1
|
Peters-Clarke TM, Riley NM, Westphall MS, Coon JJ. Practical Effects of Intramolecular Hydrogen Rearrangement in Electron Transfer Dissociation-Based Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:100-110. [PMID: 34874726 PMCID: PMC10291708 DOI: 10.1021/jasms.1c00284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion-ion reactions are valuable tools in mass-spectrometry-based peptide and protein sequencing. To boost the generation of sequence-informative fragment ions from low charge-density precursors, supplemental activation methods, via vibrational and photoactivation, have become widely adopted. However, long-lived radical peptide cations undergo intramolecular hydrogen atom transfer from c-type ions to z•-type ions. Here we investigate the degree of hydrogen transfer for thousands of unique peptide cations where electron transfer dissociation (ETD) was performed and was followed by beam-type collisional activation (EThcD), resonant collisional activation (ETcaD), or concurrent infrared photoirradiation (AI-ETD). We report on the precursor charge density and the local amino acid environment surrounding bond cleavage to illustrate the effects of intramolecular hydrogen atom transfer for various precursor ions. Over 30% of fragments from EThcD spectra comprise distorted isotopic distributions, whereas over 20% of fragments from ETcaD have distorted distributions and less than 15% of fragments derived from ETD and AI-ETD reveal distorted isotopic distributions. Both ETcaD and EThcD give a relatively high degree of hydrogen migration, especially when D, G, N, S, and T residues were directly C-terminal to the cleavage site. Whereas all postactivation methods boost the number of c- and z•-type fragment ions detected, the collision-based approaches produce higher rates of hydrogen migration, yielding fewer spectral identifications when only c- and z•-type ions are considered. Understanding hydrogen rearrangement between c- and z•-type ions will facilitate better spectral interpretation.
Collapse
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| |
Collapse
|
2
|
Munar I, Fındık V, Degirmenci I, Aviyente V. Solvent Effects on Thiol–Ene Kinetics and Reactivity of Carbon and Sulfur Radicals. J Phys Chem A 2020; 124:2580-2590. [DOI: 10.1021/acs.jpca.9b10165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ipek Munar
- Department of Chemistry, Faculty of Arts and Sciences, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Volkan Fındık
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Isa Degirmenci
- Chemical Engineering Department, Ondokuz Mayıs University, 55139 Samsun, Turkey
| | - Viktorya Aviyente
- Department of Chemistry, Faculty of Arts and Sciences, Bogazici University, Bebek, 34342, Istanbul, Turkey
| |
Collapse
|
3
|
Schwob L, Dörner S, Atak K, Schubert K, Timm M, Bülow C, Zamudio-Bayer V, von Issendorff B, Lau JT, Techert S, Bari S. Site-Selective Dissociation upon Sulfur L-Edge X-ray Absorption in a Gas-Phase Protonated Peptide. J Phys Chem Lett 2020; 11:1215-1221. [PMID: 31978303 DOI: 10.1021/acs.jpclett.0c00041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Site-selective dissociation induced by core photoexcitation of biomolecules is of key importance for the understanding of radiation damage processes and dynamics and for its promising use as "chemical scissors" in various applications. However, identifying products of site-selective dissociation in large molecules is challenging at the carbon, nitrogen, and oxygen edges because of the high recurrence of these atoms and related chemical groups. In this paper, we present the observation of site-selective dissociation at the sulfur L-edge in the gas-phase peptide methionine enkephalin, which contains only a single sulfur atom. Near-edge X-ray absorption mass spectrometry has revealed that the resonant S 2p → σ*C-S excitation of the sulfur contained in the methionine side chain leads to site-selective dissociation, which is not the case after core ionization above the sulfur L-edge. The prospects of such results for the study of charge dynamics in biomolecular systems are discussed.
Collapse
Affiliation(s)
- Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Simon Dörner
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Kaan Atak
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Kaja Schubert
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
| | - Christine Bülow
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
| | - Bernd von Issendorff
- Physikalisches Institut , Universität Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
| | - J Tobias Lau
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
- Physikalisches Institut , Universität Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
- Institute of X-ray Physics , University of Göttingen , Friedrich-Hund-Platz 1 , 37077 Göttingen , Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| |
Collapse
|
4
|
Kempkes LJ, Martens J, Berden G, Houthuijs KJ, Oomens J. Investigation of the position of the radical in z3-ions resulting from electron transfer dissociation using infrared ion spectroscopy. Faraday Discuss 2019; 217:434-452. [DOI: 10.1039/c8fd00202a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular structures of six open-shell z3-ions resulting from electron transfer dissociation mass spectrometry (ETD MS) were investigated using infrared ion spectroscopy in combination with density functional theory and molecular mechanics/molecular dynamics calculations.
Collapse
Affiliation(s)
| | - Jonathan Martens
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Giel Berden
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Kas J. Houthuijs
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Jos Oomens
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
- Van’t Hoff Institute for Molecular Sciences
| |
Collapse
|
5
|
Imaoka N, Houferak C, Murphy MP, Nguyen HTH, Dang A, Tureček F. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1768-1780. [PMID: 29340957 DOI: 10.1007/s13361-017-1871-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Naruaki Imaoka
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Camille Houferak
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Megan P Murphy
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Huong T H Nguyen
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Andy Dang
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - František Tureček
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
6
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
7
|
Mu X, Song T, Siu CK, Chu IK. Tautomerization and Dissociation of Molecular Peptide Radical Cations. CHEM REC 2017. [DOI: 10.1002/tcr.201700013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Tao Song
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Chi-Kit Siu
- Department of Biology and Chemistry; City University of Hong Kong; 83 Tat Chee Avenue Kowloon Tong, Hong Kong SAR P. R. China
| | - Ivan K. Chu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| |
Collapse
|
8
|
Abstract
UV photodissociation (UVPD) action spectroscopy is reported to provide a sensitive tool for the detection of radical sites in gas-phase peptide ions. UVPD action spectra of peptide cation radicals of the z-type generated by electron-transfer dissociation point to the presence of multiple structures formed as a result of spontaneous isomerizations by hydrogen atom migration. N-terminal Cα radicals are identified as the dominant components, but the content of isomers differing in the radical defect position in the backbone or side chain depends on the nature of the aromatic residue with phenylalanine being more prone to isomerization than tryptophan. These results illustrate that spontaneous hydrogen atom migrations can occur in peptide cation-radicals upon electron-transfer dissociation.
Collapse
Affiliation(s)
- Huong T H Nguyen
- Department of Chemistry, University of Washington , Bagley Hall, Box 351700, Seattle, Washington 981195-1700, United States
| | - Christopher J Shaffer
- Department of Chemistry, University of Washington , Bagley Hall, Box 351700, Seattle, Washington 981195-1700, United States
| | - Robert Pepin
- Department of Chemistry, University of Washington , Bagley Hall, Box 351700, Seattle, Washington 981195-1700, United States
| | - František Tureček
- Department of Chemistry, University of Washington , Bagley Hall, Box 351700, Seattle, Washington 981195-1700, United States
| |
Collapse
|
9
|
Tang WK, Leong CP, Hao Q, Siu CK. Theoretical examination of competitive β-radical-induced cleavages of N–Cα and Cα–C bonds of peptides. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective cleavages of N–Cα and Cα–C bonds of β-radical tautomers of amino acid residues in radical peptides have been examined theoretically by means of the density functional theory at the M06-2X/6-311++G(d,p) level. The majority of the bond cleavages are homolytic via β-scission. Their energy barriers depend largely on the ability of the radical being stabilized in the transition structures and the availability of a mobile proton in the vicinity of the β-radical center. The N–Cα bond is less favorably cleaved than the Cα–C bond (except Ser and Thr) for systems without a mobile proton. It is because, firstly, the homolytic cleavage is less favorable for the more polar N–Cα bond than for the less polar Cα–C bond. Secondly, a less stable σ-radical localized on the amide nitrogen atom of the incipient N-terminal fragment is formed for the former, while a more stable radical delocalized in a π*(CO)-like orbital of the incipient C-terminal fragment is formed for the latter. In the presence of a mobile proton N-terminal to the β-radical center, some degrees of heterolytic cleavage character, as preferred by the polar N–Cα bond, are observed. Consequently, its barrier is reduced. If the mobile proton is located at the C-terminal amide oxygen of the β-radical center, the Cα–C bond cleavage will be significantly suppressed. It is because the radical in the incipient C-terminal fragment becomes more localized as a σ-radical on the carbon atom of its protonated amide group. With basic amino acid residues, the Cα–C bond cleavage can be reactivated. Heterolytic cleavage of the polar N–Cα bond can be largely facilitated if a mobile proton N-terminal to the β-radical center is available and the radical in the incipient C-terminal fragment is sufficiently stabilized, for instance, by the aromatic side chain of Trp and Tyr. Therefore, cleavages of the N–Cα bond induced by the β-radical tautomer of Trp and Tyr are often preferred as compared with cleavages of the Cα–C bond in peptide radical cations containing mobile protons.
Collapse
Affiliation(s)
- Wai-Kit Tang
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Chun-Ping Leong
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Qiang Hao
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Chi-Kit Siu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| |
Collapse
|
10
|
Tureček F. Benchmarking Electronic Excitation Energies and Transitions in Peptide Radicals. J Phys Chem A 2015; 119:10101-11. [DOI: 10.1021/acs.jpca.5b06235] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- František Tureček
- Department of Chemistry, University of Washington, Bagley Hall,
Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|