Pérez-Martínez DE, Zenteno-Cuevas R. SNPs in genes related to the repair of damage to DNA in clinical isolates of M. tuberculosis: A transversal and longitudinal approach.
PLoS One 2024;
19:e0295464. [PMID:
38917091 PMCID:
PMC11198749 DOI:
10.1371/journal.pone.0295464]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of SNPs in genes related to DNA damage repair in M. tuberculosis can trigger hypermutagenic phenotypes with a higher probability of generating drug resistance. The aim of this research was to compare the presence of SNPs in genes related to DNA damage repair between sensitive and DR isolates, as well as to describe the dynamics in the presence of SNPs in M. tuberculosis isolated from recently diagnosed TB patients of the state of Veracruz, Mexico. The presence of SNPs in the coding regions of 65 genes related to DNA damage repair was analyzed. Eighty-six isolates from 67 patients from central Veracruz state, Mexico, were sequenced. The results showed several SNPs in 14 genes that were only present in drug-resistant genomes. In addition, by following of 15 patients, it was possible to describe three different dynamics of appearance and evolution of non-synonymous SNPs in genes related to DNA damage repair: 1) constant fixed SNPs, 2) population substitution, and 3) gain of fixed SNPs. Further research is required to discern the biological significance of each of these pathways and their utility as markers of DR or for treatment prognosis.
Collapse