1
|
In vitro excystation of Cryptosporidium muris oocysts and viability of released sporozoites in different incubation media. Parasitol Res 2015; 115:1113-21. [PMID: 26678654 DOI: 10.1007/s00436-015-4841-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
This study aimed to evaluate and document the excystation process of Cryptosporidium muris oocysts in various incubation media, and to monitor the behaviour of excysting and freshly excysted sporozoites. A test of oocyst viability, using fluorescent double staining with fluorescein diacetate and propidium iodide, was performed prior to each experimental assay. Light microscope observations confirmed that relatively often only three sporozoites were released; the fourth one either left the oocyst later together with a residual body or remained trapped within the oocyst wall. These results suggest that successful oocyst excystation is not limited by the viability of all four sporozoites. Darkening of oocysts to opaque and their specific movement (the so-called "oocyst dancing") preceded the final excystation and liberation of sporozoites, while the dormant oocysts appeared refractive. The process of excystation in C. muris is not gradual as generally described in cryptosporidia but very rapid in an eruptive manner. Experiments were performed using oocysts stored at 4 °C for various time periods, as well as oocysts freshly shed from host rodents (Mastomys coucha) of different ages. The most suitable medium supporting high excystation rate (76 %) and prolonged motility of sporozoites was RPMI 1640, enriched with 5 % bovine serum albumin (BSA). Our results emphasize that to reliably evaluate the success of in vitro excystation of cryptosporidia, not only the number of released sporozoites in a set time period should be taken into consideration but also their subsequent activity (motility), as it is expected to be essential for the invasion of host cells.
Collapse
|
2
|
Life cycle ofCryptosporidium murisin two rodents with different responses to parasitization. Parasitology 2013; 141:287-303. [DOI: 10.1017/s0031182013001637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThis study focuses on mapping the life cycle ofCryptosporidium murisin two laboratory rodents; BALB/c mice and the southern multimammate ratMastomys coucha, differing in their prepatent and patent periods. Both rodents were simultaneously experimentally inoculated with viable oocysts ofC. muris(strain TS03). Animals were dissected and screened for the presence of the parasite using a combined morphological approach and nested PCR (SSU rRNA) at different times after inoculation. The occurrence of first developmental stages ofC. murisin stomach was detected at 2·5 days post-infection (dpi). The presence of Type II merogony, appearing 36 h later than Type I merogony, was confirmed in both rodents. Oocysts exhibiting different size and thickness of their wall were observed from 5 dpi onwards in stomachs of both host models. The early phase of parasitization in BALB/c mice progressed rapidly, with a prepatent period of 7·5–10 days; whereas inM. coucha, the developmental stages ofC. muriswere first observed 12 h later in comparison with BALB/c mice and prepatent period was longer (18–21 days). Similarly, the patent periods of BALB/c mice andM. couchadiffered considerably, i.e. 10–15 daysvschronic infection throughout the life of the host, respectively.
Collapse
|
3
|
Matsubayashi M, Teramoto-Kimata I, Uni S, Lillehoj HS, Matsuda H, Furuya M, Tani H, Sasai K. Elongation factor-1α is a novel protein associated with host cell invasion and a potential protective antigen of Cryptosporidium parvum. J Biol Chem 2013; 288:34111-34120. [PMID: 24085304 DOI: 10.1074/jbc.m113.515544] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess an apical complex, a unique assembly of organelles localized to the anterior end of the cell and involved in host cell invasion. Previously, we generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina sporozoites. This antigen was highly conserved among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium. In the present study, we identified the apical cytoskeletal antigen of Cryptosporidium parvum (C. parvum) and further characterized this antigen in C. parvum to assess its potential as a target molecule against cryptosporidiosis. Indirect immunofluorescence demonstrated that the reactivity of 6D-12-G10 with C. parvum sporozoites was similar to those of anti-β- and anti-γ-tubulins antibodies. Immunoelectron microscopy with the 6D-12-G10 mAb detected the antigen both on the sporozoite surface and underneath the inner membrane at the apical region of zoites. The 6D-12-G10 mAb significantly inhibited in vitro host cell invasion by C. parvum. MALDI-TOF/MS and LC-MS/MS analysis of tryptic peptides revealed that the mAb 6D-12-G10 target antigen was elongation factor-1α (EF-1α). These results indicate that C. parvum EF-1α plays an essential role in mediating host cell entry by the parasite and, as such, could be a candidate vaccine antigen against cryptosporidiosis.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- Department of Food and Nutrition, Osaka Yuhigaoka Gakuen Junior College, Tennoji-ku, Osaka 543-0073, Japan; Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, National Agricultural and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Isao Teramoto-Kimata
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan
| | - Shigehiko Uni
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan; Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hyun S Lillehoj
- United States Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland 20705
| | - Haruo Matsuda
- Laboratory of Immunobiology, Department of Molecular and Applied Biosciences, Graduate School of Biosphere Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Masaru Furuya
- Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Hiroyuki Tani
- Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Kazumi Sasai
- Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.
| |
Collapse
|
4
|
Pathological features of Cryptosporidium andersoni-induced lesions in SCID mice. Exp Parasitol 2013; 134:381-3. [DOI: 10.1016/j.exppara.2013.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/21/2022]
|
5
|
Nagano-Koyashiki S, Matsubayashi M, Kimata I, Furuya M, Tani H, Sasai K. Infectivity of Cryptosporidium andersoni Kawatabi type relative to the small number of oocysts in immunodeficient and immunocompetent neonatal and adult mice. Parasitol Int 2012; 62:109-11. [PMID: 23146684 DOI: 10.1016/j.parint.2012.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 11/29/2022]
Abstract
Cryptosporidium andersoni is a protozoan parasite found in many countries that invades the stomachs of primarily adult cattle. Unlike the isolates of C. andersoni in cattle from other countries, C. andersoni isolates from Japanese cattle can infect mice and were identified as a novel type and later defined as C. andersoni Kawatabi type. The biological characteristics of C. andersoni Kawatabi type have not yet been well documented. In the present study, we assess the infectivity of this type isolate in mice with different immune competence status and age. We found that inoculation of more than 1×10(4) oocysts is needed to establish infection in mature mice irrespective of immune status. All of the infected immunocompetent mice recovered after a patent period of approximately 20days. In immunodeficient mice, the pre-patent period was prolonged compared with that of 1×10(6) oocysts, but the pattern and the maximum shedding measured by the number of oocysts per day were almost identical. In neonatal immunocompetent and immunodeficient mice, inoculation with 1×10(4) to 10(5) oocysts was also needed to establish infection. Our results indicate that there is a threshold of oocysts needed to establish patent infection in the acidic conditions of the stomach.
Collapse
Affiliation(s)
- Saki Nagano-Koyashiki
- Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
6
|
MacLeod CD, Poulin R. Host–parasite interactions: a litmus test for ocean acidification? Trends Parasitol 2012; 28:365-9. [DOI: 10.1016/j.pt.2012.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 11/30/2022]
|
7
|
Hayashi D, Tamura A, Tanaka H, Yamazaki Y, Watanabe S, Suzuki K, Suzuki K, Sentani K, Yasui W, Rakugi H, Isaka Y, Tsukita S. Deficiency of claudin-18 causes paracellular H+ leakage, up-regulation of interleukin-1β, and atrophic gastritis in mice. Gastroenterology 2012; 142:292-304. [PMID: 22079592 DOI: 10.1053/j.gastro.2011.10.040] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/14/2011] [Accepted: 10/26/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Although defects in tight junction (TJ) epithelial paracellular barrier function are believed to be a primary cause of inflammation, the mechanisms responsible remain largely unknown. METHODS We generated knockout mice of stomach-type claudin-18, a major component of TJs in the stomach. RESULTS Cldn18(-/-) mice were afflicted with atrophic gastritis that started on postnatal day 3. This coincided with a decrease in intragastric pH due to H(+) secretion from parietal cells and concomitant up-regulation of the cytokines, interleukin-1β, cyclooxygenase-2, and KC, resulting in spasmolytic polypeptide-expressing metaplasia (SPEM). Oral administration of hydrochloric acid on postnatal day 1 induced the expression of these cytokines in Cldn18(-/-) infant stomach, but not in Cldn18(+/+) mice. A paracellular H(+) leak in Cldn18(-/-) stomach was detected by electrophysiology and H(+) titration, and freeze-fracture electron microscopy showed structural defects in the TJs, in which the tightly packed claudin-18 (stomach-type)-based TJ strands were lost, leaving a loose meshwork of strands consisting of other claudin species. CONCLUSIONS These findings provide evidence that claudin-18 normally forms a paracellular barrier against H(+) in the stomach and that its deficiency causes paracellular H(+) leak, a persistent up-regulation of proinflammatory cytokines, chronic recruitment of neutrophils, and the subsequent development of SPEM in atrophic gastritis.
Collapse
Affiliation(s)
- Daisuke Hayashi
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|