1
|
Zech J, Salaymeh N, Hunt NH, Mäder K, Golenser J. Efficient Treatment of Experimental Cerebral Malaria by an Artemisone-SMEDDS System: Impact of Application Route and Dosing Frequency. Antimicrob Agents Chemother 2021; 65:e02106-20. [PMID: 33558284 PMCID: PMC8097435 DOI: 10.1128/aac.02106-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
Artemisone (ART) has been successfully tested in vitro and in animal models against several diseases. However, its poor aqueous solubility and limited chemical stability are serious challenges. We developed a self-microemulsifying drug delivery system (SMEDDS) that overcomes these limitations. Here, we demonstrate the efficacy of this formulation against experimental cerebral malaria in mice and the impact of its administration using different routes (gavage, intranasal delivery, and parenteral injections) and frequency on the efficacy of the treatment. The minimal effective daily oral dose was 20 mg/kg. We found that splitting a dose of 20 mg/kg ART given every 24 h, by administering two doses of 10 mg/kg each every 12 h, was highly effective and gave far superior results compared to 20 mg/kg once daily. We obtained the best results with nasal treatment; oral treatment was ranked second, and the least effective route of administration was intraperitoneal injection. A complete cure of experimental cerebral malaria could be achieved through choosing the optimal route of application, dose, and dosing interval. Altogether, the developed formulation combines easy manufacturing with high stability and could be a successful and very versatile carrier for the delivery of ART in the treatment of human severe malaria.
Collapse
Affiliation(s)
- Johanna Zech
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nadeen Salaymeh
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nicholas H Hunt
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Jiang X, Chen L, Zheng Z, Chen Y, Weng X, Guo Y, Li K, Yang T, Qu S, Liu H, Li Y, Zhu X. Synergistic Effect of Combined Artesunate and Tetramethylpyrazine in Experimental Cerebral Malaria. ACS Infect Dis 2020; 6:2400-2409. [PMID: 32786270 DOI: 10.1021/acsinfecdis.0c00124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intravenous artesunate is effective against cerebral malaria (CM), but high mortality and neurological sequelae in survivors are inevitable. We investigated the effect of combined artesunate and tetramethylpyrazine using mouse models of experimental cerebral malaria (ECM). Artesunate + tetramethylpyrazine reduced microvascular blockage and improved neurological function, including the rapid murine coma and behavior scale (RMCBS), leading to improved survival and reduced pathology in ECM. This combination downregulated the expression of adhesion molecules and sequestration of parasitized red blood cells (pRBCs), increased cerebral blood flow, nerve growth factor (b-NGF), vascular endothelial growth factor A (VEGF-A), and neurotrophin (brain-derived neurotrophic factor (BDNF), neurotrophic factor-3 (NT-3)) levels, and alleviated hippocampal neuronal damage and astrocyte activation. Down- (n = 128) and upregulated (n = 64) proteins were identified in the artesunate group, while up- (n = 217) and downregulated (n = 177) proteins were identified in the artesunate + tetramethylpyrazine group, presenting a significantly altered proteome profile. KEGG analysis showed that 166 differentially expressed proteins were enriched in the Art group and 234, in the artesunate + tetramethylpyrazine group. The neuroprotective effects of artesunate + tetramethylpyrazine were mainly related to proteins involved in axon development and transportation between blood and brain. These results suggested that artesunate + tetramethylpyrazine could be a potential adjuvant therapy against CM, but this will have to be confirmed in future studies and trials.
Collapse
Affiliation(s)
- Xiaohui Jiang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Lina Chen
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Zhongyuan Zheng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Yuan Guo
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Kai Li
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Ting Yang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Shuiqing Qu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Hui Liu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Yujie Li
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Xiaoxin Zhu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| |
Collapse
|
4
|
Marijon A, Bonnot G, Fourier A, Bringer C, Lavoignat A, Gagnieu MC, Bienvenu AL, Picot S. Efficacy of intranasal administration of artesunate in experimental cerebral malaria. Malar J 2014; 13:501. [PMID: 25516091 PMCID: PMC4320559 DOI: 10.1186/1475-2875-13-501] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/12/2014] [Indexed: 11/27/2022] Open
Abstract
Background Improving management of patients suffering from cerebral malaria is needed to reduce the devastating mortality and morbidity of the disease in endemic areas. Intravenous artesunate is currently the first-line treatment, but the lack of material and skills in the field make it difficult to implement in endemic areas. Intranasal route provides a very easy and direct gateway to blood and brain to deliver medications, by-passing the brain blood barrier. Therefore, it could be helpful and suitable to administer artesunate in the context of cerebral malaria, especially in young children. In this study, intranasal administration of artesunate to rescue from cerebral malaria using a murine model was tested. Methods CBA/J mice infected with Plasmodium berghei ANKA strain received artesunate (20 mg/kg) or a placebo solution intranasally, either on day 5, 6 or 7 post-infection, during a controlled, blinded, randomized trial. Primary endpoint was mortality on day 12 post-infection. Secondary endpoints were parasitaemia and clinical stage. Pharmacokinetics data following administration were collected in blood and brains of treated mice. Local toxicity was evaluated by histopathologic examination of brain and nasal sections in blinded manner. Results Intranasal administration of artesunate dramatically reduced the mortality rate (p < 0.001), preventing death in most cases. Parasitaemia loads decreased by 88.7% (61.8-100%) within 24 hours after administration. Symptoms of cerebral malaria were prevented or reversed. Dihydroartemisinin was detected in mice blood and brain within 15 minutes of intranasal administration. No direct nasal or brain toxicity was detected. Conclusion Intranasal delivery is an efficient route to timely and efficiently administer artesunate and therefore may contribute to decreasing malaria-related mortality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stéphane Picot
- Université Claude Bernard Lyon 1, Malaria Research Unit, SMITH, ICBMS, UMR 5246 CNRS-INSA-CPE-UCBL1, 8 avenue Rockefeller, 69373 Lyon cedex 08, France.
| |
Collapse
|
5
|
Reduction of experimental cerebral malaria and its related proinflammatory responses by the novel liposome-based β-methasone nanodrug. BIOMED RESEARCH INTERNATIONAL 2014; 2014:292471. [PMID: 25126550 PMCID: PMC4121993 DOI: 10.1155/2014/292471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 01/11/2023]
Abstract
Cerebral malaria (CM) is a severe complication of and a leading cause of death due to Plasmodium falciparum infection. CM is likely the result of interrelated events, including mechanical obstruction due to parasite sequestration in the microvasculature, and upregulation of Th1 immune responses. In parallel, blood-brain-barrier (BBB) breakdown and damage or death of microglia, astrocytes, and neurons occurs. We found that a novel formulation of a liposome-encapsulated glucocorticosteroid, β-methasone hemisuccinate (nSSL-BMS), prevents experimental cerebral malaria (ECM) in a murine model and creates a survival time-window, enabling administration of an antiplasmodial drug before severe anemia develops. nSSL-BMS treatment leads to lower levels of cerebral inflammation, expressed by altered levels of corresponding cytokines and chemokines. The results indicate the role of integrated immune responses in ECM induction and show that the new steroidal nanodrug nSSL-BMS reverses the balance between the Th1 and Th2 responses in malaria-infected mice so that the proinflammatory processes leading to ECM are prevented. Overall, because of the immunopathological nature of CM, combined immunomodulator/antiplasmodial treatment should be considered for prevention/treatment of human CM and long-term cognitive damage.
Collapse
|
6
|
Jain K, Sood S, Gowthamarajan K. Optimization of artemether-loaded NLC for intranasal delivery using central composite design. Drug Deliv 2014; 22:940-54. [PMID: 24512368 PMCID: PMC11132714 DOI: 10.3109/10717544.2014.885999] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/17/2014] [Indexed: 01/08/2023] Open
Abstract
The objective of the study was to optimize artemether-loaded nanostructured lipid carriers (ARM-NLC) for intranasal delivery using central composite design. ARM-NLC was prepared by microemulsion method with optimized formulation having particle size of 123.4 nm and zeta potential of -34.4 mV. Differential scanning calorimetry and powder X-ray diffraction studies confirmed that drug existed in amorphous form in NLC formulation. In vitro cytotoxicity assay using SVG p12 cell line and nasal histopathological studies on sheep nasal mucosa indicated the developed formulations were non-toxic and safe for intranasal administration. In vitro release studies revealed that NLC showed sustained release up to 96 h. Ex vivo diffusion studies using sheep nasal mucosa revealed that ARM-NLC had significantly lower flux compared to drug solution (ARM-SOL). Pharmacokinetic and brain uptake studies in Wistar rats showed significantly higher drug concentration in brain in animals treated intranasally (i.n.) with ARM-NLC. Brain to blood ratios for ARM-NLC (i.n.), ARM-SOL (i.n.) and ARM-SOL (i.v.) were 2.619, 1.642 and 0.260, respectively, at 0.5 h indicating direct nose to brain transport of ARM. ARM-NLC showed highest drug targeting efficiency and drug transport percentage of 278.16 and 64.02, respectively, which indicates NLC had better brain targeting efficiency compared to drug solution.
Collapse
Affiliation(s)
- Kunal Jain
- J.S.S. College of Pharmacy, Department of Pharmaceutics, Rocklands, Udhagamandalam, Tamil Nadu, India
| | - Sumeet Sood
- J.S.S. College of Pharmacy, Department of Pharmaceutics, Rocklands, Udhagamandalam, Tamil Nadu, India
| | - Kuppusamy Gowthamarajan
- J.S.S. College of Pharmacy, Department of Pharmaceutics, Rocklands, Udhagamandalam, Tamil Nadu, India
| |
Collapse
|
7
|
Sosnik A, Seremeta KP, Imperiale JC, Chiappetta DA. Novel formulation and drug delivery strategies for the treatment of pediatric poverty-related diseases. Expert Opin Drug Deliv 2012; 9:303-23. [PMID: 22257003 DOI: 10.1517/17425247.2012.655268] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Due to a lack of approved drugs and formulations, children represent the most vulnerable patients. Magistral, unlicensed formulations obtained by the manipulation of solid forms should undergo clinical evaluation to ensure bioequivalence. The development of new pediatric medicines is complex and faces technological, economic and ethical challenges. This phenomenon has contributed to the emergence of an adult-children gap. To improve the situation, the World Health Organization launched the global campaign 'Make medicines child size' and a number of international initiatives have been established. The situation is more critical in the case of poverty-related diseases (PRDs) that mainly affect poor countries. AREAS COVERED This review critically discusses different strategies to develop pediatric formulations and drug delivery systems (DDS) in PRDs and their potential implementation in the current market. Readers will gain an updated perspective on the development of pediatric medicines for the treatment of PRDs and the proximate challenges and opportunities faced to ensure an effective pharmacotherapy. EXPERT OPINION There is an urgent need for the development of innovative, scalable and cost-viable formulations to ensure pediatric patients have access to appropriate medications for PRDs. The guidelines of the International Conference on Harmonisation constitute a very good orientation tool, as they emphasize physiological and developmental aspects that need to be considered in pediatric research. It is important to consider cultural, economic and ethical aspects that make developing nations facing PRDs different from the developed world. Thus, the best strategy would probably be to conceive and engage similar initiatives in the developing world, to address unattended therapeutic niches.
Collapse
Affiliation(s)
- Alejandro Sosnik
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, The Group of Biomaterials and Nanotechnology for Improved Medicines, 956 Junín St., Buenos Aires CP1113, Argentina.
| | | | | | | |
Collapse
|
8
|
Murambiwa P, Masola B, Govender T, Mukaratirwa S, Musabayane C. Anti-malarial drug formulations and novel delivery systems: a review. Acta Trop 2011; 118:71-9. [PMID: 21439929 DOI: 10.1016/j.actatropica.2011.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
Abstract
Artemisinin combination therapies have decreased malaria associated morbidity and mortality in several parts of the world. On the other hand, malaria cases have increased in sub-Saharan Africa largely due to falciparum resistance to the most frequently used drugs (chloroquine and sulphadoxine/pyrimethamine (SP) combination). Therapeutic failure has also been attributed in part to adverse effects of anti-malarial drugs and patients' non-compliance due to inconvenient dosing schedules. We consider that formulation and evaluation of novel drug delivery systems is not only less expensive than developing new drugs, but may also improve delivery of anti-malarials at the desired rates. In this review we evaluate the therapeutic efficacy of existing anti-malarial drugs and assess the feasibility of developing novel formulations and delivery systems.
Collapse
|
9
|
Waknine-Grinberg JH, Hunt N, Bentura-Marciano A, McQuillan JA, Chan HW, Chan WC, Barenholz Y, Haynes RK, Golenser J. Artemisone effective against murine cerebral malaria. Malar J 2010; 9:227. [PMID: 20691118 PMCID: PMC2928250 DOI: 10.1186/1475-2875-9-227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/09/2010] [Indexed: 11/12/2022] Open
Abstract
Background Artemisinins are the newest class of drug approved for malaria treatment. Due to their unique mechanism of action, rapid effect on Plasmodium, and high efficacy in vivo, artemisinins have become essential components of malaria treatment. Administration of artemisinin derivatives in combination with other anti-plasmodials has become the first-line treatment for uncomplicated falciparum malaria. However, their efficiency in cases of cerebral malaria (CM) remains to be determined. Methods The efficacy of several artemisinin derivatives for treatment of experimental CM was evaluated in ICR or C57BL/6 mice infected by Plasmodium berghei ANKA. Both mouse strains serve as murine models for CM. Results Artemisone was the most efficient drug tested, and could prevent death even when administered at relatively late stages of cerebral pathogenesis. No parasite resistance to artemisone was detected in recrudescence. Co-administration of artemisone together with chloroquine was more effective than monotherapy with either drug, and led to complete cure. Artemiside was even more effective than artemisone, but this substance has yet to be submitted to preclinical toxicological evaluation. Conclusions Altogether, the results support the use of artemisone for combined therapy of CM.
Collapse
Affiliation(s)
- Judith H Waknine-Grinberg
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|