolated from respiratory samples (OR 0.28 95% CI 0.09-0.7, p = 0.011). With 14 out of 43 patients with available serial isolates, co-infections or co-colonizations with different strains or even species of the MAC were frequent (32.6%). CONCLUSIONS This study demonstrates clustering and the presence of plasmids in a large proportion of MAC isolates in Europe and in a global context. Future studies need to urgently define potential ways of transmission of MAC isolates and the potential involvement of plasmids in virulence.
Collapse
Affiliation(s)
- Nils Wetzstein
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital, Theodor-Stern-Kai 7, FrankfurtFrankfurt Am Main, 60590, Germany.
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
| | - Margo Diricks
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Thomas B Anton
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital, Theodor-Stern-Kai 7, FrankfurtFrankfurt Am Main, 60590, Germany
| | - Sönke Andres
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Martin Kuhns
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Carsten Schwarz
- Division of Cystic Fibrosis, CF Center Westbrandenburg, Campus Potsdam, Klinikum Potsdam, Potsdam, Germany
| | - Astrid Lewin
- Unit Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Annika Schmidt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz K Jansson
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Sophie A Baron
- Faculté de Médecine Et de Pharmacie, IRD, APHM, Aix Marseille Univ, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Bettina Schulthess
- National Reference Laboratory for Mycobacteria, Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection Control, Goethe University, University Hospital, FrankfurtFrankfurt Am Main, Germany
- German National Consiliary Laboratory On Cystic Fibrosis Bacteriology, Frankfurt Am Main, Germany
| | - Inna Friesen
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, Goethe University, University Hospital, FrankfurtFrankfurt Am Main, Germany
| |
Collapse
|
2
|
Brenner E, Sreevatsan S. Cold Cas: reevaluating the occurrence of CRISPR/Cas systems in Mycobacteriaceae. Front Microbiol 2023; 14:1204838. [PMID: 37440893 PMCID: PMC10333696 DOI: 10.3389/fmicb.2023.1204838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Bacterial CRISPR/Cas systems target foreign genetic elements such as phages and regulate gene expression by some pathogens, even in the host. The system is a marker for evolutionary history and has been used for inferences in Mycobacterium tuberculosis for 30 years. However, knowledge about mycobacterial CRISPR/Cas systems remains limited. It is believed that Type III-A Cas systems are exclusive to Mycobacterium canettii and the M. tuberculosis complex (MTBC) of organisms and that very few of the >200 diverse species of non-tuberculous mycobacteria (NTM) possess any CRISPR/Cas system. This study sought unreported CRISPR/Cas loci across NTM to better understand mycobacterial evolution, particularly in species phylogenetically near the MTBC. An analysis of available mycobacterial genomes revealed that Cas systems are widespread across Mycobacteriaceae and that some species contain multiple types. The phylogeny of Cas loci shows scattered presence in many NTM, with variation even within species, suggesting gains/losses of these loci occur frequently. Cas Type III-A systems were identified in pathogenic Mycobacterium heckeshornense and the geological environmental isolate Mycobacterium SM1. In summary, mycobacterial CRISPR/Cas systems are numerous, Type III-A systems are unreliable as markers for MTBC evolution, and mycobacterial horizontal gene transfer appears to be a frequent source of genetic variation.
Collapse
Affiliation(s)
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Komatsu T, Ohya K, Ota A, Nishiuchi Y, Yano H, Matsuo K, Odoi JO, Suganuma S, Sawai K, Hasebe A, Asai T, Yanai T, Fukushi H, Wada T, Yoshida S, Ito T, Arikawa K, Kawai M, Ato M, Baughn AD, Iwamoto T, Maruyama F. Unique genomic sequences in a novel Mycobacterium avium subsp. hominissuis lineage enable fine scale transmission route tracing during pig movement. One Health 2023; 16:100559. [PMID: 37363238 PMCID: PMC10288077 DOI: 10.1016/j.onehlt.2023.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is one of the most prevalent mycobacteria causing non-tuberculous mycobacterial disease in humans and animals. Of note, MAH is a major cause of mycobacterial granulomatous mesenteric lymphadenitis outbreaks in pig populations. To determine the precise source of infection of MAH in a pig farm and to clarify the epidemiological relationship among pig, human and environmental MAH lineages, we collected 50 MAH isolates from pigs reared in Japan and determined draft genome sequences of 30 isolates. A variable number of tandem repeat analysis revealed that most pig MAH isolates in Japan were closely related to North American, European and Russian human isolates but not to those from East Asian human and their residential environments. Historical recombination analysis revealed that most pig isolates could be classified into SC2/4 and SC3, which contain MAH isolated from pig, European human and environmental isolates. Half of the isolates in SC2/4 had many recombination events with MAH lineages isolated from humans in East Asia. To our surprise, four isolates belonged to a new lineage (SC5) in the global MAH population. Members of SC5 had few footprints of inter-lineage recombination in the genome, and carried 80 unique genes, most of which were located on lineage specific-genomic islands. Using unique genetic features, we were able to trace the putative transmission route via their host pigs. Together, we clarify the possibility of species-specificity of MAH in addition to local adaptation. Our results highlight two transmission routes of MAH, one exposure on pig farms from the environment and the other via pig movement. Moreover, our study also warns that the evolution of MAH in pigs is influenced by MAH from patients and their residential environments, even if the MAH are genetically distinct.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Aichi Prefectural Tobu Livestock Hygiene Service Center, Toyohashi, Aichi, Japan
| | - Kenji Ohya
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan
| | - Atsushi Ota
- Data Science Center, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yukiko Nishiuchi
- Office of Academic Research and Industry-Government Collaboration, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kayoko Matsuo
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Kumamoto Prefectural Aso Public Health Center, Aso, Kumamoto, Japan
| | - Justice Opare Odoi
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Shota Suganuma
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kotaro Sawai
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki, Japan
| | - Akemi Hasebe
- Toyama Prefectural Meat Inspection Center, Imizu, Toyama, Japan
| | - Tetsuo Asai
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan
| | - Tokuma Yanai
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Hiwa Natural History Museum, Shobara, Hiroshima, Japan
| | - Hideto Fukushi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takayuki Wada
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Toshihiro Ito
- Laboratory of Proteome Research, Proteome Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Mikihiko Kawai
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Anthony D. Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Fumito Maruyama
- Office of Academic Research and Industry-Government Collaboration, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Project Research Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
4
|
Hasan NA, Davidson RM, Epperson LE, Kammlade SM, Beagle S, Levin AR, de Moura VC, Hunkins JJ, Weakly N, Sagel SD, Martiniano SL, Salfinger M, Daley CL, Nick JA, Strong M. Population Genomics and Inference of Mycobacterium avium Complex Clusters in Cystic Fibrosis Care Centers, United States. Emerg Infect Dis 2021; 27:2836-2846. [PMID: 34670648 PMCID: PMC8544995 DOI: 10.3201/eid2711.210124] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium avium complex (MAC) species constitute most mycobacteria infections in persons with cystic fibrosis (CF) in the United States, but little is known about their genomic diversity or transmission. During 2016–2020, we performed whole-genome sequencing on 364 MAC isolates from 186 persons with CF from 42 cystic fibrosis care centers (CFCCs) across 23 states. We compared isolate genomes to identify instances of shared strains between persons with CF. Among persons with multiple isolates sequenced, 15/56 (27%) had >1 MAC strain type. Genomic comparisons revealed 18 clusters of highly similar isolates; 8 of these clusters had patients who shared CFCCs, which included 27/186 (15%) persons with CF. We provide genomic evidence of highly similar MAC strains shared among patients at the same CFCCs. Polyclonal infections and high genetic similarity between MAC isolates are consistent with multiple modes of acquisition for persons with CF to acquire MAC infections.
Collapse
|
5
|
Yano H, Suzuki H, Maruyama F, Iwamoto T. The recombination-cold region as an epidemiological marker of recombinogenic opportunistic pathogen Mycobacterium avium. BMC Genomics 2019; 20:752. [PMID: 31623552 PMCID: PMC6798384 DOI: 10.1186/s12864-019-6078-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/04/2019] [Indexed: 11/10/2022] Open
Abstract
Background The rapid identification of lineage remains a challenge in the genotyping of clinical isolates of recombinogenic pathogens. The chromosome of Mycobacterium avium subsp. hominissuis (MAH), an agent of Mycobacterium avium complex (MAC) lung disease, is often mosaic and is composed of chromosomal segments originating from different lineages. This makes it difficult to infer the MAH lineage in a simple experimental set-up. To overcome this difficulty, we sought to identify chromosomal marker genes containing lineage-specific alleles by genome data mining. Results We conducted genetic population structure analysis, phylogenetic analysis, and a survey of historical recombination using data from 125 global MAH isolates. Six MAH lineages (EA1, EA2, SC1, SC2, SC3, and SC4) were identified in the current dataset. One P-450 gene (locus_tag MAH_0788/MAV_0940) in the recombination-cold region was found to have multiple alleles that could discriminate five lineages. By combining the information about allele type from one additional gene, the six MAH lineages as well as other M. avium subspecies were distinguishable. A recombination-cold region of 116 kb contains an insertion hotspot and is flanked by a mammalian cell-entry protein operon where allelic variants have previously been reported to occur. Hence, we speculate that the acquisition of lineage- or strain-specific insertions has introduced homology breaks in the chromosome, thereby reducing the chance of interlineage recombination. Conclusions The allele types of the newly identified marker genes can be used to predict major lineages of M. avium. The single nucleotide polymorphism typing approach targeting multiallelic loci in recombination-cold regions will facilitate the epidemiological study of MAC, and may also be useful for equivalent studies of other nontuberculous mycobacteria potentially carrying mosaic genomes.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Japan.
| | - Haruo Suzuki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Fumito Maruyama
- Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Hiroshima, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan.
| |
Collapse
|
6
|
Yew WW, Liang D, Chan DP, Shi W, Zhang Y. Molecular mechanisms of clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2018; 72:2943-2944. [PMID: 29091204 DOI: 10.1093/jac/dkx227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dachao Liang
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Denise P Chan
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wanliang Shi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
7
|
Yano H, Iwamoto T, Nishiuchi Y, Nakajima C, Starkova DA, Mokrousov I, Narvskaya O, Yoshida S, Arikawa K, Nakanishi N, Osaki K, Nakagawa I, Ato M, Suzuki Y, Maruyama F. Population Structure and Local Adaptation of MAC Lung Disease Agent Mycobacterium avium subsp. hominissuis. Genome Biol Evol 2018; 9:2403-2417. [PMID: 28957464 PMCID: PMC5622343 DOI: 10.1093/gbe/evx183] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is one of the most common nontuberculous mycobacterial species responsible for chronic lung disease in humans. Despite increasing worldwide incidence, little is known about the genetic mechanisms behind the population evolution of MAH. To elucidate the local adaptation mechanisms of MAH, we assessed genetic population structure, the mutual homologous recombination, and gene content for 36 global MAH isolates, including 12 Japanese isolates sequenced in the present study. We identified five major MAH lineages and found that extensive mutual homologous recombination occurs among them. Two lineages (MahEastAsia1 and MahEastAsia2) were predominant in the Japanese isolates. We identified alleles unique to these two East Asian lineages in the loci responsible for trehalose biosynthesis (treS and mak) and in one mammalian cell entry operon, which presumably originated from as yet undiscovered mycobacterial lineages. Several genes and alleles unique to East Asian strains were located in the fragments introduced via recombination between East Asian lineages, suggesting implication of recombination in local adaptation. These patterns of MAH genomes are consistent with the signature of distribution conjugative transfer, a mode of sexual reproduction reported for other mycobacterial species.
Collapse
Affiliation(s)
- Hirokazu Yano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan
| | - Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School, Osaka, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo, Japan
| | | | - Igor Mokrousov
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Olga Narvskaya
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan
| | - Ken Osaki
- TOMY Digital Biology Co. Ltd, Taito-Ku, Tokyo, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-Ku, Tokyo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo, Japan
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Shoulah SA, Oschmann AM, Selim A, Semmler T, Schwarz C, Kamal E, Hamouda F, Galila E, Bitter W, Lewin A. Environmental Mycobacterium avium subsp. hominissuis have a higher probability to act as a recipient in conjugation than clinical strains. Plasmid 2018; 95:28-35. [PMID: 29343426 DOI: 10.1016/j.plasmid.2018.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is a widespread opportunistic pathogen that can be isolated from environment (dust, soil and water) and patients with lung or lymphnode infection. In our previous research we revealed the pronounced genetic diversity in MAH by identifying eight different types of a newly described genomic island. In order to identify mechanisms of such horizontal gene transfer we now analyzed the ability of 47 MAH isolates to inherit the conjugative plasmid pRAW from M. marinum. A higher percentage of environmental isolates (22.7%) compared to clinical isolates (8%) had the capacity to function as recipient in conjugal plasmid transfer. Genetic analysis showed additionally that environmental isolates contained more genes homologous to genes present on conjugative mycobacterial plasmids than clinical isolates. Comparative analysis of the genomes of the isolates pointed to a possible association between the ability to act as recipient in conjugation and the structure of a genomic region containing the radC gene and a type I restriction/modification system. Finally we found that uptake of pRAW decreased the resistance against various antibiotics.
Collapse
Affiliation(s)
- Salma A Shoulah
- Division 16, Mycotic and parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany; Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Egypt
| | - Anna M Oschmann
- Division 16, Mycotic and parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Egypt
| | - Torsten Semmler
- Division NG 1, Junior Research Group Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Carsten Schwarz
- Division of Cystic fibrosis/Christiane Herzog Zentrum, Charité-Universitätsmedizin Berlin, Germany
| | - Elisabeth Kamal
- Division 16, Mycotic and parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Faysal Hamouda
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Egypt
| | - Elsayed Galila
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Egypt
| | - Wilbert Bitter
- Molecular and Medical Microbiology, VU University & VU University Medical Center, Amsterdam, The Netherlands
| | - Astrid Lewin
- Division 16, Mycotic and parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|