1
|
Wang C, Sun P, Jia Y, Tang X, Liu X, Suo X, Peng H. Protein disulfide isomerase PDI8 is indispensable for parasite growth and associated with secretory protein processing in Toxoplasma gondii. mBio 2024; 15:e0205124. [PMID: 39162526 PMCID: PMC11389393 DOI: 10.1128/mbio.02051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Protein disulfide isomerase, containing thioredoxin (Trx) domains, serves as a vital enzyme responsible for oxidative protein folding (the formation, reduction, and isomerization of disulfide bonds in newly synthesized proteins) in the endoplasmic reticulum (ER). However, the role of ER-localized PDI proteins in parasite growth and their interaction with secretory proteins remain poorly understood. In this study, we identified two ER-localized PDI proteins, TgPDI8 and TgPDI6, in Toxoplasma gondii. Conditional knockdown of TgPDI8 resulted in a significant reduction in intracellular proliferation and invasion abilities, leading to a complete block in plaque formation on human foreskin fibroblast monolayers, whereas parasites lacking TgPDI6 did not exhibit any apparent fitness defects. The complementation of TgPDI8 with mutant variants highlighted the critical role of the CXXC active site cysteines within its Trx domains for its enzymatic activity. By utilizing TurboID-based proximity labeling, we uncovered a close association between PDI proteins and canonical secretory proteins. Furthermore, parasites lacking TgPDI8 showed a significant reduction in the expression of secretory proteins, especially those from micronemes and dense granules. In summary, our study elucidates the roles of TgPDI8 and sets the stage for future drug discovery studies. IMPORTANCE Apicomplexans, a phylum of intracellular parasites, encompass various zoonotic pathogens, including Plasmodium, Cryptosporidium, Toxoplasma, and Babesia, causing a significant economic burden on human populations. These parasites exhibit hypersensitivity to disruptions in endoplasmic reticulum (ER) redox homeostasis, necessitating the presence of ER-localized thioredoxin (Trx) superfamily proteins, particularly protein disulfide isomerase (PDI), for proper oxidative folding. However, the functional characteristics of ER-localized PDI proteins in Toxoplasma gondii remain largely unexplored. In this study, we identified two ER-localized proteins, namely, TgPDI8 and TgPDI6, and demonstrated the indispensable role of TgPDI8 in parasite survival. Through a comprehensive multi-omics analysis, we elucidated the crucial role of TgPDI8 in the processing of secretory proteins in T. gondii. Additionally, we introduced a novel ER-anchored TurboID method to label and identify canonical secretory proteins in T. gondii. This research opens up new avenues for understanding oxidative folding and the secretory pathway in apicomplexan parasites, laying the groundwork for future advancements in antiparasitic drug development.
Collapse
Affiliation(s)
- Chaoyue Wang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou City, Guangdong Province, China
- Key Laboratory of Infectious Diseases Research in South China (Ministry of Education), Southern Medical University, Guangzhou, Guangdong, China
| | - Pei Sun
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong Province, China
| | - Yonggen Jia
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou City, Guangdong Province, China
- Key Laboratory of Infectious Diseases Research in South China (Ministry of Education), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Angrisano F, Ford A, Blagborough AM, Bullen HE. Protein disulfide isomerases - a way to tackle malaria. Trends Parasitol 2023; 39:622-625. [PMID: 37302957 DOI: 10.1016/j.pt.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Protein disulfide isomerases (PDIs) ensure that specific substrate proteins are correctly folded. PDI activity plays an essential role in malaria transmission. Here we provide an overview of the role of PDIs in malaria-causing Plasmodium parasites and outline why PDI inhibition could be a novel way to treat malaria and prevent transmission.
Collapse
Affiliation(s)
- Fiona Angrisano
- Burnet Institute, 85 Commercial Road, Victoria, Australia 3004
| | - Amelia Ford
- Division of Microbiology and Parasitology, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Andrew Michael Blagborough
- Division of Microbiology and Parasitology, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | |
Collapse
|
3
|
Dousti M, Hosseinpour M, D Ghasemi N, Mirfakhraee H, Rajabi SK, Rashidi S, Hatam G. The potential role of protein disulfide isomerases (PDIs) during parasitic infections: a focus on Leishmania spp. Pathog Dis 2023; 81:ftad032. [PMID: 38061803 DOI: 10.1093/femspd/ftad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/24/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
Leishmaniasis is a group of vector-borne diseases caused by intracellular protozoan parasites belonging to the genus Leishmania. Leishmania parasites can employ different and numerous sophisticated strategies, including modulating host proteins, cell signaling, and cell responses by parasite proteins, to change the infected host conditions to favor the parasite persistence and induce pathogenesis. In this sense, protein disulfide isomerases (PDIs) have been described as crucial proteins that can be modulated during leishmaniasis and affect the pathogenesis process. The effect of modulated PDIs can be investigated in both aspects, parasite PDIs and infected host cell PDIs, during infection. The information concerning PDIs is not sufficient in parasitology; however, this study aimed to provide data regarding the biological functions of such crucial proteins in parasites with a focus on Leishmania spp. and their relevant effects on the pathogenesis process. Although there are no clinical trial vaccines and therapeutic approaches, highlighting this information might be fruitful for the development of novel strategies based on PDIs for the management of parasitic diseases, especially leishmaniasis.
Collapse
Affiliation(s)
- Majid Dousti
- Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Hosseinpour
- Student Research Committee, School of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nadia D Ghasemi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hosna Mirfakhraee
- Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Shahin K Rajabi
- Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Gholamreza Hatam
- Basic Sciences Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
A Role for Basigin in Toxoplasma gondii Infection. Infect Immun 2022; 90:e0020522. [PMID: 35913173 PMCID: PMC9387297 DOI: 10.1128/iai.00205-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The role of specific host cell surface receptors during Toxoplasma gondii invasion of host cells is poorly defined. Here, we interrogated the role of the well-known malarial invasion receptor, basigin, in T. gondii infection of astrocytes. We found that primary astrocytes express two members of the BASIGIN (BSG) immunoglobulin family, basigin and embigin, but did not express neuroplastin. Antibody blockade of either basigin or embigin caused a significant reduction of parasite infectivity in astrocytes. The specific role of basigin during T. gondii invasion was further examined using a mouse astrocytic cell line (C8-D30), which exclusively expresses basigin. CRISPR-mediated deletion of basigin in C8-D30 cells resulted in decreased T. gondii infectivity. T. gondii replication and invasion efficiency were not altered by basigin deficiency, but parasite attachment to astrocytes was markedly reduced. We also conducted a proteomic screen to identify T. gondii proteins that interact with basigin. Toxoplasma-encoded cyclophilins, the protein 14-3-3, and protein disulfide isomerase (TgPDI) were among the putative basigin-ligands identified. Recombinant TgPDI produced in E. coli bound to basigin and pretreatment of tachyzoites with a PDI inhibitor decreased parasite attachment to host cells. Finally, mutagenesis of the active site cysteines of TgPDI abolished enzyme binding to basigin. Thus, basigin and its related immunoglobulin family members may represent host receptors that mediate attachment of T. gondii to diverse cell types.
Collapse
|
5
|
Cobb DW, Kudyba HM, Villegas A, Hoopmann MR, Baptista RP, Bruton B, Krakowiak M, Moritz RL, Muralidharan V. A redox-active crosslinker reveals an essential and inhibitable oxidative folding network in the endoplasmic reticulum of malaria parasites. PLoS Pathog 2021; 17:e1009293. [PMID: 33534803 PMCID: PMC7886143 DOI: 10.1371/journal.ppat.1009293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/16/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Malaria remains a major global health problem, creating a constant need for research to identify druggable weaknesses in P. falciparum biology. As important components of cellular redox biology, members of the Thioredoxin (Trx) superfamily of proteins have received interest as potential drug targets in Apicomplexans. However, the function and essentiality of endoplasmic reticulum (ER)-localized Trx-domain proteins within P. falciparum has not been investigated. We generated conditional mutants of the protein PfJ2—an ER chaperone and member of the Trx superfamily—and show that it is essential for asexual parasite survival. Using a crosslinker specific for redox-active cysteines, we identified PfJ2 substrates as PfPDI8 and PfPDI11, both members of the Trx superfamily as well, which suggests a redox-regulatory role for PfJ2. Knockdown of these PDIs in PfJ2 conditional mutants show that PfPDI11 may not be essential. However, PfPDI8 is required for asexual growth and our data suggest it may work in a complex with PfJ2 and other ER chaperones. Finally, we show that the redox interactions between these Trx-domain proteins in the parasite ER and their substrates are sensitive to small molecule inhibition. Together these data build a model for how Trx-domain proteins in the P. falciparum ER work together to assist protein folding and demonstrate the suitability of ER-localized Trx-domain proteins for antimalarial drug development. One of the leading and persistent causes of childhood mortality in the world is malaria, which is caused by parasites from the genus Plasmodium. Unfortunately, the parasite has developed resistance to all available drugs, making the discovery of new drug targets and potential small molecule inhibitors of essential parasite biology a top priority. A critical pathway required for many different biological processes in the parasite is oxidative folding which requires members of the Thioredoxin (Trx) superfamily of proteins. But we know almost nothing about the function and essentiality of Trx-domain proteins that localize to the endoplasmic reticulum, the origin of the secretory pathway, within P. falciparum. Here we show that a network of Trx-domain containing proteins function together and are essential for parasite survival within human red blood cells. Further, we identify a small molecule inhibitor of the redox activities of these Trx-domain containing proteins. This study demonstrates the suitability of this pathway for future antimalarial drug development.
Collapse
Affiliation(s)
- David W. Cobb
- Department of Cellular Biology, University of Georgia, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Georgia, United States of America
| | - Heather M. Kudyba
- Department of Cellular Biology, University of Georgia, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Georgia, United States of America
| | - Alejandra Villegas
- Department of Cellular Biology, University of Georgia, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Georgia, United States of America
| | - Michael R. Hoopmann
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Rodrigo P. Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Georgia, United States of America
| | - Baylee Bruton
- Department of Cellular Biology, University of Georgia, Georgia, United States of America
| | - Michelle Krakowiak
- Department of Cellular Biology, University of Georgia, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Georgia, United States of America
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Tian Z, Wang Z, Munawar M, Zheng J. Identification and Characterization of a Novel Protein Disulfide Isomerase Gene ( MgPDI2) from Meloidogyne graminicola. Int J Mol Sci 2020; 21:E9586. [PMID: 33339262 PMCID: PMC7767112 DOI: 10.3390/ijms21249586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/05/2023] Open
Abstract
Protein disulfide isomerase (PDI) is a multifunctional enzyme that catalyzes rate-limiting reactions such as disulfide bond formation, isomerization, and reduction. There is some evidence that indicates that PDI is also involved in host-pathogen interactions in plants. In this study, we show that the rice root-knot nematode, Meloidogyne graminicola, has evolved a secreted effector, MgPDI2, which is expressed in the subventral esophageal glands and up-regulated during the early parasitic stage of M. graminicola. Purified recombinant MgPDI2 functions as an insulin disulfide reductase and protects plasmid DNA from nicking. As an effector, MgPDI2 contributes to nematode parasitism. Silencing of MgPDI2 by RNA interference in the pre-parasitic second-stage juveniles (J2s) reduced M. graminicola multiplication and also increased M. graminicola mortality under H2O2 stress. In addition, an Agrobacterium-mediated transient expression assay found that MgPDI2 caused noticeable cell death in Nicotiana benthamiana. An intact C-terminal region containing the first catalytic domain (a) with an active motif (Cys-Gly-His-Cys, CGHC) and the two non-active domains (b and b') is required for cell death induction in N. benthamiana. This research may provide a promising target for the development of new strategies to combat M. graminicola infections.
Collapse
Affiliation(s)
- Zhongling Tian
- Laboratory of Plant Nematology, Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.T.); (M.M.)
| | - Zehua Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Maria Munawar
- Laboratory of Plant Nematology, Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.T.); (M.M.)
| | - Jingwu Zheng
- Laboratory of Plant Nematology, Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.T.); (M.M.)
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
7
|
Zhao J, Mejias J, Quentin M, Chen Y, de Almeida-Engler J, Mao Z, Sun Q, Liu Q, Xie B, Abad P, Favery B, Jian H. The root-knot nematode effector MiPDI1 targets a stress-associated protein (SAP) to establish disease in Solanaceae and Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1417-1430. [PMID: 32542658 DOI: 10.1111/nph.16745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 05/11/2023]
Abstract
Large amounts of effectors are secreted by the oesophageal glands of plant-parasitic nematodes, but their molecular mode of action remains largely unknown. We characterized a Meloidogyne incognita protein disulphide isomerase (PDI)-like effector protein (MiPDI1) that facilitates nematode parasitism. In situ hybridization showed that MiPDI1 was expressed specifically in the subventral glands of M. incognita. It was significantly upregulated during parasitic stages. Immunolocalization demonstrated MiPDI1 secretion in planta during nematode migration and within the feeding cells. Host-induced silencing of the MiPDI1 gene affected the ability of the nematode to infect the host, whereas MiPDI1 expression in Arabidopsis increased susceptibility to M. incognita, providing evidence for a key role of MiPDI1 in M. incognita parasitism. Yeast two-hybrid, bimolecular fluorescence complementation and coimmunoprecipitation assays showed that MiPDI1 interacted with a tomato stress-associated protein (SlSAP12) orthologous to the redox-regulated AtSAP12, which plays an important role in plant responses to abiotic and biotic stresses. SAP12 silencing or knocking out in Nicotiana benthamiana and Arabidopsis increased susceptibility to M. incognita. Our results suggest that MiPDI1 acts as a pathogenicity factor promoting disease by fine-tuning SAP-mediated responses at the interface of redox signalling, defence and stress acclimation in Solanaceae and Arabidopsis.
Collapse
Affiliation(s)
- Jianlong Zhao
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Joffrey Mejias
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Michaël Quentin
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Yongpan Chen
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | | | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Qinghua Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Qian Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Pierre Abad
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Bruno Favery
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Venkatesh A, Aggarwal S, Kumar S, Rajyaguru S, Kumar V, Bankar S, Shastri J, Patankar S, Srivastava S. Comprehensive proteomics investigation of P. vivax-infected human plasma and parasite isolates. BMC Infect Dis 2020; 20:188. [PMID: 32122317 PMCID: PMC7053139 DOI: 10.1186/s12879-020-4885-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Background In recent times, Plasmodium vivax (P. vivax) has become a serious threat to public health due to its ability to cause severe infection with fatal outcomes. Its unique biology makes it resilient to control measures that are otherwise effective against P. falciparum. A deeper understanding of P. vivax biology and pathogenesis is, therefore, essential for developing the right control strategies. Proteomics of P. falciparum has been helpful in studying disease biology and elucidating molecular mechanisms involved in the development of disease. However, unlike P. falciparum, proteomics data for P. vivax infection is minimal due to the absence of a continuous culture system. The dependence on clinical samples and animal models has drastically limited P. vivax research, creating critical knowledge gaps in our understanding of the disease. This study describes an in-depth proteomics analysis of P. vivax-infected human plasma and parasite isolates, to understand parasite biology, pathogenesis, and to identify new diagnostic targets for P. vivax malaria. Methods A mass-spectrometry- (MS) based proteomics approach (Q Exactive) was applied to analyze human plasma and parasite isolates from vivax malaria patients visiting a primary health centre in India. Additionally, a targeted proteomics assay was standardized for validating unique peptides of most recurring parasite proteins. Results Thirty-eight P. vivax proteins were detected in human plasma with high confidence. Several glycolytic enzymes were found along with hypothetical, cytoskeletal, ribosomal, and nuclear proteins. Additionally, 103 highly abundant P. vivax proteins were detected in parasite isolates. This represents the highest number of parasite proteins to be reported from clinical samples so far. Interestingly, five of these; three Plasmodium exported proteins (PVX_003545, PVX_003555 and PVX_121935), a hypothetical protein (PVX_083555) and Pvstp1 (subtelomeric transmembrane protein 1, PVX_094303) were found in both plasma and parasite isolates. Conclusions A parasite proteomics investigation is essential to understand disease pathobiology and design novel interventions. Control strategies against P. vivax also depend on early diagnosis. This work provides deeper insights into the biology of P. vivax by identifying proteins expressed by the parasite during its complex life-cycle within the human host. The study also reports antigens that may be explored as diagnostic candidates.
Collapse
Affiliation(s)
- Apoorva Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shalini Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Swati Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Srushti Rajyaguru
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Vipin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sheetal Bankar
- Department of Microbiology, T. N. Medical College and BYL Nair Hospital, Mumbai, India
| | - Jayanthi Shastri
- Department of Microbiology, T. N. Medical College and BYL Nair Hospital, Mumbai, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
9
|
Angrisano F, Sala KA, Tapanelli S, Christophides GK, Blagborough AM. Male-Specific Protein Disulphide Isomerase Function is Essential for Plasmodium Transmission and a Vulnerable Target for Intervention. Sci Rep 2019; 9:18300. [PMID: 31797966 PMCID: PMC6892906 DOI: 10.1038/s41598-019-54613-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/11/2019] [Indexed: 11/10/2022] Open
Abstract
Inhibiting transmission of Plasmodium is an essential strategy in malaria eradication, and the biological process of gamete fusion during fertilization is a proven target for this approach. Lack of knowledge of the mechanisms underlying fertilization have been a hindrance in the development of transmission-blocking interventions. Here we describe a protein disulphide isomerase essential for malarial transmission (PDI-Trans/PBANKA_0820300) to the mosquito. We show that PDI-Trans activity is male-specific, surface-expressed, essential for fertilization/transmission, and exhibits disulphide isomerase activity which is up-regulated post-gamete activation. We demonstrate that PDI-Trans is a viable anti-malarial drug and vaccine target blocking malarial transmission with the use of PDI inhibitor bacitracin (98.21%/92.48% reduction in intensity/prevalence), and anti-PDI-Trans antibodies (66.22%/33.16% reduction in intensity/prevalence). To our knowledge, these results provide the first evidence that PDI function is essential for malarial transmission, and emphasize the potential of anti-PDI agents to act as anti-malarials, facilitating the future development of novel transmission-blocking interventions.
Collapse
Affiliation(s)
- Fiona Angrisano
- Division of Microbiology and Parasitology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Katarzyna A Sala
- Department of Life Sciences, Imperial College of Science, Technology and Medicine, London, SW7 2AZ, United Kingdom
| | - Sofia Tapanelli
- Department of Life Sciences, Imperial College of Science, Technology and Medicine, London, SW7 2AZ, United Kingdom
| | - George K Christophides
- Department of Life Sciences, Imperial College of Science, Technology and Medicine, London, SW7 2AZ, United Kingdom
| | - Andrew M Blagborough
- Division of Microbiology and Parasitology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom. .,Department of Life Sciences, Imperial College of Science, Technology and Medicine, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
10
|
Kooistra RL, David R, Ruiz AC, Powers SW, Haselton KJ, Kiernan K, Blagborough AM, Solamen L, Olsen KW, Putonti C, Kanzok SM. Characterization of a protozoan Phosducin-like protein-3 (PhLP-3) reveals conserved redox activity. PLoS One 2019; 13:e0209699. [PMID: 30596727 PMCID: PMC6312279 DOI: 10.1371/journal.pone.0209699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/09/2018] [Indexed: 11/18/2022] Open
Abstract
We recently identified three novel thioredoxin-like genes in the genome of the protozoan parasite Plasmodium that belong to the Phosducin-like family of proteins (PhLP). PhLPs are small cytosolic proteins hypothesized to function in G-protein signaling and protein folding. Although PhLPs are highly conserved in eukaryotes from yeast to mammals, only a few representatives have been experimentally characterized to date. In addition, while PhLPs contain a thioredoxin domain, they lack a CXXC motif, a strong indicator for redox activity, and it is unclear whether members of the PhLP family are enzymatically active. Here, we describe PbPhLP-3 as the first phosducin-like protein of a protozoan organism, Plasmodium berghei. Initial transcription analysis revealed continuous low-level expression of pbphlp-3 throughout the complex Plasmodium life cycle. Attempts to knockout pbphlp-3 in P. berghei did not yield live parasites, suggesting an essential role for the gene in Plasmodium. We cloned, expressed and purified PbPhLP-3 and determined that the recombinant protein is redox active in vitro in a thioredoxin-coupled redox assay. It also has the capacity to reduce the organic compound tert-Butyl hydroperoxide (TBHP) in vitro, albeit at low efficiency. Sequence analysis, structural modeling, and site-directed mutagenesis revealed a conserved cysteine in the thioredoxin domain to be the redox active residue. Lastly, we provide evidence that recombinant human PhLP-3 exhibits redox activity similar to that of PbPhLP-3 and suggest that redox activity may be conserved in PhLP-3 homologs of other species. Our data provide new insight into the function of PhLP-3, which is hypothesized to act as co-chaperones in the folding and regulation of cytoskeletal proteins. We discuss the potential implications of PhLP-3 as a thioredoxin-target protein and possible links between the cellular redox network and the eukaryotic protein folding machinery.
Collapse
Affiliation(s)
- Rachel L. Kooistra
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Robin David
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Ana C. Ruiz
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Sean W. Powers
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Kyle J. Haselton
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Kaitlyn Kiernan
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Andrew M. Blagborough
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Ligin Solamen
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States of America
| | - Kenneth W. Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States of America
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States of America
- Department of Computer Science, Loyola University Chicago, Chicago, IL, United States of America
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
11
|
Chisholm SA, Kalanon M, Nebl T, Sanders PR, Matthews KM, Dickerman BK, Gilson PR, de Koning-Ward TF. The malaria PTEX component PTEX88 interacts most closely with HSP101 at the host-parasite interface. FEBS J 2018; 285:2037-2055. [PMID: 29637707 DOI: 10.1111/febs.14463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/08/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
The pathogenic nature of malaria infections is due in part to the export of hundreds of effector proteins that actively remodel the host erythrocyte. The Plasmodium translocon of exported proteins (PTEX) has been shown to facilitate the trafficking of proteins into the host cell, a process that is essential for the survival of the parasite. The role of the auxiliary PTEX component PTEX88 remains unclear, as previous attempts to elucidate its function through reverse genetic approaches showed that in contrast to the core components PTEX150 and HSP101, knockdown of PTEX88 did not give rise to an export phenotype. Here, we have used biochemical approaches to understand how PTEX88 assembles within the translocation machinery. Proteomic analysis of the PTEX88 interactome showed that PTEX88 interacts closely with HSP101 but has a weaker affinity with the other core constituents of PTEX. PTEX88 was also found to associate with other PV-resident proteins, including chaperones and members of the exported protein-interacting complex that interacts with the major virulence factor PfEMP1, the latter contributing to cytoadherence and parasite virulence. Despite being expressed for the duration of the blood-stage life cycle, PTEX88 was only discretely observed at the parasitophorous vacuole membrane during ring stages and could not always be detected in the major high molecular weight complex that contains the other core components of PTEX, suggesting that its interaction with the PTEX complex may be dynamic. Together, these data have enabled the generation of an updated model of PTEX that now includes how PTEX88 assembles within the complex.
Collapse
Affiliation(s)
| | - Ming Kalanon
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Thomas Nebl
- The Walter and Eliza Hall Institute, Parkville, Australia
| | - Paul R Sanders
- Burnet Institute, Prahran, Australia.,Monash University, Melbourne, Australia
| | | | | | - Paul R Gilson
- Burnet Institute, Prahran, Australia.,Monash University, Melbourne, Australia
| | | |
Collapse
|
12
|
Sharma R, Sharma B, Gupta A, Dhar SK. Identification of a novel trafficking pathway exporting a replication protein, Orc2 to nucleus via classical secretory pathway in Plasmodium falciparum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018. [PMID: 29524523 DOI: 10.1016/j.bbamcr.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Malaria parasites use an extensive secretory pathway to traffic a number of proteins within itself and beyond. In higher eukaryotes, Endoplasmic Reticulum (ER) membrane bound transcription factors such as SREBP are reported to get processed en route and migrate to nucleus under the influence of specific cues. However, a protein constitutively trafficked to the nucleus via classical secretory pathway has not been reported. Herein, we report the presence of a novel trafficking pathway in an apicomplexan, Plasmodium falciparum where a homologue of an Origin Recognition Complex 2 (Orc2) goes to the nucleus following its association with the ER. Our work highlights the unconventional role of ER in protein trafficking and reports for the first time an ORC homologue getting trafficked through such a pathway to the nucleus where it may be involved in DNA replication and other ancillary functions. Such trafficking pathways may have a profound impact on the cell biology of a malaria parasite and have significant implications in strategizing new antimalarials.
Collapse
Affiliation(s)
- Rahul Sharma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bhumika Sharma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Gupta
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
13
|
Suprihati E, Yuniarti WM. The phylogenetics of Leucocytozoon caulleryi infecting broiler chickens in endemic areas in Indonesia. Vet World 2017; 10:1324-1328. [PMID: 29263593 PMCID: PMC5732337 DOI: 10.14202/vetworld.2017.1324-1328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/13/2017] [Indexed: 11/16/2022] Open
Abstract
Aim The objective of this research was to determine the species and strains of Leucocytozoon caulleryi and study the phylogenetics of L. caulleryi of broiler chickens in endemic areas in Indonesia. Materials and Methods Blood samples were collected from broiler chickens originated from endemic area in Indonesia, i.e., Pasuruan, Lamongan, Blitar, Lumajang, Boyolali, Purwokerto, and Banjarmasin in 2017. Collected blood was used for microscopic examination, sequencing using BLAST method to identify the nucleotide structure of cytochrome b (cyt b) gene that determines the species, and the phylogenetics analysis of L. caulleryi that infected broiler chickens in endemic areas in Indonesia, using Mega 5 software. Results The results showed that Plasmodium sp. and L. caulleryi were infected broiler chickens in endemic areas in Indonesia. L. caulleryi in one area had very close phylogenetic relations with those in other areas. The genetic distance between L. caulleryi taxa from various endemic areas is very close (<5%). Conclusion There is a very close phylogenetics among strains of L. caulleryi that infected broiler chickens in various endemic areas in Indonesia.
Collapse
Affiliation(s)
- Endang Suprihati
- Department of Parasitology, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Mulyorejo, Kampus C Unair, Surabaya, 60115, Indonesia
| | - Wiwik Misaco Yuniarti
- Department of Clinical Science, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Mulyorejo, Kampus C Unair, Surabaya, 60115, Indonesia
| |
Collapse
|
14
|
Habash SS, Sobczak M, Siddique S, Voigt B, Elashry A, Grundler FMW. Identification and characterization of a putative protein disulfide isomerase (HsPDI) as an alleged effector of Heterodera schachtii. Sci Rep 2017; 7:13536. [PMID: 29051538 PMCID: PMC5648851 DOI: 10.1038/s41598-017-13418-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/21/2017] [Indexed: 12/27/2022] Open
Abstract
The plant-parasitic nematode Heterodera schachtii is an obligate biotroph that induces syncytial feeding sites in roots of its hosts. Nematodes produce effectors that are secreted into the host and facilitate infection process. Here we identified H. schachtii protein disulphide isomerase (HsPDI) as a putative effector that interferes with the host’s redox status. In situ hybridization showed that HsPdi is specifically localized within esophageal glands of pre-parasitic second stage juveniles (J2). HsPdi is up-regulated in the early parasitic J2s. Silencing of HsPdi by RNA interference in the J2s hampers their development and leads to structural malfunctions in associated feeding sites induced in Arabidopsis roots. Expression of HsPDI in Arabidopsis increases plant’s susceptibility towards H. schachtii. HsPdi expression is up-regulated in the presence of exogenous H2O2, whereas HsPdi silencing results in increased mortality under H2O2 stress. Stable expression of HsPDI in Arabidopsis plants decreases ROS burst induced by flg22. Transiently expressed HsPDI in N. benthamiana leaves is localized in the apoplast. HsPDI plays an important role in the interaction between nematode and plant, probably through inducing local changes in the redox status of infected host tissue. It also contributes to protect the nematode from exogenous H2O2 stress.
Collapse
Affiliation(s)
- Samer S Habash
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Miroslaw Sobczak
- Department of Botany, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, PL-02787, Warsaw, Poland
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Boris Voigt
- Rheinische Friedrich-Wilhelms-University of Bonn, Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, Kirschallee 1, D-53115, Bonn, Germany
| | - Abdelnaser Elashry
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany.,Strube Research GmbH & Co. KG, Hauptstraße 1, 38387, Söllingen, Germany
| | - Florian M W Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany.
| |
Collapse
|
15
|
Theisen M, Jore MM, Sauerwein R. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine. Expert Rev Vaccines 2017; 16:329-336. [PMID: 28043178 DOI: 10.1080/14760584.2017.1276833] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which are essential for the transmission to the mosquito vector. A vaccine targeting the sexual stages of the parasite and thus blocking transmission will be instrumental for the eradication of malaria. One of the leading transmission blocking vaccine candidates is the sexual stage antigen Pfs48/45. Areas covered: PubMed was searched to review the progress and future prospects for clinical development of a Pfs48/45-based subunit vaccine. We will focus on biological function, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production of recombinant protein and preclinical studies. Expert commentary: Pfs48/45 is one of the lead-candidates for a transmission blocking vaccine and should be further explored in clinical trials.
Collapse
Affiliation(s)
- Michael Theisen
- a Department for Congenital disorders , State Serum Institute , Copenhagen , Denmark.,b Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology , University of Copenhagen , Copenhagen , Denmark.,c Department of Infectious Diseases , Copenhagen University Hospital, Rigshospitalet , Copenhagen , Denmark
| | - Matthijs M Jore
- d Department of Medical Microbiology , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Robert Sauerwein
- d Department of Medical Microbiology , Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|
16
|
Liu J, Huang S, Su XZ, Song J, Lu F. Blockage of Galectin-receptor Interactions by α-lactose Exacerbates Plasmodium berghei-induced Pulmonary Immunopathology. Sci Rep 2016; 6:32024. [PMID: 27554340 PMCID: PMC4995515 DOI: 10.1038/srep32024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria-associated acute lung injury (ALI) is a frequent complication of severe malaria that is often caused by "excessive" immune responses. To better understand the mechanism of ALI in malaria infection, here we investigated the roles of galectin (Gal)-1, 3, 8, 9 and the receptors of Gal-9 (Tim-3, CD44, CD137, and PDI) in malaria-induced ALI. We injected alpha (α)-lactose into mice-infected with Plasmodium berghei ANKA (PbANKA) to block galectins and found significantly elevated total proteins in bronchoalveolar lavage fluid, higher parasitemia and tissue parasite burden, and increased numbers of CD68(+) alveolar macrophages as well as apoptotic cells in the lungs after blockage. Additionally, mRNA levels of Gal-9, Tim-3, CD44, CD137, and PDI were significantly increased in the lungs at day 5 after infection, and the levels of CD137, IFN-α, IFN-β, IFN-γ, IL-4, and IL-10 in the lungs were also increased after α-lactose treatment. Similarly, the levels of Gal-9, Tim-3, IFN-α, IFN-β, IFN-γ, and IL-10 were all significantly increased in murine peritoneal macrophages co-cultured with PbANKA-infected red blood cells in vitro; but only IFN-α and IFN-β were significantly increased after α-lactose treatment. Our data indicate that Gal-9 interaction with its multiple receptors play an important role in murine malaria-associated ALI.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, Guangdong, China
| | - Shiguang Huang
- School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States of America.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianping Song
- Institute of Science and Technology, Guangzhou University of Chinese Medicine, 436 Chentai Road, Baiyun District, Guangzhou 510445, Guangdong, China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, Guangdong, China
| |
Collapse
|
17
|
Meng Y, Zhang Q, Zhang M, Gu B, Huang G, Wang Q, Shan W. The protein disulfide isomerase 1 of Phytophthora parasitica (PpPDI1) is associated with the haustoria-like structures and contributes to plant infection. FRONTIERS IN PLANT SCIENCE 2015; 6:632. [PMID: 26347756 PMCID: PMC4539480 DOI: 10.3389/fpls.2015.00632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/30/2015] [Indexed: 05/23/2023]
Abstract
Protein disulfide isomerase (PDI) is a ubiquitous and multifunction enzyme belonging to the thioredoxin (TRX) superfamily, which can reduce, oxidize, and catalyze dithiol-disulfide exchange reactions. Other than performing housekeeping functions in helping to maintain proteins in a more stable conformation, there is some evidence to indicate that PDI is involved in pathogen infection processes. In a high-throughput screening for necrosis-inducing factors by Agrobacterium tumefaciens-mediated transient expression assay, a typical PDI gene from Phytophthora parasitica (PpPDI1) was identified and confirmed to induce strong cell death in Nicotiana benthamiana leaves. PpPDI1 is conserved in eukaryotes but predicted to be a secreted protein. Deletion mutant analyses showed that the first CGHC motif in the active domain of PpPDI1 is essential for inducing cell death. Using P. parasitica transformation method, the silencing efficiency was found to be very low, suggesting that PpPDI1 is essential for the pathogen. Translational fusion to the enhanced green fluorescent protein (EGFP) in stable P. parasitica transformants showed that PpPDI1 is associated with haustoria-like structures during pathogen infection. Furthermore, the PpPDI1-EGFP-expressing transformants increase the number of haustoria-like structures and exhibit enhanced virulence to N. benthamiana. These results indicate that PpPDI1 might be a virulence factor of P. parasitica and contributes to plant infection.
Collapse
Affiliation(s)
- Yuling Meng
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Qiang Zhang
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Meixiang Zhang
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Biao Gu
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Weixing Shan
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| |
Collapse
|
18
|
Molecular characterization and analysis of a novel protein disulfide isomerase-like protein of Eimeria tenella. PLoS One 2014; 9:e99914. [PMID: 24932912 PMCID: PMC4059736 DOI: 10.1371/journal.pone.0099914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/19/2014] [Indexed: 12/13/2022] Open
Abstract
Protein disulfide isomerase (PDI) and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE) according to the expressed sequence tag (EST). The EtPDIL cDNA contained 1129 nucleotides encoding 216 amino acids. The deduced EtPDIL protein belonged to thioredoxin-like superfamily and had a single predicted thioredoxin domain with a non-classical thioredoxin-like motif (SXXC). BLAST analysis showed that the EtPDIL protein was 55–59% identical to PDI-like proteins of other apicomplexan parasites. The transcript and protein levels of EtPDIL at different development stages were investigated by real-time quantitative PCR and western blot. The messenger RNA and protein levels of EtPDIL were higher in sporulated oocysts than in unsporulated oocysts, sporozoites or merozoites. Protein expression was barely detectable in unsporulated oocysts. Western blots showed that rabbit antiserum against recombinant EtPDIL recognized only a native 24 kDa protein from parasites. Immunolocalization with EtPDIL antibody showed that EtPDIL had a disperse distribution in the cytoplasm of whole sporozoites and merozoites. After sporozoites were incubated in complete medium, EtPDIL protein concentrated at the anterior of the sporozoites and appeared on the surface of parasites. Specific staining was more intense and mainly located on the parasite surface after merozoites released from mature schizonts invaded DF-1 cells. After development of parasites in DF-1 cells, staining intensified in trophozoites, immature schizonts and mature schizonts. Antibody inhibition of EtPDIL function reduced the ability of E. tenella to invade DF-1 cells. These results suggested that EtPDIL might be involved in sporulation in external environments and in host cell adhesion, invasion and development of E. tenella.
Collapse
|
19
|
Kumar S, Zheng H, Mahajan B, Kozakai Y, Morin M, Locke E. Western blot assay for quantitative and qualitative antigen detection in vaccine development. CURRENT PROTOCOLS IN MICROBIOLOGY 2014; 33:18.4.1-11. [PMID: 24789597 DOI: 10.1002/9780471729259.mc1804s33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immunological methods for quantitative measurement, antigenic characterization, and monitoring the stability of active immunogenic component(s) are a critical need in the vaccine development process. This unit describes an enhanced chemiluminescence-based western blot for quantitative detection of Plasmodium falciparum circumsporozoite protein (PfCSP), a major malaria candidate vaccine antigen. The most salient features of this assay are its high sensitivity and reproducibility; it can reliably detect ∼5 to 10 pg PfCSP expressed on native parasites or recombinantly expressed in Escherichia coli. Although described for a specific vaccine antigen, this assay should be applicable for any antigen-antibody combination for which relevant detection reagents are available. Detailed stepwise experimental procedures and methods for data acquisition and analysis are described.
Collapse
Affiliation(s)
- Sanjai Kumar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland
| | | | | | | | | | | |
Collapse
|
20
|
Deponte M, Hoppe HC, Lee MC, Maier AG, Richard D, Rug M, Spielmann T, Przyborski JM. Wherever I may roam: Protein and membrane trafficking in P. falciparum-infected red blood cells. Mol Biochem Parasitol 2012; 186:95-116. [DOI: 10.1016/j.molbiopara.2012.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022]
|
21
|
Haque SJ, Majumdar T, Barik S. Redox-assisted protein folding systems in eukaryotic parasites. Antioxid Redox Signal 2012; 17:674-83. [PMID: 22122448 PMCID: PMC3373220 DOI: 10.1089/ars.2011.4433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE The cysteine (Cys) residues of proteins play two fundamentally important roles. They serve as sites of post-translational redox modifications as well as influence the conformation of the protein through the formation of disulfide bonds. RECENT ADVANCES Redox-related and redox-associated protein folding in protozoan parasites has been found to be a major mode of regulation, affecting myriad aspects of the parasitic life cycle, host-parasite interactions, and the disease pathology. Available genome sequences of various parasites have begun to complement the classical biochemical and enzymological studies of these processes. In this article, we summarize the reversible Cys disulfide (S-S) bond formation in various classes of strategically important parasitic proteins, and its structural consequence and functional relevance. CRITICAL ISSUES Molecular mechanisms of folding remain under-studied and often disconnected from functional relevance. FUTURE DIRECTIONS The clinical benefit of redox research will require a comprehensive characterization of the various isoforms and paralogs of the redox enzymes and their concerted effect on the structure and function of the specific parasitic client proteins.
Collapse
Affiliation(s)
- Saikh Jaharul Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
22
|
Plasmodium yoelii blood-stage antigens newly identified by immunoaffinity using purified IgG antibodies from malaria-resistant mice. Immunobiology 2012; 217:823-30. [PMID: 22658767 DOI: 10.1016/j.imbio.2012.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/07/2012] [Indexed: 12/12/2022]
Abstract
As the search for an effective human malaria vaccine continues, understanding immune responses to Plasmodium in rodent models is perhaps the key to unlocking new vaccine strategies. The recruitment of parasite-specific antibodies is an important component of natural immunity against infection in blood-stage malaria. Here, we describe the use of sera from naturally surviving ICR mice after infection with lethal doses of Plasmodium yoelii yoelii 17XL to identify highly immunogenic blood-stage antigens. Immobilized protein A/G was used for the affinity-chromatography purification of the IgGs present in pooled sera from surviving mice. These protective IgGs, covalently immobilized on agarose columns, were then used to isolate reactive antigens from whole P. yoelii yoelii 17XL protein extracts obtained from the blood-stage malaria infection. Through proteomics analysis of the recovered parasite antigens, we were able to identify two endoplasmic reticulum lumen proteins: protein disulfide isomerase and a member of the heat shock protein 70 family. Also identified were the digestive protease plasmepsin and the 39 kDa-subunit of eukaryotic translation initiation factor 3, a ribosome associated protein. Of these four proteins, three have not been previously identified as antigenic during blood-stage malaria infection. This procedure of isolating and identifying parasite antigens using serum IgGs from malaria-protected individuals could be a novel strategy for the development of multi-antigen-based vaccine therapies.
Collapse
|
23
|
Liu Q, Yang X, Zhang M, Wang L, Liu J, Chen J, He A, Li Z, Wu Z, Zhan X. Molecular characterization and immunolocalization of a protein disulfide isomerase from Angiostrongylus cantonensis. Parasitol Res 2012; 110:2501-7. [PMID: 22218922 DOI: 10.1007/s00436-011-2791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/14/2011] [Indexed: 01/09/2023]
Abstract
Protein disulfide isomerases (PDIs), belonging to the thioredoxin superfamily, are oxidoreductases that catalyze the formation, reduction, and isomerization of disulfide bonds among cysteine residues of proteins. In this study, we report the cloning and characterization of a cDNA encoding a protein disulfide isomerase (AcPDI) from a cDNA library of fourth-stage larvae of Angiostrongylus cantonensis. The deduced amino acid sequence contains two thioredoxin domains and exhibits high identity to the homologues from other species. Quantitative real-time PCR (qRT-PCR) was performed at the third-stage larvae, fourth-stage larvae, and adult stage of A. cantonensis, and the results revealed that the AcPDI mRNA, while expressed at all three stages, is expressed at a significantly higher level in female adult worms. Results of immunohistochemical studies indicated that the AcPDI expression was specifically localized in the tegument and uterus wall of female adult worms. Biochemical analysis showed that recombinant AcPDI was biologically active in vitro and exhibited the typical biochemical functions of PDIs: oxidase/isomerase and reductase activities. Collectively, these results implied that AcPDI may be a female-enriched protein and associated with the reproductive development of A. cantonensis. In addition, considering its biochemical properties, AcPDI may be involved in the formation of the cuticle of A. cantonensis.
Collapse
Affiliation(s)
- Qian Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2 Road, Guangzhou, Guangdong, 510089, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Stolf BS, Smyrnias I, Lopes LR, Vendramin A, Goto H, Laurindo FRM, Shah AM, Santos CXC. Protein disulfide isomerase and host-pathogen interaction. ScientificWorldJournal 2011; 11:1749-61. [PMID: 22125433 PMCID: PMC3201685 DOI: 10.1100/2011/289182] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/07/2011] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals) functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i) pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation) and (ii) phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI) family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER) and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.
Collapse
Affiliation(s)
- Beatriz S Stolf
- Department of Parasitology, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Besnoitia besnoiti protein disulfide isomerase (BbPDI): molecular characterization, expression and in silico modelling. Exp Parasitol 2011; 129:164-74. [PMID: 21756909 DOI: 10.1016/j.exppara.2011.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 06/22/2011] [Accepted: 06/28/2011] [Indexed: 11/24/2022]
Abstract
Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.
Collapse
|
26
|
Ben Khalaf N, De Muylder G, Ratnam J, Kean-Hooi Ang K, Arkin M, McKerrow J, Chenik M. A high-throughput turbidometric assay for screening inhibitors of Leishmania major protein disulfide isomerase. ACTA ACUST UNITED AC 2011; 16:545-51. [PMID: 21441416 DOI: 10.1177/1087057111401026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of a high-throughput technique to perform a pilot screen for Leishmania major protein disulfide isomerase (LmPDI) inhibitors identification is reported. In eukaryotic cells, protein disulfide isomerase (PDI) plays a crucial role in protein folding by catalyzing the rearrangement of disulfide bonds in substrate proteins following their synthesis. LmPDI displays similar domain structure organization and functional properties to other PDI family members and is involved in Leishmania virulence. The authors used a method based on the enzyme-catalyzed reduction of insulin in the presence of dithiothreitol. The screen of a small library of 1920 compounds was performed in a 384-well format and led to the identification of 27 compounds with inhibitory activity against LmPDI. The authors further tested the cytotoxicity of these compounds using Jurkat cells as well as their effect on Leishmania donovani amastigotes using high-content analysis. Results show hexachlorophene and a mixture of theaflavin monogallates inhibit Leishmania multiplication in infected macrophages derived from THP-1 cells, although the inhibitory effect on LmPDI enzymatic activity does not necessarily correlate with the antileishmanial activity.
Collapse
Affiliation(s)
- Noureddine Ben Khalaf
- Laboratory of Immunopathology Vaccinology and Molecular Genetics (LIVGM), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
| | | | | | | | | | | | | |
Collapse
|
27
|
Lokanathan Y, Mohd-Adnan A, Wan KL, Nathan S. Transcriptome analysis of the Cryptocaryon irritans tomont stage identifies potential genes for the detection and control of cryptocaryonosis. BMC Genomics 2010; 11:76. [PMID: 20113487 PMCID: PMC2828411 DOI: 10.1186/1471-2164-11-76] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/29/2010] [Indexed: 01/26/2023] Open
Abstract
Background Cryptocaryon irritans is a parasitic ciliate that causes cryptocaryonosis (white spot disease) in marine fish. Diagnosis of cryptocaryonosis often depends on the appearance of white spots on the surface of the fish, which are usually visible only during later stages of the disease. Identifying suitable biomarkers of this parasite would aid the development of diagnostic tools and control strategies for C. irritans. The C. irritans genome is virtually unexplored; therefore, we generated and analyzed expressed sequence tags (ESTs) of the parasite to identify genes that encode for surface proteins, excretory/secretory proteins and repeat-containing proteins. Results ESTs were generated from a cDNA library of C. irritans tomonts isolated from infected Asian sea bass, Lates calcarifer. Clustering of the 5356 ESTs produced 2659 unique transcripts (UTs) containing 1989 singletons and 670 consensi. BLAST analysis showed that 74% of the UTs had significant similarity (E-value < 10-5) to sequences that are currently available in the GenBank database, with more than 15% of the significant hits showing unknown function. Forty percent of the UTs had significant similarity to ciliates from the genera Tetrahymena and Paramecium. Comparative gene family analysis with related taxa showed that many protein families are conserved among the protozoans. Based on gene ontology annotation, functional groups were successfully assigned to 790 UTs. Genes encoding excretory/secretory proteins and membrane and membrane-associated proteins were identified because these proteins often function as antigens and are good antibody targets. A total of 481 UTs were classified as encoding membrane proteins, 54 were classified as encoding for membrane-bound proteins, and 155 were found to contain excretory/secretory protein-coding sequences. Amino acid repeat-containing proteins and GPI-anchored proteins were also identified as potential candidates for the development of diagnostic and control strategies for C. irritans. Conclusions We successfully discovered and examined a large portion of the previously unexplored C. irritans transcriptome and identified potential genes for the development and validation of diagnostic and control strategies for cryptocaryonosis.
Collapse
Affiliation(s)
- Yogeswaran Lokanathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | | | | | | |
Collapse
|
28
|
Novo C, Martins TM, Prata S, Lopes A, Armada A. Gene sequencing, modelling and immunolocalization of the protein disulfide isomerase from Plasmodium chabaudi. Int J Biol Macromol 2009; 45:399-406. [PMID: 19615402 DOI: 10.1016/j.ijbiomac.2009.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/03/2009] [Accepted: 07/06/2009] [Indexed: 11/17/2022]
Abstract
Malaria remains one of the major human parasitic diseases, particularly in subtropical regions. Most of the fatal cases are caused by Plasmodium falciparum. The rodent parasite Plasmodium chabaudi has been the model of choice in research due to its similarities to human malaria, including developmental cycle, preferential invasion of mature erythrocytes, synchrony of asexual development, antigenic variation, gene sinteny as well as similar resistance mechanisms. Protein disulfide isomerase (PDI) is an essential catalyst of the endoplasmic reticulum in different biological systems with folding and chaperone activities. Most of the proteins exported by parasites have to pass through the endoplasmic reticulum before reaching their final destination and their correct folding is critical for parasite survival. PDI constitutes a potential target for the development of alternative therapy strategies based on the inhibition of folding and chaperoning of exported proteins. We here describe the sequencing of the gene coding for the PDI from P. chabaudi and analyse the relationship to its counterpart enzymes, particularly with the PDI from other Plasmodium species. The model constructed, based on the recent model deduced from the crystallographic structure 2B5E, was compared with the previous theoretical model for the whole PDI molecule constructed by threading. A recombinant PDI from P. chabaudi was also produced and used as an antigen for monoclonal antibody production for application in PDI immunolocalization.
Collapse
Affiliation(s)
- Carlos Novo
- Unidade de Tecnologias de Proteínas e Anticorpos Monoclonais (UTPAM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Edifício F, Estrada do Paço do Lumiar, 1649-038 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
29
|
Dobaño C, Sedegah M, Rogers WO, Kumar S, Zheng H, Hoffman SL, Doolan DL. Plasmodium: Mammalian codon optimization of malaria plasmid DNA vaccines enhances antibody responses but not T cell responses nor protective immunity. Exp Parasitol 2009; 122:112-23. [DOI: 10.1016/j.exppara.2009.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 12/27/2008] [Accepted: 02/18/2009] [Indexed: 11/24/2022]
|
30
|
Külzer S, Gehde N, Przyborski JM. Return to sender: use of Plasmodium ER retrieval sequences to study protein transport in the infected erythrocyte and predict putative ER protein families. Parasitol Res 2009; 104:1535-41. [DOI: 10.1007/s00436-009-1397-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 03/04/2009] [Indexed: 11/30/2022]
|
31
|
Liao M, Hatta T, Umemiya R, Huang P, Jia H, Gong H, Zhou J, Nishikawa Y, Xuan X, Fujisaki K. Identification of three protein disulfide isomerase members from Haemaphysalis longicornis tick. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:641-54. [PMID: 17550821 DOI: 10.1016/j.ibmb.2007.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/05/2007] [Accepted: 03/26/2007] [Indexed: 05/15/2023]
Abstract
Three genes encoding putative protein disulfide isomerase (PDI) were isolated from the Haemaphysalis longicornis EST database and designed as HlPDI-1, HlPDI-2, and HlPDI-3. All three PDI genes contain two typical PDI active sites CXXC and encode putative 435, 499, and 488 amino acids, respectively. The recombinant proteins expressed in Escherichia coli all show PDI activities, and the activities were inhibited by a PDI-specific inhibitor, zinc bacitracin. Western blot analysis and real-time PCR revealed that three HlPDIs were present in all the developmental stages of the tick as well as in the midgut, salivary glands, ovary, hemolymph, and fatbody of adult female ticks, but the three genes were expressed at the highest level in the egg stage. HlPDI-1 is expressed primarily in the ovary and secondarily in the salivary glands. HlPDI-2 and HlPDI-3 are expressed primarily in the salivary gland, suggesting that the PDI genes are important for tick biology, especially for egg development, and that they play distinct roles in different tissues. Blood feeding induced significantly increased expression of HlPDI-1 and HlPDI-3 in both partially fed nymphs and adults. Babesia gibsoni-infected larval ticks expressed HlPDI-1 and HlPDI-3 2.0 and 4.0 times higher than uninfected normal larval ticks, respectively. The results indicate that HlPDI-1 and HlPDI-3 might be involved in tick blood feeding and Babesia parasite infection in ticks.
Collapse
Affiliation(s)
- Min Liao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Anantharaman V, Iyer LM, Balaji S, Aravind L. Adhesion molecules and other secreted host-interaction determinants in Apicomplexa: insights from comparative genomics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:1-74. [PMID: 17631186 DOI: 10.1016/s0074-7696(07)62001-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apicomplexa have developed distinctive adaptations for invading and surviving within animal cells. Here a synthetic overview of the diversity and evolutionary history of cell membrane-associated, -secreted, and -exported proteins related to apicomplexan parasitism is presented. A notable feature in this regard was the early acquisition of adhesion protein domains and glycosylation systems through lateral transfer from animals. These were utilized in multiple contexts, including invasion of host cells and parasite-specific developmental processes. Apicomplexans possess a specialized version of the ancestral alveolate extrusion machinery, the rhoptries and micronemes, which are deployed in invasion and delivery of proteins into host cells. Each apicomplexan lineage has evolved a unique spectrum of extruded proteins that modify host molecules in diverse ways. Hematozoans, in particular, appear to have evolved novel systems for export of proteins into the host organelles and cell membrane during intracellular development. These exported proteins are an important aspect of the pathogenesis of Plasmodium and Theileria, being involved in response to fever and in leukocyte proliferation respectively. The complement of apicomplexan surface proteins has primarily diversified via massive lineage-specific expansions of certain protein families, which are often coded by subtelomeric gene arrays. Many of these families have been found to be central to immune evasion. Domain shuffling and accretion have resulted in adhesins with new domain architectures. In terms of individual genes, constant selective pressures from the host immune response has resulted in extensive protein polymorphisms and gene losses. Apicomplexans have also evolved complex regulatory mechanisms controlling expression and maturation of surface proteins at the chromatin, transcriptional, posttranscriptional, and posttranslational levels. Evolutionary reconstruction suggests that the ancestral apicomplexan had thrombospondin and EGF domain adhesins, which were linked to the parasite cytoskeleton, and played a central role in invasion through formation of the moving junction. It also suggests that the ancestral parasite had O-linked glycosylation of surface proteins which was partially or entirely lost in hematozoan lineages.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | | | |
Collapse
|