1
|
Woubshete M, Cioccolo S, Byrne B. Advances in Membrane Mimetic Systems for Manipulation and Analysis of Membrane Proteins: Detergents, Polymers, Lipids and Scaffolds. Chempluschem 2024; 89:e202300678. [PMID: 38315323 DOI: 10.1002/cplu.202300678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Extracting membrane proteins from the hydrophobic environment of the biological membrane, in a physiologically relevant and stable state, suitable for downstream analysis remains a challenge. The traditional route to membrane protein extraction has been to use detergents and the last 15 years or so have seen a veritable explosion in the development of novel detergents with improved properties, making them more suitable for individual proteins and specific applications. There have also been significant advances in the development of encapsulation of membrane proteins in lipid based nanodiscs, either directly from the native membrane using polymers allowing effective capture of the protein and protein-associated membrane lipids, or via reconstitution of detergent extracted and purified protein into nanodiscs of defined lipid composition. All of these advances have been successfully applied to the study of membrane proteins via a range of techniques and there have been some spectacular membrane protein structures solved. In addition, the first detailed structural and biophysical analyses of membrane proteins retained within a biological membrane have been reported. Here we summarise and review the recent advances with respect to these new agents and systems for membrane protein extraction, reconstitution and analysis.
Collapse
Affiliation(s)
- Menebere Woubshete
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Sara Cioccolo
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- Department of Chemistry, Imperial College London, White City, London, W12 0BZ, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Marconnet A, Michon B, Prost B, Solgadi A, Le Bon C, Giusti F, Tribet C, Zoonens M. Influence of Hydrophobic Groups Attached to Amphipathic Polymers on the Solubilization of Membrane Proteins along with Their Lipids. Anal Chem 2022; 94:14151-14158. [PMID: 36200347 DOI: 10.1021/acs.analchem.2c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the biggest challenges in membrane protein (MP) research is to secure physiologically relevant structural and functional information after extracting MPs from their native membrane. Amphipathic polymers represent attractive alternatives to detergents for stabilizing MPs in aqueous solutions. The predominant polymers used in MP biochemistry and biophysics are amphipols (APols), one class of which, styrene maleic acid (SMA) copolymers and their derivatives, has proven particularly efficient at MP extraction. In order to examine the relationship between the chemical structure of the polymers and their ability to extract MPs from membranes, we have developed two novel classes of APols bearing either cycloalkane or aryl (aromatic) rings, named CyclAPols and ArylAPols, respectively. The effect on solubilization of such parameters as the density of hydrophobic groups, the number of carbon atoms and their arrangement in the hydrophobic moieties, as well as the charge density of the polymers was evaluated. The membrane-solubilizing efficiency of the SMAs, CyclAPols, and ArylAPols was compared using as models (i) two MPs, BmrA and a GFP-fused version of LacY, overexpressed in the inner membrane of Escherichia coli, and (ii) bacteriorhodopsin, naturally expressed in the purple membrane of Halobacterium salinarum. This analysis shows that, as compared to SMAs, the novel APols feature an improved efficiency at extracting MPs while preserving native protein-lipid interactions.
Collapse
Affiliation(s)
- Anaïs Marconnet
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Baptiste Michon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Bastien Prost
- UMS-IPSIT SAMM, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Audrey Solgadi
- UMS-IPSIT SAMM, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Christel Le Bon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Fabrice Giusti
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Christophe Tribet
- P.A.S.T.E.U.R., Département de Chimie, École Normale Supérieure, PSL University, CNRS, Sorbonne Université, F-75005 Paris, France
| | - Manuela Zoonens
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
3
|
Dafun AS, Marcoux J. Structural mass spectrometry of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140813. [PMID: 35750312 DOI: 10.1016/j.bbapap.2022.140813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
5
|
Hermansen S, Linke D, Leo JC. Transmembrane β-barrel proteins of bacteria: From structure to function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:113-161. [PMID: 35034717 DOI: 10.1016/bs.apcsb.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The outer membrane of Gram-negative bacteria is a specialized organelle conferring protection to the cell against various environmental stresses and resistance to many harmful compounds. The outer membrane has a number of unique features, including an asymmetric lipid bilayer, the presence of lipopolysaccharides and an individual proteome. The vast majority of the integral transmembrane proteins in the outer membrane belongs to the family of β-barrel proteins. These evolutionarily related proteins share a cylindrical, anti-parallel β-sheet core fold spanning the outer membrane. The loops and accessory domains attached to the β-barrel allow for a remarkable versatility in function for these proteins, ranging from diffusion pores and transporters to enzymes and adhesins. We summarize the current knowledge on β-barrel structure and folding and give an overview of their functions, evolution, and potential as drug targets.
Collapse
Affiliation(s)
- Simen Hermansen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Antimicrobial resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.
| |
Collapse
|
6
|
Higgins AJ, Flynn AJ, Marconnet A, Musgrove LJ, Postis VLG, Lippiat JD, Chung CW, Ceska T, Zoonens M, Sobott F, Muench SP. Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis. Commun Biol 2021; 4:1337. [PMID: 34824357 PMCID: PMC8617058 DOI: 10.1038/s42003-021-02834-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract Escherichia coli AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM.
Collapse
Affiliation(s)
- Anna J Higgins
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alex J Flynn
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Anaïs Marconnet
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le dévelopement de la recherche scientifique, F-75005, Paris, France
| | - Laura J Musgrove
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Vincent L G Postis
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Chun-Wa Chung
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | | | - Manuela Zoonens
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005, Paris, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le dévelopement de la recherche scientifique, F-75005, Paris, France.
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
7
|
Hammerschmid D, van Dyck JF, Sobott F, Calabrese AN. Interrogating Membrane Protein Structure and Lipid Interactions by Native Mass Spectrometry. Methods Mol Biol 2021; 2168:233-261. [PMID: 33582995 DOI: 10.1007/978-1-0716-0724-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Native mass spectrometry and native ion mobility mass spectrometry are now established techniques in structural biology, with recent work developing these methods for the study of integral membrane proteins reconstituted in both lipid bilayer and detergent environments. Here we show how native mass spectrometry can be used to interrogate integral membrane proteins, providing insights into conformation, oligomerization, subunit composition/stoichiometry, and interactions with detergents/lipids/drugs. Furthermore, we discuss the sample requirements and experimental considerations unique to integral membrane protein native mass spectrometry research.
Collapse
Affiliation(s)
- Dietmar Hammerschmid
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium.,Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Jeroen F van Dyck
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium.,Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Antonio N Calabrese
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
8
|
Kostelic MM, Ryan AM, Reid DJ, Noun JM, Marty MT. Expanding the Types of Lipids Amenable to Native Mass Spectrometry of Lipoprotein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1416-1425. [PMID: 30972726 PMCID: PMC6675625 DOI: 10.1007/s13361-019-02174-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 05/12/2023]
Abstract
Native mass spectrometry (MS) has become an important tool for the analysis of membrane proteins. Although detergent micelles are the most commonly used method for solubilizing membrane proteins for native MS, nanoscale lipoprotein complexes such as nanodiscs are emerging as a promising complementary approach because they solubilize membrane proteins in a lipid bilayer environment. However, prior native MS studies of intact nanodiscs have employed only a limited set of phospholipids that are similar in mass. Here, we extend the range of lipids that are amenable to native MS of nanodiscs by combining lipids with masses that are simple integer multiples of each other. Although these lipid combinations create complex distributions, overlap between resonant peak series allows interpretation of nanodisc spectra containing glycolipids, sterols, and cardiolipin. We also investigate the gas-phase stability of nanodiscs with these new lipids towards collisional activation. We observe that negative ionization mode or charge reduction stabilizes nanodiscs and is essential to preserving labile lipids such as sterols. These new approaches to native MS of nanodiscs will enable future studies of membrane proteins embedded in model membranes that more accurately mimic natural bilayers. Graphical Abstract.
Collapse
Affiliation(s)
- Marius M Kostelic
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Alex M Ryan
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Deseree J Reid
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Jibriel M Noun
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA.
| |
Collapse
|
9
|
Kostelic MM, Ryan AM, Reid DJ, Noun JM, Marty MT. Expanding the Types of Lipids Amenable to Native Mass Spectrometry of Lipoprotein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1416-1425. [PMID: 30972726 DOI: 10.1007/s13361-13019-02174-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 05/26/2023]
Abstract
Native mass spectrometry (MS) has become an important tool for the analysis of membrane proteins. Although detergent micelles are the most commonly used method for solubilizing membrane proteins for native MS, nanoscale lipoprotein complexes such as nanodiscs are emerging as a promising complementary approach because they solubilize membrane proteins in a lipid bilayer environment. However, prior native MS studies of intact nanodiscs have employed only a limited set of phospholipids that are similar in mass. Here, we extend the range of lipids that are amenable to native MS of nanodiscs by combining lipids with masses that are simple integer multiples of each other. Although these lipid combinations create complex distributions, overlap between resonant peak series allows interpretation of nanodisc spectra containing glycolipids, sterols, and cardiolipin. We also investigate the gas-phase stability of nanodiscs with these new lipids towards collisional activation. We observe that negative ionization mode or charge reduction stabilizes nanodiscs and is essential to preserving labile lipids such as sterols. These new approaches to native MS of nanodiscs will enable future studies of membrane proteins embedded in model membranes that more accurately mimic natural bilayers. Graphical Abstract.
Collapse
Affiliation(s)
- Marius M Kostelic
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Alex M Ryan
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Deseree J Reid
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Jibriel M Noun
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA.
| |
Collapse
|
10
|
Native Nanodiscs and the Convergence of Lipidomics, Metabolomics, Interactomics and Proteomics. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The omics disciplines remain largely distinct sciences due to the necessity of separating molecular classes for different assays. For example, water-soluble and lipid bilayer-bound proteins and metabolites are usually studied separately. Nonetheless, it is at the interface between these sciences where biology happens. That is, lipid-interacting proteins typically recognize and transduce signals and regulate the flow of metabolites in the cell. Technologies are emerging to converge the omics. It is now possible to separate intact membrane:protein assemblies (memteins) directly from intact cells or cell membranes. Such complexes mediate complete metabolon, receptor, channel, and transporter functions. The use of poly(styrene-co-maleic acid) (SMA) copolymers has allowed their separation in a single step without any exposure to synthetic detergents or artificial lipids. This is a critical development as these agents typically strip away biological lipids, signals, and metabolites from their physiologically-relevant positions on proteins. The resulting SMA lipid particles (SMALPs) represent native nanodiscs that are suitable for elucidation of structures and interactions that occur in vivo. Compatible tools for resolving the contained memteins include X-ray diffraction (XRD), cryo-electron microscopy (cryoEM), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy. Recent progress shows that memteins are more representative than naked membrane proteins devoid of natural lipid and is driving the development of next generation polymers.
Collapse
|
11
|
Bolla JR, Agasid MT, Mehmood S, Robinson CV. Membrane Protein-Lipid Interactions Probed Using Mass Spectrometry. Annu Rev Biochem 2019; 88:85-111. [PMID: 30901263 DOI: 10.1146/annurev-biochem-013118-111508] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane proteins that exist in lipid bilayers are not isolated molecular entities. The lipid molecules that surround them play crucial roles in maintaining their full structural and functional integrity. Research directed at investigating these critical lipid-protein interactions is developing rapidly. Advancements in both instrumentation and software, as well as in key biophysical and biochemical techniques, are accelerating the field. In this review, we provide a brief outline of structural techniques used to probe protein-lipid interactions and focus on the molecular aspects of these interactions obtained from native mass spectrometry (native MS). We highlight examples in which lipids have been shown to modulate membrane protein structure and show how native MS has emerged as a complementary technique to X-ray crystallography and cryo-electron microscopy. We conclude with a short perspective on future developments that aim to better understand protein-lipid interactions in the native environment.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Mark T Agasid
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Shahid Mehmood
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| |
Collapse
|
12
|
Structural mass spectrometry comes of age: new insight into protein structure, function and interactions. Biochem Soc Trans 2019; 47:317-327. [DOI: 10.1042/bst20180356] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
Abstract
Mass spectrometry (MS) provides an impressive array of information about the structure, function and interactions of proteins. In recent years, many new developments have been in the field of native MS and these exemplify a new coming of age of this field. In this mini review, we connect the latest methodological and instrumental developments in native MS to the new insights these have enabled. We highlight the prominence of an increasingly common strategy of using hybrid approaches, where multiple MS-based techniques are used in combination, and integrative approaches, where MS is used alongside other techniques such as ion-mobility spectrometry. We also review how the emergence of a native top-down approach, which combines native MS with top-down proteomics into a single experiment, is the pièce de résistance of structural mass spectrometry's coming of age. Finally, we outline key developments that have enabled membrane protein native MS to shift from being extremely challenging to routine, and how this technique is uncovering inaccessible details of membrane protein–lipid interactions.
Collapse
|
13
|
Stiving AQ, VanAernum ZL, Busch F, Harvey SR, Sarni SH, Wysocki VH. Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure. Anal Chem 2019; 91:190-209. [PMID: 30412666 PMCID: PMC6571034 DOI: 10.1021/acs.analchem.8b05071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Samantha H. Sarni
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
14
|
Calabrese AN, Radford SE. Mass spectrometry-enabled structural biology of membrane proteins. Methods 2018; 147:187-205. [DOI: 10.1016/j.ymeth.2018.02.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
|
15
|
Serra-Batiste M, Tolchard J, Giusti F, Zoonens M, Carulla N. Stabilization of a Membrane-Associated Amyloid-β Oligomer for Its Validation in Alzheimer's Disease. Front Mol Biosci 2018; 5:38. [PMID: 29725595 PMCID: PMC5917194 DOI: 10.3389/fmolb.2018.00038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
We have recently reported on the preparation of a membrane-associated β-barrel Pore-Forming Aβ42 Oligomer (βPFOAβ42). It corresponds to a stable and homogeneous Aβ42 oligomer that inserts into lipid bilayers as a well-defined pore and adopts a specific structure with characteristics of a β-barrel arrangement. As a follow-up of this work, we aim to establish βPFOAβ42's relevance in Alzheimer's disease (AD). However, βPFOAβ42 is formed under dodecyl phosphocholine (DPC) micelle conditions-intended to mimic the hydrophobic environment of membranes-which are dynamic. Consequently, dilution of the βPFOAβ42/DPC complex in a detergent-free buffer leads to dispersion of the DPC molecules from the oligomer surface, leaving the oligomer without the hydrophobic micelle belt that stabilizes it. Since dilution is required for any biological test, transfer of βPFOAβ42 from DPC micelles into another hydrophobic biomimetic membrane environment, that remains associated with βPFOAβ42 even under high dilution conditions, is a requisite for the validation of βPFOAβ42 in AD. Here we describe conditions for exchanging DPC micelles with amphipols (APols), which are amphipathic polymers designed to stabilize membrane proteins in aqueous solutions. APols bind in an irreversible but non-covalent manner to the hydrophobic surface of membrane proteins preserving their structure even under extreme dilution conditions. We tested three types of APols with distinct physical-chemical properties and found that the βPFOAβ42/DPC complex can only be trapped in non-ionic APols (NAPols). The characterization of the resulting βPFOAβ42/NAPol complex by biochemical tools and structural biology techniques allowed us to establish that the oligomer structure is maintained even under high dilution. Based on these findings, this work constitutes a first step towards the in vivo validation of βPFOAβ42 in AD.
Collapse
Affiliation(s)
- Montserrat Serra-Batiste
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute Science and Technology (BIST), Barcelona, Spain
| | - James Tolchard
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute Science and Technology (BIST), Barcelona, Spain.,CBMN (UMR 5248), Centre National de la Recherche Scientifique - IPB, Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
| | - Fabrice Giusti
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires (UMR 7099), Université Paris-7 - Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires (UMR 7099), Université Paris-7 - Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Natàlia Carulla
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute Science and Technology (BIST), Barcelona, Spain.,CBMN (UMR 5248), Centre National de la Recherche Scientifique - IPB, Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
| |
Collapse
|
16
|
Le Bon C, Marconnet A, Masscheleyn S, Popot JL, Zoonens M. Folding and stabilizing membrane proteins in amphipol A8-35. Methods 2018; 147:95-105. [PMID: 29678587 DOI: 10.1016/j.ymeth.2018.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Membrane proteins (MPs) are important pharmacological targets because of their involvement in many essential cellular processes whose dysfunction can lead to a large variety of diseases. A detailed knowledge of the structure of MPs and the molecular mechanisms of their activity is essential to the design of new therapeutic agents. However, studying MPs in vitro is challenging, because it generally implies their overexpression under a functional form, followed by their extraction from membranes and purification. Targeting an overexpressed MP to a membrane is often toxic and expression yields tend to be limited. One alternative is the formation of inclusion bodies (IBs) in the cytosol of the cell, from which MPs need then to be folded to their native conformation before structural and functional analysis can be contemplated. Folding MPs targeted to IBs is a difficult task. Specially designed amphipathic polymers called 'amphipols' (APols), which have been initially developed with the view of improving the stability of MPs in aqueous solutions compared to detergents, can be used to fold both α-helical and β-barrel MPs. APols represent an interesting novel amphipathic medium, in which high folding yields can be achieved. In this review, the properties of APol A8-35 and of the complexes they form with MPs are summarized. An overview of the most important studies reported so far using A8-35 to fold MPs is presented. Finally, from a practical point of view, a detailed description of the folding and trapping methods is given.
Collapse
Affiliation(s)
- Christel Le Bon
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Anaïs Marconnet
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Sandrine Masscheleyn
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Jean-Luc Popot
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Manuela Zoonens
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France.
| |
Collapse
|
17
|
D'Atri V, Causon T, Hernandez-Alba O, Mutabazi A, Veuthey JL, Cianferani S, Guillarme D. Adding a new separation dimension to MS and LC-MS: What is the utility of ion mobility spectrometry? J Sep Sci 2017; 41:20-67. [PMID: 29024509 DOI: 10.1002/jssc.201700919] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Ion mobility spectrometry is an analytical technique known for more than 100 years, which entails separating ions in the gas phase based on their size, shape, and charge. While ion mobility spectrometry alone can be useful for some applications (mostly security analysis for detecting certain classes of narcotics and explosives), it becomes even more powerful in combination with mass spectrometry and high-performance liquid chromatography. Indeed, the limited resolving power of ion mobility spectrometry alone can be tackled when combining this analytical strategy with mass spectrometry or liquid chromatography with mass spectrometry. Over the last few years, the hyphenation of ion mobility spectrometry to mass spectrometry or liquid chromatography with mass spectrometry has attracted more and more interest, with significant progresses in both technical advances and pioneering applications. This review describes the theoretical background, available technologies, and future capabilities of these techniques. It also highlights a wide range of applications, from small molecules (natural products, metabolites, glycans, lipids) to large biomolecules (proteins, protein complexes, biopharmaceuticals, oligonucleotides).
Collapse
Affiliation(s)
- Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Tim Causon
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU Vienna), Vienna, Austria
| | - Oscar Hernandez-Alba
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Aline Mutabazi
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Sarah Cianferani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
18
|
Bausewein T, Mills DJ, Langer JD, Nitschke B, Nussberger S, Kühlbrandt W. Cryo-EM Structure of the TOM Core Complex from Neurospora crassa. Cell 2017; 170:693-700.e7. [DOI: 10.1016/j.cell.2017.07.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 01/21/2023]
|
19
|
Harvey SR, Liu Y, Liu W, Wysocki VH, Laganowsky A. Surface induced dissociation as a tool to study membrane protein complexes. Chem Commun (Camb) 2017; 53:3106-3109. [PMID: 28243658 PMCID: PMC5445643 DOI: 10.1039/c6cc09606a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Native ion mobility mass spectrometry (MS) and surface induced dissociation (SID) are applied to study the integral membrane protein complexes AmtB and AqpZ. Fragments produced from SID are consistent with the solved structures of these complexes. SID is, therefore, a promising tool for characterization of membrane protein complexes.
Collapse
Affiliation(s)
- Sophie R Harvey
- The Department of Chemistry and Biochemistry, The Ohio State University, 460 W 12th Avenue, Columbus, Ohio 43210, USA. and School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Yang Liu
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, USA.
| | - Wen Liu
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, USA.
| | - Vicki H Wysocki
- The Department of Chemistry and Biochemistry, The Ohio State University, 460 W 12th Avenue, Columbus, Ohio 43210, USA.
| | - Arthur Laganowsky
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, USA. and Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
20
|
Abstract
In this review, we focus on an important aspect of ion mobility (IM) research, namely the reporting of quantitative ion mobility measurements in the form of the gas-phase collision cross section (CCS), which has provided a common basis for comparison across different instrument platforms and offers a unique form of structural information, namely size and shape preferences of analytes in the absence of bulk solvent. This review surveys the over 24,000 CCS values reported from IM methods spanning the era between 1975 to 2015, which provides both a historical and analytical context for the contributions made thus far, as well as insight into the future directions that quantitative ion mobility measurements will have in the analytical sciences. The analysis was conducted in 2016, so CCS values reported in that year are purposely omitted. In another few years, a review of this scope will be intractable, as the number of CCS values which will be reported in the next three to five years is expected to exceed the total amount currently published in the literature.
Collapse
Affiliation(s)
- Jody C May
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Caleb B Morris
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
21
|
Watkinson TG, Calabrese AN, Ault JR, Radford SE, Ashcroft AE. FPOP-LC-MS/MS Suggests Differences in Interaction Sites of Amphipols and Detergents with Outer Membrane Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:50-55. [PMID: 27343183 PMCID: PMC5174144 DOI: 10.1007/s13361-016-1421-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 05/24/2023]
Abstract
Amphipols are a class of novel surfactants that are capable of stabilizing the native state of membrane proteins. They have been shown to be highly effective, in some cases more so than detergent micelles, at maintaining the structural integrity of membrane proteins in solution, and have shown promise as vehicles for delivering native membrane proteins into the gas phase for structural interrogation. Here, we use fast photochemical oxidation of proteins (FPOP), which irreversibly labels the side chains of solvent-accessible residues with hydroxyl radicals generated by laser photolysis of hydrogen peroxide, to compare the solvent accessibility of the outer membrane protein OmpT when solubilized with the amphipol A8-35 or with n-dodecyl-β-maltoside (DDM) detergent micelles. Using quantitative mass spectrometry analyses, we show that fast photochemical oxidation reveals differences in the extent of solvent accessibility of residues between the A8-35 and DDM solubilized states, providing a rationale for the increased stability of membrane proteins solubilized with amphipol compared with detergent micelles, as a result of additional intermolecular contacts. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Thomas G Watkinson
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Antonio N Calabrese
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - James R Ault
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Alison E Ashcroft
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
22
|
Abstract
Membrane proteins play critical physiological roles and make up the majority of drug targets. Due to their generally low expression levels and amphipathic nature, membrane proteins represent challenging molecular entities for biophysical study. Mass spectrometry offers several sensitive approaches to study the biophysics of membrane proteins. By preserving noncovalent interactions in the gas phase and using collisional activation to remove solubilization agents inside the mass spectrometer, native mass spectrometry (MS) is capable of studying isolated assemblies that would be insoluble in aqueous solution, such as membrane protein oligomers and protein-lipid complexes. Conventional methods use detergent to solubilize the protein prior to electrospray ionization. Gas-phase activation inside the mass spectrometer removes the detergent to yield the isolated proteins with bound ligands. This approach has proven highly successful for ionizing membrane proteins. With the appropriate choice of detergents, membrane proteins with bound lipid species can be observed, which allows characterization of protein-lipid interactions. However, detergents have several limitations. They do not necessarily replicate the native lipid bilayer environment, and only a small number of protein-lipid interactions can be resolved. In this Account, we summarize the development of different membrane mimetics as cassettes for MS analysis of membrane proteins. Examples include amphipols, bicelles, and picodiscs with a special emphasis on lipoprotein nanodiscs. Polydispersity and heterogeneity of the membrane mimetic cassette is a critical issue for study by MS. Ever more complex data sets consisting of overlapping protein charge states and multiple lipid-bound entities have required development of new computational, theoretical, and experimental approaches to interpret both mass and ion mobility spectra. We will present the rationale and limitations of these approaches. Starting with the early work on empty nanodiscs, we chart developments that culminate in recent high-resolution studies of membrane protein-lipid complexes ejected from nanodiscs. For the latter, increasing collision energies allowed progressive removal of nanodisc components, beginning with the scaffold proteins and continuing through successive shells of lipids, allowing direct characterization of the stoichiometry of the annular lipid belt that surrounds the membrane protein. We consider future directions for the study of membrane proteins in membrane mimetics, including the development of mixed lipid systems and native bilayer environments. Unambiguous assignment of these heterogeneous systems will rely heavily upon further enhancements in both data analysis protocols and instrumental resolution. We anticipate that these developments will provide new insights into the factors that control dynamic protein-lipid interactions in a variety of tailored and natural lipid environments.
Collapse
Affiliation(s)
- Michael T. Marty
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, OX1 3QZ (UK)
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85719 (USA)
| | - Kin Kuan Hoi
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, OX1 3QZ (UK)
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, OX1 3QZ (UK)
| |
Collapse
|
23
|
Horne JE, Radford SE. A growing toolbox of techniques for studying β-barrel outer membrane protein folding and biogenesis. Biochem Soc Trans 2016; 44:802-9. [PMID: 27284045 PMCID: PMC4900752 DOI: 10.1042/bst20160020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 01/21/2023]
Abstract
Great strides into understanding protein folding have been made since the seminal work of Anfinsen over 40 years ago, but progress in the study of membrane protein folding has lagged behind that of their water soluble counterparts. Researchers in these fields continue to turn to more advanced techniques such as NMR, mass spectrometry, molecular dynamics (MD) and single molecule methods to interrogate how proteins fold. Our understanding of β-barrel outer membrane protein (OMP) folding has benefited from these advances in the last decade. This class of proteins must traverse the periplasm and then insert into an asymmetric lipid membrane in the absence of a chemical energy source. In this review we discuss old, new and emerging techniques used to examine the process of OMP folding and biogenesis in vitro and describe some of the insights and new questions these techniques have revealed.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, The University of Leeds, Leeds LS2 9JT, U.K
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, The University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|