Wang N, Pilo AL, Zhao F, Bu J, McLuckey SA. Gas-phase rearrangement reaction of Schiff-base-modified peptide ions.
RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018;
32:2166-2173. [PMID:
30280440 PMCID:
PMC6657513 DOI:
10.1002/rcm.8298]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE
Schiff base modification of peptides has been shown to facilitate their primary structural characterization via tandem mass spectrometry. However, we have discovered a novel rearrangement reaction via ion trap collisional activation involving the imine of the Schiff base and one of several functional groups, particularly the side chains of the basic residues lysine, arginine, and histidine, in the peptide.
METHODS
Gas-phase ion/ion reactions involving an aldehyde-containing reagent were used to generate Schiff-base-modified model peptides in a hybrid triple quadrupole/linear ion trap tandem mass spectrometer. Subsequent ion trap collisional activation was used to study the rearrangement reaction.
RESULTS
Schiff-base-modified peptide ions were found to undergo a rearrangement reaction that was observed to be either a major or minor contributor to the product ion spectrum, depending upon a variety of factors that include, for example, ion polarity, identity of the nucleophile in the peptide (e.g., side chains of lysine, histidine, and arginine), and the position of the nucleophile relative to the imine.
CONCLUSIONS
Relatively low-energy rearrangement reactions can occur in Schiff-base-modified peptide ions that involve the imine of the Schiff base and a nucleophile present in the polypeptide. While this rearrangement process does not appear to compromise the structural information that can be generated via collisional activation of Schiff-base-modified peptide ions, it can siphon away signal from the structurally diagnostic processes in some instances.
Collapse