1
|
Appetecchia F, Fabbrizi E, Fiorentino F, Consalvi S, Biava M, Poce G, Rotili D. Transmission-Blocking Strategies for Malaria Eradication: Recent Advances in Small-Molecule Drug Development. Pharmaceuticals (Basel) 2024; 17:962. [PMID: 39065810 PMCID: PMC11279868 DOI: 10.3390/ph17070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Malaria drug research and development efforts have resurged in the last decade following the decelerating rate of mortality and malaria cases in endemic regions. The inefficiency of malaria interventions is largely driven by the spreading resistance of the Plasmodium falciparum parasite to current drug regimens and that of the malaria vector, the Anopheles mosquito, to insecticides. In response to the new eradication agenda, drugs that act by breaking the malaria transmission cycle (transmission-blocking drugs), which has been recognized as an important and additional target for intervention, are being developed. These drugs take advantage of the susceptibility of Plasmodium during population bottlenecks before transmission (gametocytes) and in the mosquito vector (gametes, zygotes, ookinetes, oocysts, sporozoites). To date, compounds targeting stage V gametocytes predominate in the chemical library of transmission-blocking drugs, and some of them have entered clinical trials. The targeting of Plasmodium mosquito stages has recently renewed interest in the development of innovative malaria control tools, which hold promise for the application of compounds effective at these stages. In this review, we highlight the major achievements and provide an update on the research of transmission-blocking drugs, with a particular focus on their chemical scaffolds, antiplasmodial activity, and transmission-blocking potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| |
Collapse
|
2
|
Feitosa LM, Franca RRF, Ferreira MDLG, Aguiar ACC, de Souza GE, Maluf SEC, de Souza JO, Zapata L, Duarte D, Morais I, Nogueira F, Nonato MC, Pinheiro LCS, Guido RVC, Boechat N. Discovery of new piperaquine hybrid analogs linked by triazolopyrimidine and pyrazolopyrimidine scaffolds with antiplasmodial and transmission blocking activities. Eur J Med Chem 2024; 267:116163. [PMID: 38290351 DOI: 10.1016/j.ejmech.2024.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
The World Health Organization (WHO) estimated that there were 247 million malaria cases in 2021 worldwide, representing an increase in 2 million cases compared to 2020. The urgent need for the development of new antimalarials is underscored by specific criteria, including the requirement of new modes of action that avoid cross-drug resistance, the ability to provide single-dose cures, and efficacy against both assexual and sexual blood stages. Motivated by the promising results obtained from our research group with [1,2,4]triazolo[1,5-a]pyrimidine and pyrazolo[1,5-a]pyrimidine derivatives, we selected these molecular scaffolds as the foundation for designing two new series of piperaquine analogs as potential antimalarial candidates. The initial series of hybrids was designed by substituting one quinolinic ring of piperaquine with the 1,2,4-triazolo[1,5-a]pyrimidine or pyrazolo[1,5-a]pyrimidine nucleus. To connect the heterocyclic systems, spacers with 3, 4, or 7 methylene carbons were introduced at the 4 position of the quinoline. In the second series, we used piperazine as a spacer to link the 1,2,4-triazolo[1,5-a]pyrimidine or pyrazolo[1,5-a]pyrimidine group to the quinoline core, effectively merging both pharmacophoric groups via a rigid spacer. Our research efforts yielded promising compounds characterized by low cytotoxicity and selectivity indices exceeding 1570. These compounds displayed potent in vitro inhibitory activity in the low nanomolar range against the erythrocytic form of the parasite, encompassing both susceptible and resistant strains. Notably, these compounds did not show cross-resistance with either chloroquine or established P. falciparum inhibitors. Even though they share a pyrazolo- or triazolo-pyrimidine core, enzymatic inhibition assays revealed that these compounds had minimal inhibitory effects on PfDHODH, indicating a distinct mode of action unrelated to targeting this enzyme. We further assessed the compounds' potential to interfere with gametocyte and ookinete infectivity using mature P. falciparum gametocytes cultured in vitro. Four compounds demonstrated significant gametocyte inhibition ranging from 58 % to 86 %, suggesting potential transmission blocking activity. Finally, we evaluated the druggability of these new compounds using in silico methods, and the results indicated that these analogs had favorable physicochemical and ADME (absorption, distribution, metabolism, and excretion) properties. In summary, our research has successfully identified and characterized new piperaquine analogs based on [1,2,4]triazolo[1,5-a]pyrimidine and pyrazolo[1,5-a]pyrimidine scaffolds and has demonstrated their potential as promising candidates for the development of antimalarial drugs with distinct mechanisms of action, considerable selectivity, and P. falciparum transmission blocking activity.
Collapse
Affiliation(s)
- Livia M Feitosa
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Laboratorio de Sintese de Farmacos. Rua Sizenando Nabuco 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pós Graduação em Farmacologia e Química Medicinal, Rio de Janeiro, RJ, Brazil
| | - Rodolfo Rodrigo F Franca
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Laboratorio de Sintese de Farmacos. Rua Sizenando Nabuco 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil
| | - Maria de Lourdes G Ferreira
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Laboratorio de Sintese de Farmacos. Rua Sizenando Nabuco 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil
| | - Anna C C Aguiar
- Universidade de São Paulo, Instituto de Física de São Carlos, Av. João Dagnone, 1.100, Jd. Santa Angelina, São Carlos, SP, Brazil; Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia. Rua Botucatu 862, Vila Clementino, 04023-062, São Paulo, SP, Brazil
| | - Guilherme E de Souza
- Universidade de São Paulo, Instituto de Física de São Carlos, Av. João Dagnone, 1.100, Jd. Santa Angelina, São Carlos, SP, Brazil
| | - Sarah El Chamy Maluf
- Universidade de São Paulo, Instituto de Física de São Carlos, Av. João Dagnone, 1.100, Jd. Santa Angelina, São Carlos, SP, Brazil
| | - Juliana O de Souza
- Universidade de São Paulo, Instituto de Física de São Carlos, Av. João Dagnone, 1.100, Jd. Santa Angelina, São Carlos, SP, Brazil
| | - Luana Zapata
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências BioMoleculares, Laboratório de Cristalografia de Proteínas, Avenida do Café s/n Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Center for the Research and Advancement of Fragments and Molecular Targets (CRAFT), Avenida do Café s/n Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil
| | - Denise Duarte
- Universidade NOVA de Lisboa, UNL, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Ines Morais
- Universidade NOVA de Lisboa, UNL, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Fatima Nogueira
- Universidade NOVA de Lisboa, UNL, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
| | - M Cristina Nonato
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências BioMoleculares, Laboratório de Cristalografia de Proteínas, Avenida do Café s/n Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Center for the Research and Advancement of Fragments and Molecular Targets (CRAFT), Avenida do Café s/n Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil.
| | - Luiz C S Pinheiro
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Laboratorio de Sintese de Farmacos. Rua Sizenando Nabuco 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil; Universidade do Estado do Rio de Janeiro, UERJ, Faculdade de Formação de Professores, Departamento de Ciências, Rua Dr. Francisco Portela, 1470, Patronato, 24435-005, São Gonçalo, RJ, Brazil.
| | - Rafael V C Guido
- Universidade de São Paulo, Instituto de Física de São Carlos, Av. João Dagnone, 1.100, Jd. Santa Angelina, São Carlos, SP, Brazil.
| | - Nubia Boechat
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Laboratorio de Sintese de Farmacos. Rua Sizenando Nabuco 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pós Graduação em Farmacologia e Química Medicinal, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Bouzón-Arnáiz I, Avalos-Padilla Y, Biosca A, Caño-Prades O, Román-Álamo L, Valle J, Andreu D, Moita D, Prudêncio M, Arce EM, Muñoz-Torrero D, Fernàndez-Busquets X. The protein aggregation inhibitor YAT2150 has potent antimalarial activity in Plasmodium falciparum in vitro cultures. BMC Biol 2022; 20:197. [PMID: 36271358 PMCID: PMC9587658 DOI: 10.1186/s12915-022-01374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background By 2016, signs of emergence of Plasmodium falciparum resistance to artemisinin and partner drugs were detected in the Greater Mekong Subregion. Recently, the independent evolution of artemisinin resistance has also been reported in Africa and South America. This alarming scenario calls for the urgent development of new antimalarials with novel modes of action. We investigated the interference with protein aggregation, which is potentially toxic for the cell and occurs abundantly in all Plasmodium stages, as a hitherto unexplored drug target in the pathogen. Results Attempts to exacerbate the P. falciparum proteome’s propensity to aggregation by delivering endogenous aggregative peptides to in vitro cultures of this parasite did not significantly affect their growth. In contrast, protein aggregation inhibitors clearly reduced the pathogen’s viability. One such compound, the bis(styrylpyridinium) salt YAT2150, exhibited potent antiplasmodial activity with an in vitro IC50 of 90 nM for chloroquine- and artemisinin-resistant lines, arresting asexual blood parasites at the trophozoite stage, as well as interfering with the development of both sexual and hepatic forms of Plasmodium. At its IC50, this compound is a powerful inhibitor of the aggregation of the model amyloid β peptide fragment 1-40, and it reduces the amount of aggregated proteins in P. falciparum cultures, suggesting that the underlying antimalarial mechanism consists in a generalized impairment of proteostasis in the pathogen. YAT2150 has an easy, rapid, and inexpensive synthesis, and because it fluoresces when it accumulates in its main localization in the Plasmodium cytosol, it is a theranostic agent. Conclusions Inhibiting protein aggregation in Plasmodium significantly reduces the parasite’s viability in vitro. Since YAT2150 belongs to a novel structural class of antiplasmodials with a mode of action that potentially targets multiple gene products, rapid evolution of resistance to this drug is unlikely to occur, making it a promising compound for the post-artemisinin era. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01374-4.
Collapse
Affiliation(s)
- Inés Bouzón-Arnáiz
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, 08036, Barcelona, Spain.,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, 08036, Barcelona, Spain.,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Arnau Biosca
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, 08036, Barcelona, Spain.,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Omar Caño-Prades
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, 08036, Barcelona, Spain.,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Lucía Román-Álamo
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, 08036, Barcelona, Spain.,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Javier Valle
- Department of Medicine and Life Sciences, Barcelona Biomedical Research Park, Pompeu Fabra University, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - David Andreu
- Department of Medicine and Life Sciences, Barcelona Biomedical Research Park, Pompeu Fabra University, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Diana Moita
- Instituto de Medicina Molecular, Fac. Medicina Univ. Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Fac. Medicina Univ. Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Elsa M Arce
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, 08036, Barcelona, Spain. .,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain. .,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
| |
Collapse
|
4
|
Moyo P, Mugumbate G, Eloff JN, Louw AI, Maharaj VJ, Birkholtz LM. Natural Products: A Potential Source of Malaria Transmission Blocking Drugs? Pharmaceuticals (Basel) 2020; 13:E251. [PMID: 32957668 PMCID: PMC7558993 DOI: 10.3390/ph13090251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The ability to block human-to-mosquito and mosquito-to-human transmission of Plasmodium parasites is fundamental to accomplish the ambitious goal of malaria elimination. The WHO currently recommends only primaquine as a transmission-blocking drug but its use is severely restricted by toxicity in some populations. New, safe and clinically effective transmission-blocking drugs therefore need to be discovered. While natural products have been extensively investigated for the development of chemotherapeutic antimalarial agents, their potential use as transmission-blocking drugs is comparatively poorly explored. Here, we provide a comprehensive summary of the activities of natural products (and their derivatives) of plant and microbial origins against sexual stages of Plasmodium parasites and the Anopheles mosquito vector. We identify the prevailing challenges and opportunities and suggest how these can be mitigated and/or exploited in an endeavor to expedite transmission-blocking drug discovery efforts from natural products.
Collapse
Affiliation(s)
- Phanankosi Moyo
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| | - Grace Mugumbate
- Department of Chemistry, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Private Bag, 7724 Chinhoyi, Zimbabwe;
| | - Jacobus N. Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag x04, Onderstepoort 0110 Pretoria, South Africa;
| | - Abraham I. Louw
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| | - Vinesh J. Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| | - Lyn-Marié Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| |
Collapse
|
5
|
Burrows J, Fidock DA, Miller RS, Rees S. Blocking Plasmodium Development in Mosquitoes: A Powerful New Approach for Expanding Malaria Control Efforts. Am J Trop Med Hyg 2020; 101:734-735. [PMID: 31264564 PMCID: PMC6779223 DOI: 10.4269/ajtmh.19-0318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - David A Fidock
- Department of Microbiology and Immunology and Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Sarah Rees
- Innovative Vector Control Consortium, Liverpool, United Kingdom
| |
Collapse
|
6
|
Delves M, Lafuente-Monasterio MJ, Upton L, Ruecker A, Leroy D, Gamo FJ, Sinden R. Fueling Open Innovation for Malaria Transmission-Blocking Drugs: Hundreds of Molecules Targeting Early Parasite Mosquito Stages. Front Microbiol 2019; 10:2134. [PMID: 31572339 PMCID: PMC6753678 DOI: 10.3389/fmicb.2019.02134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Background Despite recent successes at controlling malaria, progress has stalled with an estimated 219 million cases and 435,000 deaths in 2017 alone. Combined with emerging resistance to front line antimalarial therapies in Southeast Asia, there is an urgent need for new treatment options and novel approaches to halt the spread of malaria. Plasmodium, the parasite responsible for malaria propagates through mosquito transmission. This imposes an acute bottleneck on the parasite population and transmission-blocking interventions exploiting this vulnerability are recognized as vital for malaria elimination. Methods 13,533 small molecules with known activity against Plasmodium falciparum asexual parasites were screened for additional transmission-blocking activity in an ex vivo Plasmodium berghei ookinete development assay. Active molecules were then counterscreened in dose response against HepG2 cells to determine their activity/cytotoxicity window and selected non-toxic representative molecules were fully profiled in a range of transmission and mosquito infection assays. Furthermore, the entire dataset was compared to other published screens of the same molecules against P. falciparum gametocytes and female gametogenesis. Results 437 molecules inhibited P. berghei ookinete formation with an IC50 < 10 μM. of which 273 showed >10-fold parasite selectivity compared to activity against HepG2 cells. Active molecules grouped into 49 chemical clusters of three or more molecules, with 25 doublets and 94 singletons. Six molecules representing six major chemical scaffolds confirmed their transmission-blocking activity against P. falciparum male and female gametocytes and inhibited P. berghei oocyst formation in the standard membrane feeding assay at 1 μM. When screening data in the P. berghei development ookinete assay was compared to published screens of the same library in assays against P. falciparum gametocytes and female gametogenesis, it was established that each assay identified distinct, but partially overlapping subsets of transmission-blocking molecules. However, selected molecules unique to each assay show transmission-blocking activity in mosquito transmission assays. Conclusion The P. berghei ookinete development assay is an excellent high throughput assay for efficiently identifying antimalarial molecules targeting early mosquito stage parasite development. Currently no high throughput transmission-blocking assay is capable of identifying all transmission-blocking molecules.
Collapse
Affiliation(s)
- Michael Delves
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Leanna Upton
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | - Robert Sinden
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Biosca A, Dirscherl L, Moles E, Imperial S, Fernàndez-Busquets X. An ImmunoPEGliposome for Targeted Antimalarial Combination Therapy at the Nanoscale. Pharmaceutics 2019; 11:pharmaceutics11070341. [PMID: 31315185 PMCID: PMC6680488 DOI: 10.3390/pharmaceutics11070341] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
Combination therapies, where two drugs acting through different mechanisms are administered simultaneously, are one of the most efficient approaches currently used to treat malaria infections. However, the different pharmacokinetic profiles often exhibited by the combined drugs tend to decrease treatment efficacy as the compounds are usually eliminated from the circulation at different rates. To circumvent this obstacle, we have engineered an immunoliposomal nanovector encapsulating hydrophilic and lipophilic compounds in its lumen and lipid bilayer, respectively. The antimalarial domiphen bromide has been encapsulated in the liposome membrane with good efficiency, although its high IC50 of ca. 1 µM for living parasites complicates its use as immunoliposomal therapy due to erythrocyte agglutination. The conjugation of antibodies against glycophorin A targeted the nanocarriers to Plasmodium-infected red blood cells and to gametocytes, the sole malaria parasite stage responsible for the transmission from the human to the mosquito vector. The antimalarials pyronaridine and atovaquone, which block the development of gametocytes, have been co-encapsulated in glycophorin A-targeted immunoliposomes. The co-immunoliposomized drugs have activities significantly higher than their free forms when tested in in vitro Plasmodium falciparum cultures: Pyronaridine and atovaquone concentrations that, when encapsulated in immunoliposomes, resulted in a 50% inhibition of parasite growth had no effect on the viability of the pathogen when used as free drugs.
Collapse
Affiliation(s)
- Arnau Biosca
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain
| | - Lorin Dirscherl
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, PO Box 81, Randwick, NSW 2031, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Santiago Imperial
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Avda. Diagonal 643, ES-08028 Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain.
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain.
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| |
Collapse
|
8
|
Sirignano C, Snene A, Tenoh AR, El Mokni R, Rigano D, Habluetzel A, Hammami S, Taglialatela-Scafati O. Daucovirgolides I-L, four congeners of the antimalarial daucovirgolide G from Daucus virgatus. Fitoterapia 2019; 137:104188. [PMID: 31158428 DOI: 10.1016/j.fitote.2019.104188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
Abstract
Repeated chromatographic purifications of aerial parts of the Tunisian plant Daucus virgatus led to the isolation of four new germacranolides, named daucovirgolides I-L (2-5), along with the Plasmodium transmission-blocking agent daucovirgolide G. The chemical structures of the new compounds were defined as mono- or di-angeloylated germacrane-type sesquiterpenoids by spectroscopic (mainly 1D and 2D NMR) and spectrometric methods (ESIMS). The low potency exhibited by daucovirgolides I-L further supports the observation that strict structural requirements do exist for the Plasmodium transmission blocking activity in the daucovirgolide series. In particular, the endocyclic double bond system seems to be crucial for bioactivity.
Collapse
Affiliation(s)
- Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Alì Snene
- Research Unit Applied Chemistry and Environment 13ES63, Faculty of Sciences of Monastir, University of Monastir, Tunisia
| | - Alain Rodrigue Tenoh
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 63032 Camerino, MC, Italy
| | - Ridha El Mokni
- Department of Botany and Plant Biology, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 63032 Camerino, MC, Italy
| | - Saoussen Hammami
- Research Unit Applied Chemistry and Environment 13ES63, Faculty of Sciences of Monastir, University of Monastir, Tunisia
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
9
|
Yahiya S, Rueda-Zubiaurre A, Delves MJ, Fuchter MJ, Baum J. The antimalarial screening landscape-looking beyond the asexual blood stage. Curr Opin Chem Biol 2019; 50:1-9. [PMID: 30875617 PMCID: PMC6591700 DOI: 10.1016/j.cbpa.2019.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
In recent years, the research agenda to tackle global morbidity and mortality from malaria disease has shifted towards innovation, in the hope that efforts at the frontiers of scientific research may re-invigorate gains made towards eradication. Discovery of new antimalarial drugs with novel chemotypes or modes of action lie at the heart of these efforts. There is a particular interest in drug candidates that target stages of the malaria parasite lifecycle beyond the symptomatic asexual blood stages. This is especially important given the spectre of emerging drug resistance to all current frontline antimalarials. One approach gaining increased interest is the potential of designing novel drugs that target parasite passage from infected individual to feeding mosquito and back again. Action of such therapeutics is geared much more at the population level rather than just concerned with the infected individual. The search for novel drugs active against these stages has been helped by improvements to in vitro culture of transmission and pre-erythrocytic parasite lifecycle stages, robotic automation and high content imaging, methodologies that permit the high-throughput screening (HTS) of compound libraries for drug discovery. Here, we review recent advances in the antimalarial screening landscape, focussed on transmission blocking as a key aim for drug-treatment campaigns of the future.
Collapse
Affiliation(s)
- Sabrina Yahiya
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Ainoa Rueda-Zubiaurre
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Michael J Delves
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Matthew J Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
10
|
Stone W, Bousema T, Sauerwein R, Drakeley C. Two-Faced Immunity? The Evidence for Antibody Enhancement of Malaria Transmission. Trends Parasitol 2018; 35:140-153. [PMID: 30573175 DOI: 10.1016/j.pt.2018.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Plasmodium gametocytes can induce an immune response in humans that interferes with the development of sexual-stage parasites in the mosquito gut. Many early studies of the sexual-stage immune response noted that mosquito infection could be enhanced as well as reduced by immune sera. For Plasmodium falciparum, these reports are scarce, and the phenomenon is generally regarded as a methodological artefact. Plasmodium transmission enhancement (TE) remains contentious, but the clinical development of transmission-blocking vaccines based on sexual-stage antigens requires that it is further studied. In this essay, we review the early literature on the sexual-stage immune response and transmission-modulating immunity. We discuss hypotheses for the mechanism of TE, suggest experiments to prove or disprove its existence, and discuss its possible implications.
Collapse
Affiliation(s)
- Will Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| |
Collapse
|
11
|
Screening the Pathogen Box for Molecules Active against Plasmodium Sexual Stages Using a New Nanoluciferase-Based Transgenic Line of P. berghei Identifies Transmission-Blocking Compounds. Antimicrob Agents Chemother 2018; 62:AAC.01053-18. [PMID: 30181368 DOI: 10.1128/aac.01053-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
Malaria remains an important parasitic disease with a large morbidity and mortality burden. Plasmodium transmission-blocking (TB) compounds are essential for achieving malaria elimination efforts. Recent efforts to develop high-throughput screening (HTS) methods to identify compounds that inhibit or kill gametocytes, the Plasmodium sexual stage infectious to mosquitoes, have yielded insight into new TB compounds. However, the activities of these compounds against gametes, formed in the first minutes of mosquito infection, are typically not assessed, unless screened in a standard membrane feeding assay, a labor-intensive assay. We demonstrate here the generation of a Plasmodium model for drug screens against gametes and fertilization. The new P. berghei line, named Ookluc, was genetically and pharmacologically validated and scalable for HTS. Screening the Pathogen Box from the Medicines for Malaria Venture using the new model identified promising TB compounds. The use of Ookluc in different libraries of compounds may aid in the identification of transmission-blocking drugs not assessed in screens against asexual stages or gametocytes.
Collapse
|
12
|
Delves MJ, Miguel-Blanco C, Matthews H, Molina I, Ruecker A, Yahiya S, Straschil U, Abraham M, León ML, Fischer OJ, Rueda-Zubiaurre A, Brandt JR, Cortés Á, Barnard A, Fuchter MJ, Calderón F, Winzeler EA, Sinden RE, Herreros E, Gamo FJ, Baum J. A high throughput screen for next-generation leads targeting malaria parasite transmission. Nat Commun 2018; 9:3805. [PMID: 30228275 PMCID: PMC6143625 DOI: 10.1038/s41467-018-05777-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/26/2018] [Indexed: 01/22/2023] Open
Abstract
Spread of parasite resistance to artemisinin threatens current frontline antimalarial therapies, highlighting the need for new drugs with alternative modes of action. Since only 0.2–1% of asexual parasites differentiate into sexual, transmission-competent forms, targeting this natural bottleneck provides a tangible route to interrupt disease transmission and mitigate resistance selection. Here we present a high-throughput screen of gametogenesis against a ~70,000 compound diversity library, identifying seventeen drug-like molecules that target transmission. Hit molecules possess varied activity profiles including male-specific, dual acting male–female and dual-asexual-sexual, with one promising N-((4-hydroxychroman-4-yl)methyl)-sulphonamide scaffold found to have sub-micromolar activity in vitro and in vivo efficacy. Development of leads with modes of action focussed on the sexual stages of malaria parasite development provide a previously unexplored base from which future therapeutics can be developed, capable of preventing parasite transmission through the population. Sexual forms of malaria parasites are responsible for transmission to the mosquito. Anti-malarial drug resistance remains a serious problem and requires advent of new drug therapies. Here, the authors present a high-throughput screen of potential antimalarial compounds, identifying seventeen drug-like molecules specifically targeting transmission.
Collapse
Affiliation(s)
- Michael J Delves
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Celia Miguel-Blanco
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2AZ, UK.,Diseases of the Developing World (DDW), GlaxoSmithKline, 28760, Tres Cantos, Madrid, Spain
| | - Holly Matthews
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Irene Molina
- Diseases of the Developing World (DDW), GlaxoSmithKline, 28760, Tres Cantos, Madrid, Spain
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Sabrina Yahiya
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Ursula Straschil
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Matthew Abraham
- School of Medicine, University of California San Diego, 9500 Gilman Drive 0760, La Jolla, CA, 92093, USA
| | - María Luisa León
- Diseases of the Developing World (DDW), GlaxoSmithKline, 28760, Tres Cantos, Madrid, Spain
| | - Oliver J Fischer
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Ainoa Rueda-Zubiaurre
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Jochen R Brandt
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Álvaro Cortés
- Diseases of the Developing World (DDW), GlaxoSmithKline, 28760, Tres Cantos, Madrid, Spain
| | - Anna Barnard
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Matthew J Fuchter
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Félix Calderón
- Diseases of the Developing World (DDW), GlaxoSmithKline, 28760, Tres Cantos, Madrid, Spain
| | - Elizabeth A Winzeler
- School of Medicine, University of California San Diego, 9500 Gilman Drive 0760, La Jolla, CA, 92093, USA
| | - Robert E Sinden
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Esperanza Herreros
- Diseases of the Developing World (DDW), GlaxoSmithKline, 28760, Tres Cantos, Madrid, Spain
| | - Francisco J Gamo
- Diseases of the Developing World (DDW), GlaxoSmithKline, 28760, Tres Cantos, Madrid, Spain.
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
13
|
Functional Conservation of P48/45 Proteins in the Transmission Stages of Plasmodium vivax (Human Malaria Parasite) and P. berghei (Murine Malaria Parasite). mBio 2018; 9:mBio.01627-18. [PMID: 30181253 PMCID: PMC6123445 DOI: 10.1128/mbio.01627-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sexual-stage proteins have a distinct function in the mosquito vector during transmission and also represent targets for the development of malaria transmission-blocking vaccine. P48/45, a leading vaccine candidate, is critical for male gamete fertility and shows >50% similarity across various species of Plasmodium We evaluated functional conservation of P48/45 in Plasmodium vivax and P. berghei with the motivation to establish transgenic P. berghei strains expressing P. vivax P48/45 (Pvs48/45) in an in vivo assay to evaluate the transmission-blocking activity of antibodies elicited by Pvs48/45. Homologous recombination was employed to target P. bergheis48/45 (pbs48/45) for knockout (KO) or for its replacement by two different forms of P. vivaxs48/45 (pvs48/45) (the full-length gene and a chimeric gene consisting of pbs48/45 5' signal and 3' anchor sequences flanking pvs48/45). Expression of Pvs48/45 in transgenic parasites and lack of expression of any P48/45 in KO parasites were confirmed by reverse transcription-PCR (RT-PCR) and Western blotting. Both transgenic and knockout parasites revealed asexual growth kinetics in mice comparable to that seen with wild-type parasites. When employed in mosquito infection experiments, both transgenic parasite strains remained transmission competent and developed into infectious sporozoites, whereas the knockout parasites were incapable of establishing mosquito-stage infection. These results indicate the functional conservation of P48/45 protein during transmission, and the transgenic parasites generated in this study represent a valuable tool to evaluate the protective efficacy of transmission-blocking antibodies elicited by Pvs48/45-based vaccines using an in vivo mouse animal assay instead of ex vivo membrane feeding assays (MFA) relying on access to P. vivax gametocytes from infected patients.IMPORTANCE Malaria transmission depends upon successful sexual differentiation and maturation of parasites in the vertebrate host and further development in the mosquito midgut. Stage-specific proteins in the sexual stages have been shown to play a critical role in development and successful transmission through the anopheline mosquito vector. Studies presented in the current manuscript evaluated functional conservation of one such protein, P48/45, in two diverse species (P. berghei and P. vivax). Replacement of endogenous pbs48/45 in P. berghei with pvs48/45 (P. vivax homologue) did not affect the viability of the parasites, and the transgenic parasites expressing Pvs48/45 remained transmission competent. These studies establish not only the functional conservation of P48/45 in P. berghei and P. vivax but also offer an opportunity to develop an in vivo test model for Pvs48/45-based P. vivax transmission-blocking vaccines, currently under development.
Collapse
|
14
|
Sala KA, Angrisano F, Da DF, Taylor IJ, Churcher TS, Blagborough AM. Immunization with Transgenic Rodent Malaria Parasites Expressing Pfs25 Induces Potent Transmission-Blocking Activity. Sci Rep 2018; 8:1573. [PMID: 29371619 PMCID: PMC5785477 DOI: 10.1038/s41598-017-18831-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
An anti-malarial transmission blocking vaccine (TBV) would be an important tool for disease control or elimination, though current candidates have failed to induce high efficacy in clinical studies. The ookinete surface protein P25 is a primary target for TBV development, but heterologous expression of P25 with appropriate conformation is problematic and a pre-requisite for achieving functional titers. A potential alternative to recombinant/sub-unit vaccine is immunization with a non-pathogenic, whole-parasite vaccine. This study examines the ability of a purified transgenic rodent-malaria parasite (PbPfs25DR3), expressing Plasmodium falciparum P25 in native conformation on the P. berghei ookinete surface, to act as a TBV. Vaccination with purified PbPfs25DR3 ookinetes produces a potent anti-Pfs25 response and high transmission-blocking efficacy in the laboratory, findings that are then translated to experimentation on natural field isolates of P. falciparum from infected individuals in Burkina Faso. Efficacy is demonstrated in the lab and the field (up to 93.3%/97.1% reductions in transmission intensity respectively), with both a homologous strategy with one and two boosts, and as part of a prime-boost regime, providing support for the future development of a whole-parasite TBV.
Collapse
Affiliation(s)
- K A Sala
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK
| | - F Angrisano
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK
| | - D F Da
- Institut de Recherche en Sciences de la Santé, 399 Avenue de la Liberté, BP 545, Bobo-Dioulasso, Burkina Faso
| | - I J Taylor
- Jenner Institute, The University of Oxford, Roosevelt Road, Oxford, OX9 2PP, UK
| | - T S Churcher
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - A M Blagborough
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
15
|
Sirignano C, Snene A, Rigano D, Tapanelli S, Formisano C, Luciano P, El Mokni R, Hammami S, Tenoh AR, Habluetzel A, Taglialatela-Scafati O. Angeloylated Germacranolides from Daucus virgatus and Their Plasmodium Transmission Blocking Activity. JOURNAL OF NATURAL PRODUCTS 2017; 80:2787-2794. [PMID: 28976194 DOI: 10.1021/acs.jnatprod.7b00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phytochemical investigation of the aerial parts of the Tunisian plant Daucus virgatus led to the isolation of eight new germacranolides named daucovirgolides A-H (1-8). The stereostructures of these sesquiterpene lactones, decorated by either one or two angeloyl groups, have been determined by a combination of MS, NMR spectroscopy, chemical derivatization, and comparison of experimental electronic circular dichroism curves with TDDFT-predicted data. Daucovirgolide G (7) proved to be the single member of this family to possess a marked inhibitory activity (92% at 50 μg/mL) on the development of Plasmodium early sporogonic stages, the nonpathogenic transmissible stages of malaria parasites, devoid of general cytotoxicity. The selective activity of daucovirgolide G points to the existence of strict structural requirements for this transmission-blocking activity and therefore of a well-defined, although yet unidentified, biological target.
Collapse
Affiliation(s)
- Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II , Via Montesano 49, 80131 Naples, Italy
| | - Alì Snene
- Research Unit Applied Chemistry and Environment 13ES63, Faculty of Sciences, University of Monastir , 5000, Monastir, Tunisia
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II , Via Montesano 49, 80131 Naples, Italy
| | - Sofia Tapanelli
- Scuola di Scienza del Farmaco e dei Prodotti della Salute, Università di Camerino , Via d'Accorso 16, 63032 Camerino (MC), Italy
| | - Carmen Formisano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II , Via Montesano 49, 80131 Naples, Italy
| | - Paolo Luciano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II , Via Montesano 49, 80131 Naples, Italy
| | - Ridha El Mokni
- Laboratory of Transmissible Diseases LR99ES27, Faculty of Pharmacy, University of Monastir , Avicenne Street, 5000, Monastir, Tunisia
| | - Saoussen Hammami
- Research Unit Applied Chemistry and Environment 13ES63, Faculty of Sciences, University of Monastir , 5000, Monastir, Tunisia
| | - Alain Rodrigue Tenoh
- Scuola di Scienza del Farmaco e dei Prodotti della Salute, Università di Camerino , Via d'Accorso 16, 63032 Camerino (MC), Italy
| | - Annette Habluetzel
- Scuola di Scienza del Farmaco e dei Prodotti della Salute, Università di Camerino , Via d'Accorso 16, 63032 Camerino (MC), Italy
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II , Via Montesano 49, 80131 Naples, Italy
| |
Collapse
|
16
|
Sherrard-Smith E, Churcher TS, Upton LM, Sala KA, Zakutansky SE, Slater HC, Blagborough AM, Betancourt M. A novel model fitted to multiple life stages of malaria for assessing efficacy of transmission-blocking interventions. Malar J 2017; 16:137. [PMID: 28376897 PMCID: PMC5379616 DOI: 10.1186/s12936-017-1782-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/17/2017] [Indexed: 11/15/2022] Open
Abstract
Background Transmission-blocking interventions (TBIs) aim to eliminate malaria by reducing transmission of the parasite between the host and the invertebrate vector. TBIs include transmission-blocking drugs and vaccines that, when given to humans, are taken up by mosquitoes and inhibit parasitic development within the vector. Accurate methodologies are key to assess TBI efficacy to ensure that only the most potent candidates progress to expensive and time-consuming clinical trials. Measuring intervention efficacy can be problematic because there is substantial variation in the number of parasites in both the host and vector populations, which can impact transmission even in laboratory settings. Methods A statistically robust empirical method is introduced for estimating intervention efficacy from standardised population assay experiments. This method will be more reliable than simple summary statistics as it captures changes in parasite density in different life-stages. It also allows efficacy estimates at a finer resolution than previous methods enabling the impact of the intervention over successive generations to be tracked. A major advantage of the new methodology is that it makes no assumptions on the population dynamics of infection. This enables both host-to-vector and vector-to-host transmission to be density-dependent (or other) processes and generates easy-to-understand estimates of intervention efficacy. Results This method increases the precision of intervention efficacy estimates and demonstrates that relying on changes in infection prevalence (the proportion of infected hosts) alone may be insufficient to capture the impact of TBIs, which also suppress parasite density in secondarily infected hosts. Conclusions The method indicates that potentially useful, partially effective TBIs may require multiple infection cycles before substantial reductions in prevalence are observed, despite more rapidly suppressing parasite density. Accurate models to quantify efficacy will have important implications for understanding how TBI candidates might perform in field situations and how they should be evaluated in clinical trials. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1782-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ellie Sherrard-Smith
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| | - Thomas S Churcher
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Leanna M Upton
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Katarzyna A Sala
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Sara E Zakutansky
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Hannah C Slater
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Andrew M Blagborough
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | | |
Collapse
|
17
|
Pastrana-Mena R, Mathias DK, Delves M, Rajaram K, King JG, Yee R, Trucchi B, Verotta L, Dinglasan RR. A Malaria Transmission-Blocking (+)-Usnic Acid Derivative Prevents Plasmodium Zygote-to-Ookinete Maturation in the Mosquito Midgut. ACS Chem Biol 2016; 11:3461-3472. [PMID: 27978709 DOI: 10.1021/acschembio.6b00902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The evolution of drug resistance is a recurrent problem that has plagued efforts to treat and control malaria. Recent emergence of artemisinin resistance in Southeast Asia underscores the need to develop novel antimalarials and identify new targetable pathways in Plasmodium parasites. Transmission-blocking approaches, which typically target gametocytes in the host bloodstream or parasite stages in the mosquito gut, are recognized collectively as a strategy that when used in combination with antimalarials that target erythrocytic stages will not only cure malaria but will also prevent subsequent transmission. We tested four derivatives of (+)-usnic acid, a metabolite isolated from lichens, for transmission-blocking activity against Plasmodium falciparum using the standard membrane feeding assay. For two of the derivatives, BT37 and BT122, we observed a consistent dose-response relationship between concentration in the blood meal and oocyst intensity in the midgut. To explore their mechanism of action, we used the murine model Plasmodium berghei and found that both derivatives prevent ookinete maturation. Using fluorescence microscopy, we demonstrated that in the presence of each compound zygote vitality was severely affected, and those that did survive failed to elongate and mature into ookinetes. The observed phenotypes were similar to those described for mutants of specific kinases (NEK2/NEK4) and of inner membrane complex 1 (IMC1) proteins, which are all vital to the zygote-to-ookinete transition. We discuss the implications of our findings and our high-throughput screening approach to identifying next generation, transmission-blocking antimalarials based on the scaffolds of these (+)-usnic acid derivatives.
Collapse
Affiliation(s)
- Rebecca Pastrana-Mena
- W.
Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Derrick K. Mathias
- W.
Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Michael Delves
- Department
of Life Sciences, Imperial College of London, London, United Kingdom
| | - Krithika Rajaram
- W.
Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Jonas G. King
- W.
Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Rebecca Yee
- W.
Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | | | | | - Rhoel R. Dinglasan
- W.
Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| |
Collapse
|
18
|
Tarkang PA, Appiah-Opong R, Ofori MF, Ayong LS, Nyarko AK. Application of multi-target phytotherapeutic concept in malaria drug discovery: a systems biology approach in biomarker identification. Biomark Res 2016; 4:25. [PMID: 27999673 PMCID: PMC5154004 DOI: 10.1186/s40364-016-0077-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/29/2016] [Indexed: 01/20/2023] Open
Abstract
There is an urgent need for new anti-malaria drugs with broad therapeutic potential and novel mode of action, for effective treatment and to overcome emerging drug resistance. Plant-derived anti-malarials remain a significant source of bioactive molecules in this regard. The multicomponent formulation forms the basis of phytotherapy. Mechanistic reasons for the poly-pharmacological effects of plants constitute increased bioavailability, interference with cellular transport processes, activation of pro-drugs/deactivation of active compounds to inactive metabolites and action of synergistic partners at different points of the same signaling cascade. These effects are known as the multi-target concept. However, due to the intrinsic complexity of natural products-based drug discovery, there is need to rethink the approaches toward understanding their therapeutic effect. This review discusses the multi-target phytotherapeutic concept and its application in biomarker identification using the modified reverse pharmacology - systems biology approach. Considerations include the generation of a product library, high throughput screening (HTS) techniques for efficacy and interaction assessment, High Performance Liquid Chromatography (HPLC)-based anti-malarial profiling and animal pharmacology. This approach is an integrated interdisciplinary implementation of tailored technology platforms coupled to miniaturized biological assays, to track and characterize the multi-target bioactive components of botanicals as well as identify potential biomarkers. While preserving biodiversity, this will serve as a primary step towards the development of standardized phytomedicines, as well as facilitate lead discovery for chemical prioritization and downstream clinical development.
Collapse
Affiliation(s)
- Protus Arrey Tarkang
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P. O. Box 8013, Yaoundé, Cameroon
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, University of Ghana, P. O. Box LG 581, Legon, Accra Ghana
| | - Regina Appiah-Opong
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, University of Ghana, P. O. Box LG 581, Legon, Accra Ghana
| | - Michael F. Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, P. O. Box LG581, Legon, Accra Ghana
| | - Lawrence S. Ayong
- Malaria Research Laboratory, Centre Pasteur Cameroon, BP 1274 Yaoundé, Cameroon
| | - Alexander K. Nyarko
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, University of Ghana, P. O. Box LG 581, Legon, Accra Ghana
- School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra Ghana
| |
Collapse
|
19
|
Tapanelli S, Habluetzel A, Pellei M, Marchiò L, Tombesi A, Capparè A, Santini C. Novel metalloantimalarials: Transmission blocking effects of water soluble Cu(I), Ag(I) and Au(I) phosphane complexes on the murine malaria parasite Plasmodium berghei. J Inorg Biochem 2016; 166:1-4. [PMID: 27815977 DOI: 10.1016/j.jinorgbio.2016.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022]
Abstract
The water soluble phosphane complexes [M(L)4]PF6 (M=Cu(I), Ag(I)) and [Au(L)4]Cl (L=thp (tris(hydroxymethyl)phosphane) or PTA (1,3,5-triaza-7-phosphaadamantane)) showed notable in vitro activity against Plasmodium early sporogonic stages, the sexual forms of the malaria parasite that are responsible for infection of the mosquito vector. Effects varied according to both, the type of metal and phosphane ligands. [Ag(thp)4]PF6 was the best performing complex exhibiting a half inhibitory concentration (IC50) value in the low micromolar range (0.3-15.6μM). The silver complex [Ag(thp)4]PF6 was characterized by X-ray crystallography revealing that the structure comprises the cationic complex [Ag(thp)4]+, the PF6- anion, and a water molecule of crystallization. Our results revealed that Cu(I), Ag(I) and Au(I) phosphanes complexes elicited similar activity profiles showing potential for the development of antimalarial, transmission blocking compounds. Molecules targeting the sexual parasite stages in the human and/or mosquito host are urgently needed to complement current artemisinin based treatments and next generation antimalarials in a vision not only to cure the disease but to interrupt its transmission.
Collapse
Affiliation(s)
- Sofia Tapanelli
- School of Pharmacy, University of Camerino, Piazza dei Costanti, Camerino, MC, Italy
| | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Piazza dei Costanti, Camerino, MC, Italy.
| | - Maura Pellei
- School of Science and Technology - Chemistry Division, University of Camerino, via S. Agostino 1, Camerino, MC, Italy.
| | - Luciano Marchiò
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17A, Parma, Italy
| | - Alessia Tombesi
- School of Science and Technology - Chemistry Division, University of Camerino, via S. Agostino 1, Camerino, MC, Italy
| | - Ambra Capparè
- School of Science and Technology - Chemistry Division, University of Camerino, via S. Agostino 1, Camerino, MC, Italy
| | - Carlo Santini
- School of Science and Technology - Chemistry Division, University of Camerino, via S. Agostino 1, Camerino, MC, Italy
| |
Collapse
|
20
|
Goodman CD, Austarheim I, Mollard V, Mikolo B, Malterud KE, McFadden GI, Wangensteen H. Natural products from Zanthoxylum heitzii with potent activity against the malaria parasite. Malar J 2016; 15:481. [PMID: 27649682 PMCID: PMC5029023 DOI: 10.1186/s12936-016-1533-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/09/2016] [Indexed: 01/07/2023] Open
Abstract
Background Zanthoxylum heitzii (Rutaceae) (olon) is used in traditional medicine in Central and West Africa to treat malaria. To identify novel compounds with anti-parasitic activity and validate medicinal usage, extracts and compounds isolated from this tree were tested against the erythrocytic stages of the human malaria parasite Plasmodium falciparum and for inhibition of transmission in rodent malaria parasite Plasmodium berghei. Results Hexane bark extract showed activity against P. falciparum (IC50 0.050 μg/ml), while leaf and seed extracts were inactive. Fractionation of the hexane bark extract led to the identification of three active constituents; dihydronitidine, pellitories and heitziquinone. Dihydronitidine was the most active compound with an IC50 value of 0.0089 µg/ml (25 nM). This compound was slow acting, requiring 50 % longer exposure time than standard anti-malarials to reach full efficacy. Heitziquinone and pellitorine were less potent, with IC50 values of 3.55 μg/ml and 1.96 µg/ml, but were fast-acting. Plasmodium berghei ookinete conversion was also inhibited by the hexane extract (IC50 1.75 µg/ml), dihydronitidine (0.59 µg/ml) and heitziquinone (6.2 µg/ml). Water extracts of Z. heitzii bark contain only low levels of dihydronitidine and show modest anti-parasitic activity. Conclusions Three compounds with anti-parasitic activity were identified in Z. heitzii bark extract. The alkaloid dihydronitidine is the most effective of these, accounting for the bulk of activity in both erythrocytic and transmission-blocking assays. These compounds may present good leads for development of novel anti-malarials and add to the understanding of the chemical basis of the anti-parasitic activity in these classes of natural product. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1533-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ingvild Austarheim
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068, Blindern, 0316, Oslo, Norway
| | - Vanessa Mollard
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Bertin Mikolo
- National Polytechnic High School, Marien Ngouabi University, BP 69, Brazzaville, Republic of Congo
| | - Karl Egil Malterud
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068, Blindern, 0316, Oslo, Norway
| | - Geoffrey I McFadden
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Helle Wangensteen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068, Blindern, 0316, Oslo, Norway.
| |
Collapse
|
21
|
Phillips MA, Lotharius J, Marsh K, White J, Dayan A, White KL, Njoroge JW, El Mazouni F, Lao Y, Kokkonda S, Tomchick DR, Deng X, Laird T, Bhatia SN, March S, Ng CL, Fidock DA, Wittlin S, Lafuente-Monasterio M, Benito FJG, Alonso LMS, Martinez MS, Jimenez-Diaz MB, Bazaga SF, Angulo-Barturen I, Haselden JN, Louttit J, Cui Y, Sridhar A, Zeeman AM, Kocken C, Sauerwein R, Dechering K, Avery VM, Duffy S, Delves M, Sinden R, Ruecker A, Wickham KS, Rochford R, Gahagen J, Iyer L, Riccio E, Mirsalis J, Bathhurst I, Rueckle T, Ding X, Campo B, Leroy D, Rogers MJ, Rathod PK, Burrows JN, Charman SA. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci Transl Med 2016; 7:296ra111. [PMID: 26180101 DOI: 10.1126/scitranslmed.aaa6645] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Malaria is one of the most significant causes of childhood mortality, but disease control efforts are threatened by resistance of the Plasmodium parasite to current therapies. Continued progress in combating malaria requires development of new, easy to administer drug combinations with broad-ranging activity against all manifestations of the disease. DSM265, a triazolopyrimidine-based inhibitor of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH), is the first DHODH inhibitor to reach clinical development for treatment of malaria. We describe studies profiling the biological activity, pharmacological and pharmacokinetic properties, and safety of DSM265, which supported its advancement to human trials. DSM265 is highly selective toward DHODH of the malaria parasite Plasmodium, efficacious against both blood and liver stages of P. falciparum, and active against drug-resistant parasite isolates. Favorable pharmacokinetic properties of DSM265 are predicted to provide therapeutic concentrations for more than 8 days after a single oral dose in the range of 200 to 400 mg. DSM265 was well tolerated in repeat-dose and cardiovascular safety studies in mice and dogs, was not mutagenic, and was inactive against panels of human enzymes/receptors. The excellent safety profile, blood- and liver-stage activity, and predicted long half-life in humans position DSM265 as a new potential drug combination partner for either single-dose treatment or once-weekly chemoprevention. DSM265 has advantages over current treatment options that are dosed daily or are inactive against the parasite liver stage.
Collapse
Affiliation(s)
- Margaret A Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Boulevard, Dallas, TX 75390-9041, USA.
| | | | - Kennan Marsh
- Abbvie, 1 North Waukegan Road, North Chicago, IL 60064-6104, USA
| | - John White
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA 98195, USA
| | - Anthony Dayan
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jacqueline W Njoroge
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Boulevard, Dallas, TX 75390-9041, USA
| | - Farah El Mazouni
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Boulevard, Dallas, TX 75390-9041, USA
| | - Yanbin Lao
- Abbvie, 1 North Waukegan Road, North Chicago, IL 60064-6104, USA
| | - Sreekanth Kokkonda
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA 98195, USA
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9041, USA
| | - Xiaoyi Deng
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Boulevard, Dallas, TX 75390-9041, USA
| | - Trevor Laird
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Sangeeta N Bhatia
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sandra March
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caroline L Ng
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA. Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland. University of Basel, 4003 Basel, Switzerland
| | | | | | - Laura Maria Sanz Alonso
- GlaxoSmithKline (GSK), Tres Cantos Medicines Development Campus, Severo Ochoa, Madrid 28760, Spain
| | - Maria Santos Martinez
- GlaxoSmithKline (GSK), Tres Cantos Medicines Development Campus, Severo Ochoa, Madrid 28760, Spain
| | - Maria Belen Jimenez-Diaz
- GlaxoSmithKline (GSK), Tres Cantos Medicines Development Campus, Severo Ochoa, Madrid 28760, Spain
| | - Santiago Ferrer Bazaga
- GlaxoSmithKline (GSK), Tres Cantos Medicines Development Campus, Severo Ochoa, Madrid 28760, Spain
| | - Iñigo Angulo-Barturen
- GlaxoSmithKline (GSK), Tres Cantos Medicines Development Campus, Severo Ochoa, Madrid 28760, Spain
| | - John N Haselden
- GlaxoSmithKline (GSK), Tres Cantos Medicines Development Campus, Severo Ochoa, Madrid 28760, Spain
| | | | - Yi Cui
- GSK, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Arun Sridhar
- GSK, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Anna-Marie Zeeman
- Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, Netherlands
| | - Clemens Kocken
- Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, Netherlands
| | | | | | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Sandra Duffy
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Michael Delves
- Imperial College of Science Technology and Medicine, London SW7 2AY, UK
| | - Robert Sinden
- Imperial College of Science Technology and Medicine, London SW7 2AY, UK
| | - Andrea Ruecker
- Imperial College of Science Technology and Medicine, London SW7 2AY, UK
| | - Kristina S Wickham
- State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Rosemary Rochford
- State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | - Ed Riccio
- SRI International, Menlo Park, CA 94025, USA
| | | | - Ian Bathhurst
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | - Xavier Ding
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Brice Campo
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Didier Leroy
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - M John Rogers
- National Institutes for Allergy and Infectious Diseases, 6610 Rockledge Drive, Bethesda, MD 20892, USA
| | - Pradipsinh K Rathod
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA 98195, USA
| | | | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
22
|
D'Alessandro S, Camarda G, Corbett Y, Siciliano G, Parapini S, Cevenini L, Michelini E, Roda A, Leroy D, Taramelli D, Alano P. A chemical susceptibility profile of the Plasmodium falciparum transmission stages by complementary cell-based gametocyte assays. J Antimicrob Chemother 2016; 71:1148-58. [PMID: 26888912 DOI: 10.1093/jac/dkv493] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/19/2015] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES As most available antimalarial drugs are ineffective against the Plasmodium falciparum transmission stages, new drugs against the parasite's gametocytes are urgently needed to combat malaria globally. The unique biology of gametocytes requires assays that need to be specific, to faithfully monitor anti-gametocyte activity, and to be easy to perform, cheap and scalable to high-throughput screening (HTS). METHODS We developed an HTS cell-based assay with P. falciparum gametocytes specifically expressing a potent luciferase. To confirm HTS hit activity for several parasite genotypes, the luciferase assay and the gametocyte lactate dehydrogenase (LDH) assay, usable on any parasite isolate, were compared by screening antimalarial drugs and determining IC50 values of anti-gametocyte hits from the 'Malaria Box' against early- and late-stage gametocytes. RESULTS Comparison of the two assays, conducted on the early and on late gametocyte stages, revealed an excellent correlation (R(2) > 0.9) for the IC50 values obtained by the respective readouts. Differences in susceptibility to drugs and compounds between the two parasite developmental stages were consistently measured in both assays. CONCLUSIONS This work indicates that the luciferase and gametocyte LDH assays are interchangeable and that their specific advantages can be exploited to design an HTS pipeline leading to new transmission-blocking compounds. Results from these assays consistently defined a gametocyte chemical susceptibility profile, relevant to the planning of future drug discovery strategies.
Collapse
Affiliation(s)
- Sarah D'Alessandro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Grazia Camarda
- Dipartimento di Malattie Infettive, Parassitarie, Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | - Yolanda Corbett
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Parassitarie, Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luca Cevenini
- Dipartimento di Chimica 'G. Ciamician', Università di Bologna, Bologna, Italy
| | - Elisa Michelini
- Dipartimento di Chimica 'G. Ciamician', Università di Bologna, Bologna, Italy Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma, Italy
| | - Aldo Roda
- Dipartimento di Chimica 'G. Ciamician', Università di Bologna, Bologna, Italy Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma, Italy
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie, Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
23
|
Plouffe DM, Wree M, Du AY, Meister S, Li F, Patra K, Lubar A, Okitsu SL, Flannery EL, Kato N, Tanaseichuk O, Comer E, Zhou B, Kuhen K, Zhou Y, Leroy D, Schreiber SL, Scherer CA, Vinetz J, Winzeler EA. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe 2015; 19:114-26. [PMID: 26749441 PMCID: PMC4723716 DOI: 10.1016/j.chom.2015.12.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 11/18/2022]
Abstract
Preventing transmission is an important element of malaria control. However, most of the current available methods to assay for malaria transmission blocking are relatively low throughput and cannot be applied to large chemical libraries. We have developed a high-throughput and cost-effective assay, the Saponin-lysis Sexual Stage Assay (SaLSSA), for identifying small molecules with transmission-blocking capacity. SaLSSA analysis of 13,983 unique compounds uncovered that >90% of well-characterized antimalarials, including endoperoxides and 4-aminoquinolines, as well as compounds active against asexual blood stages, lost most of their killing activity when parasites developed into metabolically quiescent stage V gametocytes. On the other hand, we identified compounds with consistent low nanomolar transmission-blocking activity, some of which showed cross-reactivity against asexual blood and liver stages. The data clearly emphasize substantial physiological differences between sexual and asexual parasites and provide a tool and starting points for the discovery and development of transmission-blocking drugs.
Collapse
Affiliation(s)
- David M Plouffe
- The Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
| | - Melanie Wree
- Division of Pharmacology and Drug Discovery, Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alan Y Du
- Division of Pharmacology and Drug Discovery, Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Stephan Meister
- Division of Pharmacology and Drug Discovery, Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Fengwu Li
- Division of Infectious Disease, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kailash Patra
- Division of Infectious Disease, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Aristea Lubar
- Division of Infectious Disease, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shinji L Okitsu
- Division of Pharmacology and Drug Discovery, Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Erika L Flannery
- Division of Pharmacology and Drug Discovery, Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nobutaka Kato
- Broad Institute, 415 Main Street, Cambridge MA 02142
| | - Olga Tanaseichuk
- The Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
| | - Eamon Comer
- Broad Institute, 415 Main Street, Cambridge MA 02142
| | - Bin Zhou
- The Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
| | - Kelli Kuhen
- The Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
| | - Yingyao Zhou
- The Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
| | - Didier Leroy
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 Route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Stuart L Schreiber
- Broad Institute, 415 Main Street, Cambridge MA 02142; Department of Chemistry and Chemical Biology, Harvard University, 7 Cambridge Center, Cambridge, MA 02142, USA
| | | | - Joseph Vinetz
- Division of Infectious Disease, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Elizabeth A Winzeler
- Division of Pharmacology and Drug Discovery, Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci Rep 2015; 5:18704. [PMID: 26687564 PMCID: PMC4685452 DOI: 10.1038/srep18704] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/24/2015] [Indexed: 12/27/2022] Open
Abstract
Current first-line treatments for uncomplicated falciparum malaria rapidly clear the asexual stages of the parasite, but do not fully prevent parasite transmission by mosquitoes. The standard membrane feeding assay (SMFA) is the biological gold standard assessment of transmission reducing activity (TRA), but its throughput is limited by the need to determine mosquito infection status by dissection and microscopy. Here we present a novel dissection-free luminescence based SMFA format using a transgenic Plasmodium falciparum reporter parasite without resistance to known antimalarials and therefore unrestricted in its utility in compound screening. Analyses of sixty-five compounds from the Medicines for Malaria Venture validation and malaria boxes identified 37 compounds with high levels of TRA (>80%); different assay modes allowed discrimination between gametocytocidal and downstream modes of action. Comparison of SMFA data to published assay formats for predicting parasite infectivity indicated that individual in vitro screens show substantial numbers of false negatives. These results highlight the importance of the SMFA in the screening pipeline for transmission reducing compounds and present a rapid and objective method. In addition we present sixteen diverse chemical scaffolds from the malaria box that may serve as a starting point for further discovery and development of malaria transmission blocking drugs.
Collapse
|
25
|
Abdul-Ghani R, Basco LK, Beier JC, Mahdy MAK. Inclusion of gametocyte parameters in anti-malarial drug efficacy studies: filling a neglected gap needed for malaria elimination. Malar J 2015; 14:413. [PMID: 26481312 PMCID: PMC4617745 DOI: 10.1186/s12936-015-0936-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022] Open
Abstract
Standard anti-malarial drug efficacy and drug resistance assessments neglect the gametocyte parameters in their protocols. With the spread of drug resistance and the absence of clinically proven vaccines, the use of gametocytocidal drugs or drug combinations with transmission-blocking activity is a high priority for malaria control and elimination. However, the limited repertoire of gametocytocidal drugs and induction of gametocytogenesis after treatment with certain anti-malarial drugs necessitate both regular monitoring
of gametocytocidal activities of anti-malarial drugs in clinical use and the effectiveness of candidate gametocytocidal agents. Therefore, updating current protocols of anti-malarial drug efficacy is needed to reflect the effects of anti-malarial drugs or drug combinations on gametocyte carriage and gametocyte density along with asexual parasite density. Developing protocols of anti-malarial drug efficacy that include gametocyte parameters related to both microscopic and submicroscopic gametocytaemias is important if drugs or drug combinations are to be strategically used in transmission-blocking interventions in the context of malaria elimination. The present piece of opinion highlights the challenges in gametocyte detection and follow-up and discuss the need for including the gametocyte parameter in anti-malarial efficacy studies.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen. .,Tropical Disease Research Center, University of Science and Technology, Sana'a, Yemen.
| | - Leonardo K Basco
- Unité de Recherche 198, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Institut de Recherche pour le Développement, Faculté de Médecine La Timone, Aix-Marseille Université, Marseille, France.
| | - John C Beier
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Mohammed A K Mahdy
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen. .,Tropical Disease Research Center, University of Science and Technology, Sana'a, Yemen.
| |
Collapse
|
26
|
Abay SM, Lucantoni L, Dahiya N, Dori G, Dembo EG, Esposito F, Lupidi G, Ogboi S, Ouédraogo RK, Sinisi A, Taglialatela-Scafati O, Yerbanga RS, Bramucci M, Quassinti L, Ouédraogo JB, Christophides G, Habluetzel A. Plasmodium transmission blocking activities of Vernonia amygdalina extracts and isolated compounds. Malar J 2015. [PMID: 26208861 PMCID: PMC4513948 DOI: 10.1186/s12936-015-0812-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Medicinal plants are a validated source for discovery of new leads and standardized herbal medicines. The aim of this study was to assess the activity of Vernoniaamygdalina leaf extracts and isolated compounds against gametocytes and sporogonic stages of Plasmodiumberghei and to validate the findings on field isolates of Plasmodium falciparum. Methods Aqueous (Ver-H2O) and ethanolic (Ver-EtOH) leaf extracts were tested in vivo for activity against sexual and asexual blood stage P. berghei parasites. In vivo transmission blocking effects of Ver-EtOH and Ver-H2O were estimated by assessing P. berghei oocyst prevalence and density in Anopheles stephensi mosquitoes. Activity targeting early sporogonic stages (ESS), namely gametes, zygotes and ookinetes was assessed in vitro using P. berghei CTRPp.GFP strain. Bioassay guided fractionation was performed to characterize V.amygdalina fractions and molecules for anti-ESS activity. Fractions active against ESS of the murine parasite were tested for ex vivo transmission blocking activity on P.falciparum field isolates. Cytotoxic effects of extracts and isolated compounds vernolide and vernodalol were evaluated on the human cell lines HCT116 and EA.hy926. Results Ver-H2O reduced the P. berghei macrogametocyte density in mice by about 50% and Ver-EtOH reduced P. berghei oocyst prevalence and density by 27 and 90%, respectively, in An.stephensi mosquitoes. Ver-EtOH inhibited almost completely (>90%) ESS development in vitro at 50 μg/mL. At this concentration, four fractions obtained from the ethylacetate phase of the methanol extract displayed inhibitory activity >90% against ESS. Three tested fractions were also found active against field isolates of the human parasite P. falciparum, reducing oocyst prevalence in Anopheles coluzzii mosquitoes to one-half and oocyst density to one-fourth of controls. The molecules and fractions displayed considerable cytotoxicity on the two tested cell-lines. Conclusions Vernonia amygdalina leaves contain molecules affecting multiple stages of Plasmodium, evidencing its potential for drug discovery. Chemical modification of the identified hit molecules, in particular vernodalol, could generate a library of druggable sesquiterpene lactones. The development of a multistage phytomedicine designed as preventive treatment to complement existing malaria control tools appears a challenging but feasible goal. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0812-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Solomon M Abay
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy. .,School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Leonardo Lucantoni
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy. .,Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| | - Nisha Dahiya
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Geme Dori
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Edson G Dembo
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Fulvio Esposito
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Guilio Lupidi
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Sonny Ogboi
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Robert K Ouédraogo
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy. .,Institut de Recherche enSciences de la Santé, Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso.
| | - Annamaria Sinisi
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131, Naples, Italy.
| | | | - R Serge Yerbanga
- Institut de Recherche enSciences de la Santé, Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso.
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Luana Quassinti
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Jean Bosco Ouédraogo
- Institut de Recherche enSciences de la Santé, Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso.
| | | | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| |
Collapse
|
27
|
Baragaña B, Hallyburton I, Lee MCS, Norcross NR, Grimaldi R, Otto TD, Proto WR, Blagborough AM, Meister S, Wirjanata G, Ruecker A, Upton LM, Abraham TS, Almeida MJ, Pradhan A, Porzelle A, Luksch T, Martínez MS, Luksch T, Bolscher JM, Woodland A, Norval S, Zuccotto F, Thomas J, Simeons F, Stojanovski L, Osuna-Cabello M, Brock PM, Churcher TS, Sala KA, Zakutansky SE, Jiménez-Díaz MB, Sanz LM, Riley J, Basak R, Campbell M, Avery VM, Sauerwein RW, Dechering KJ, Noviyanti R, Campo B, Frearson JA, Angulo-Barturen I, Ferrer-Bazaga S, Gamo FJ, Wyatt PG, Leroy D, Siegl P, Delves MJ, Kyle DE, Wittlin S, Marfurt J, Price RN, Sinden RE, Winzeler EA, Charman SA, Bebrevska L, Gray DW, Campbell S, Fairlamb AH, Willis PA, Rayner JC, Fidock DA, Read KD, Gilbert IH. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 2015; 522:315-20. [PMID: 26085270 PMCID: PMC4700930 DOI: 10.1038/nature14451] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/07/2015] [Indexed: 02/08/2023]
Abstract
There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.
Collapse
Affiliation(s)
- Beatriz Baragaña
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Irene Hallyburton
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Marcus C S Lee
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Neil R Norcross
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Raffaella Grimaldi
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - William R Proto
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | | | - Stephan Meister
- University of California, San Diego, School of Medicine, 9500 Gilman Drive 0760, La Jolla, California 92093, USA
| | - Grennady Wirjanata
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, Northern Territory 0811, Australia
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Leanna M Upton
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Tara S Abraham
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Mariana J Almeida
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Anupam Pradhan
- Department of Global Health, College of Public Health University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, USA
| | - Achim Porzelle
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | - María Santos Martínez
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | | | - Judith M Bolscher
- TropIQ Health Sciences, Geert Grooteplein 28, Huispost 268, 6525 GA Nijmegen, The Netherlands
| | - Andrew Woodland
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Suzanne Norval
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Fabio Zuccotto
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - John Thomas
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Frederick Simeons
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Laste Stojanovski
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Maria Osuna-Cabello
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Paddy M Brock
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Tom S Churcher
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Katarzyna A Sala
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | | | - María Belén Jiménez-Díaz
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Laura Maria Sanz
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Jennifer Riley
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rajshekhar Basak
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Michael Campbell
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Vicky M Avery
- Eskitis Institute, Brisbane Innovation Park, Nathan Campus, Griffith University, Queensland 4111, Australia
| | - Robert W Sauerwein
- TropIQ Health Sciences, Geert Grooteplein 28, Huispost 268, 6525 GA Nijmegen, The Netherlands
| | - Koen J Dechering
- TropIQ Health Sciences, Geert Grooteplein 28, Huispost 268, 6525 GA Nijmegen, The Netherlands
| | - Rintis Noviyanti
- Malaria Pathogenesis Laboratory, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, 10430 Jakarta, Indonesia
| | - Brice Campo
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Julie A Frearson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Iñigo Angulo-Barturen
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Santiago Ferrer-Bazaga
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Francisco Javier Gamo
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Paul G Wyatt
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Didier Leroy
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Peter Siegl
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Michael J Delves
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Dennis E Kyle
- Department of Global Health, College of Public Health University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, USA
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
| | - Jutta Marfurt
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, Northern Territory 0811, Australia
| | - Ric N Price
- 1] Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, Northern Territory 0811, Australia [2] Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Robert E Sinden
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Elizabeth A Winzeler
- University of California, San Diego, School of Medicine, 9500 Gilman Drive 0760, La Jolla, California 92093, USA
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lidiya Bebrevska
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - David W Gray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Simon Campbell
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Alan H Fairlamb
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Paul A Willis
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - David A Fidock
- 1] Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA [2] Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Kevin D Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
28
|
Salinomycin and other ionophores as a new class of antimalarial drugs with transmission-blocking activity. Antimicrob Agents Chemother 2015; 59:5135-44. [PMID: 26055362 DOI: 10.1128/aac.04332-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 05/21/2015] [Indexed: 11/20/2022] Open
Abstract
The drug target profile proposed by the Medicines for Malaria Venture for a malaria elimination/eradication policy focuses on molecules active on both asexual and sexual stages of Plasmodium, thus with both curative and transmission-blocking activities. The aim of the present work was to investigate whether the class of monovalent ionophores, which includes drugs used in veterinary medicine and that were recently proposed as human anticancer agents, meets these requirements. The activity of salinomycin, monensin, and nigericin on Plasmodium falciparum asexual and sexual erythrocytic stages and on the development of the Plasmodium berghei and P. falciparum mosquito stages is reported here. Gametocytogenesis of the P. falciparum strain 3D7 was induced in vitro, and gametocytes at stage II and III or stage IV and V of development were treated for different lengths of time with the ionophores and their viability measured with the parasite lactate dehydrogenase (pLDH) assay. The monovalent ionophores efficiently killed both asexual parasites and gametocytes with a nanomolar 50% inhibitory concentration (IC50). Salinomycin showed a fast speed of kill compared to that of standard drugs, and the potency was higher on stage IV and V than on stage II and III gametocytes. The ionophores inhibited ookinete development and subsequent oocyst formation in the mosquito midgut, confirming their transmission-blocking activity. Potential toxicity due to hemolysis was excluded, since only infected and not normal erythrocytes were damaged by ionophores. Our data strongly support the downstream exploration of monovalent ionophores for repositioning as new antimalarial and transmission-blocking leads.
Collapse
|
29
|
Rebelo M, Tempera C, Bispo C, Andrade C, Gardner R, Shapiro HM, Hänscheid T. Light depolarization measurements in malaria: A new job for an old friend. Cytometry A 2015; 87:437-45. [PMID: 25808846 DOI: 10.1002/cyto.a.22659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/28/2015] [Accepted: 02/27/2015] [Indexed: 12/15/2022]
Abstract
The use of flow cytometry in malaria research has increased over the last decade. Most approaches use nucleic acid stains to detect parasite DNA and RNA and require complex multi-color, multi-parameter analysis to reliably detect infected red blood cells (iRBCs). We recently described a novel and simpler approach to parasite detection based on flow cytometric measurement of scattered light depolarization caused by hemozoin (Hz), a pigment formed by parasite digestion of hemoglobin in iRBCs. Depolarization measurement by flow cytometry was described in 1987; however, patent issues restricted its use to a single manufacturer's hematology analyzers until 2009. Although we recently demonstrated that depolarization measurement of Hz, easily implemented on a bench top flow cytometer (Cyflow), provided useful information for malaria work, doubts regarding its application and utility remain in both the flow cytometry and malaria communities, at least in part because instrument manufacturers do not offer the option of measuring depolarized scatter. Under such circumstances, providing other researchers with guidance as to how to do this seemed to offer the most expeditious way to resolve the issue. We accordingly examined how several commercially available flow cytometers (CyFlow SL, MoFLo, Attune and Accuri C6) could be modified to detect depolarization due to the presence of free Hz on solution, or of Hz in leukocytes or erythrocytes from rodent or human blood. All were readily adapted, with substantially equivalent results obtained with lasers emitting over a wide wavelength range. Other instruments now available may also be modifiable for Hz measurement. Cytometric detection of Hz using depolarization is useful to study different aspects of malaria. Adding additional parameters, such as DNA content and base composition and RNA content, can demonstrably provide improved accuracy and sensitivity of parasite detection and characterization, allowing malaria researchers and eventually clinicians to benefit from cytometric technology.
Collapse
Affiliation(s)
- Maria Rebelo
- Molecular Microbiology and Infection Unit, Instituto De Medicina Molecular, Faculdade De Medicina, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
30
|
Imaging-based high-throughput screening assay to identify new molecules with transmission-blocking potential against Plasmodium falciparum female gamete formation. Antimicrob Agents Chemother 2015; 59:3298-305. [PMID: 25801574 DOI: 10.1128/aac.04684-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/16/2015] [Indexed: 11/20/2022] Open
Abstract
In response to a call for the global eradication of malaria, drug discovery has recently been extended to identify compounds that prevent the onward transmission of the parasite, which is mediated by Plasmodium falciparum stage V gametocytes. Lately, metabolic activity has been used in vitro as a surrogate for gametocyte viability; however, as gametocytes remain relatively quiescent at this stage, their ability to undergo onward development (gamete formation) may be a better measure of their functional viability. During gamete formation, female gametocytes undergo profound morphological changes and express translationally repressed mRNA. By assessing female gamete cell surface expression of one such repressed protein, Pfs25, as the readout for female gametocyte functional viability, we developed an imaging-based high-throughput screening (HTS) assay to identify transmission-blocking compounds. This assay, designated the P. falciparum female gametocyte activation assay (FGAA), was scaled up to a high-throughput format (Z' factor, 0.7 ± 0.1) and subsequently validated using a selection of 50 known antimalarials from diverse chemical families. Only a few of these agents showed submicromolar 50% inhibitory concentrations in the assay: thiostrepton, methylene blue, and some endoperoxides. To determine the best conditions for HTS, a robustness test was performed with a selection of the GlaxoSmithKline Tres Cantos Antimalarial Set (TCAMS) and the final screening conditions for this library were determined to be a 2 μM concentration and 48 h of incubation with gametocytes. The P. falciparum FGAA has been proven to be a robust HTS assay faithful to Plasmodium transmission-stage cell biology, and it is an innovative useful tool for antimalarial drug discovery which aims to identify new molecules with transmission-blocking potential.
Collapse
|
31
|
Stone WJR, Bousema T. The Standard Membrane Feeding Assay: Advances Using Bioluminescence. Methods Mol Biol 2015; 1325:101-12. [PMID: 26450383 DOI: 10.1007/978-1-4939-2815-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In preclinical development, the efficacy of agents with putative effects on Plasmodium transmission is determined using the standard membrane feeding assay (SMFA). Because the end-point of the SMFA is normally the enumeration of oocysts on the mosquito midgut, the assays reliance on mosquito dissections and microscopy makes it slow, labor-intensive, and subjective. Below, we describe a novel method of assessing the transmission of a Plasmodium falciparum strain expressing the firefly luciferase protein in the SMFA. The use of a transgenic parasite strain allows for the elimination of mosquito dissections in favor of a simple approach where whole mosquitoes are homogenized and examined directly for luciferase activity. Measuring the mean luminescence intensity of groups of individual or pooled mosquitoes provides comparable estimates of transmission reducing activity at 5-10-fold the throughput capacity of the standard microscopy based SMFA. This high efficiency protocol may be of interest to groups screening novel drug compounds, vaccine candidates, or sera from malaria exposed individuals for transmission reducing activity (TRA).
Collapse
Affiliation(s)
- Will J R Stone
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, GA 6525, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, GA 6525, The Netherlands. .,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
32
|
Upton LM, Brock PM, Churcher TS, Ghani AC, Gething PW, Delves MJ, Sala KA, Leroy D, Sinden RE, Blagborough AM. Lead clinical and preclinical antimalarial drugs can significantly reduce sporozoite transmission to vertebrate populations. Antimicrob Agents Chemother 2015; 59:490-7. [PMID: 25385107 PMCID: PMC4291391 DOI: 10.1128/aac.03942-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/31/2014] [Indexed: 02/01/2023] Open
Abstract
To achieve malarial elimination, we must employ interventions that reduce the exposure of human populations to infectious mosquitoes. To this end, numerous antimalarial drugs are under assessment in a variety of transmission-blocking assays which fail to measure the single crucial criteria of a successful intervention, namely impact on case incidence within a vertebrate population (reduction in reproductive number/effect size). Consequently, any reduction in new infections due to drug treatment (and how this may be influenced by differing transmission settings) is not currently examined, limiting the translation of any findings. We describe the use of a laboratory population model to assess how individual antimalarial drugs can impact the number of secondary Plasmodium berghei infections over a cycle of transmission. We examine the impact of multiple clinical and preclinical drugs on both insect and vertebrate populations at multiple transmission settings. Both primaquine (>6 mg/kg of body weight) and NITD609 (8.1 mg/kg) have significant impacts across multiple transmission settings, but artemether and lumefantrine (57 and 11.8 mg/kg), OZ439 (6.5 mg/kg), and primaquine (<1.25 mg/kg) demonstrated potent efficacy only at lower-transmission settings. While directly demonstrating the impact of antimalarial drug treatment on vertebrate populations, we additionally calculate effect size for each treatment, allowing for head-to-head comparison of the potential impact of individual drugs within epidemiologically relevant settings, supporting their usage within elimination campaigns.
Collapse
Affiliation(s)
- L M Upton
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - P M Brock
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - T S Churcher
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - A C Ghani
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - P W Gething
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - M J Delves
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - K A Sala
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - D Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - R E Sinden
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom Jenner Institute, the University of Oxford, Oxford, United Kingdom
| | - A M Blagborough
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
33
|
White NJ, Ashley EA, Recht J, Delves MJ, Ruecker A, Smithuis FM, Eziefula AC, Bousema T, Drakeley C, Chotivanich K, Imwong M, Pukrittayakamee S, Prachumsri J, Chu C, Andolina C, Bancone G, Hien TT, Mayxay M, Taylor WRJ, von Seidlein L, Price RN, Barnes KI, Djimdé A, ter Kuile F, Gosling R, Chen I, Dhorda MJ, Stepniewska K, Guérin P, Woodrow CJ, Dondorp AM, Day NPJ, Nosten FH. Assessment of therapeutic responses to gametocytocidal drugs in Plasmodium falciparum malaria. Malar J 2014; 13:483. [PMID: 25486998 PMCID: PMC4295364 DOI: 10.1186/1475-2875-13-483] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 11/29/2014] [Indexed: 01/10/2023] Open
Abstract
Indirect clinical measures assessing anti-malarial drug transmission-blocking activity in falciparum malaria include measurement of the duration of gametocytaemia, the rate of gametocyte clearance or the area under the gametocytaemia-time curve (AUC). These may provide useful comparative information, but they underestimate dose-response relationships for transmission-blocking activity. Following 8-aminoquinoline administration P. falciparum gametocytes are sterilized within hours, whereas clearance from blood takes days. Gametocytaemia AUC and clearance times are determined predominantly by the more numerous female gametocytes, which are generally less drug sensitive than the minority male gametocytes, whereas transmission-blocking activity and thus infectivity is determined by the more sensitive male forms. In choosing doses of transmission-blocking drugs there is no substitute yet for mosquito-feeding studies.
Collapse
Affiliation(s)
- Nicholas J White
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- />Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth A Ashley
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Judith Recht
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Andrea Ruecker
- />Department of Life Sciences, Imperial College, London, UK
| | - Frank M Smithuis
- />Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- />Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | | | - Teun Bousema
- />London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- />London School of Hygiene and Tropical Medicine, London, UK
| | - Kesinee Chotivanich
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- />Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- />Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- />Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Prachumsri
- />Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Cindy Chu
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- />Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Chiara Andolina
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- />Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Germana Bancone
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- />Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Tran T Hien
- />Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Mayfong Mayxay
- />Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Walter RJ Taylor
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lorenz von Seidlein
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N Price
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- />Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT Australia
| | - Karen I Barnes
- />Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Abdoulaye Djimdé
- />Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odonto-Stomatogy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Roly Gosling
- />Global Health Group, UCSF Global Health Sciences, San Francisco, CA USA
| | - Ingrid Chen
- />Global Health Group, UCSF Global Health Sciences, San Francisco, CA USA
| | - Mehul J Dhorda
- />Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- />World Wide Antimalarial Resistance Network, Churchill Hospital, Oxford, Headington, UK
| | - Kasia Stepniewska
- />World Wide Antimalarial Resistance Network, Churchill Hospital, Oxford, Headington, UK
| | - Philippe Guérin
- />World Wide Antimalarial Resistance Network, Churchill Hospital, Oxford, Headington, UK
| | - Charles J Woodrow
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- />Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- />Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas PJ Day
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- />Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Francois H Nosten
- />Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- />Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- />Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| |
Collapse
|
34
|
Histone methyltransferase inhibitors are orally bioavailable, fast-acting molecules with activity against different species causing malaria in humans. Antimicrob Agents Chemother 2014; 59:950-9. [PMID: 25421480 DOI: 10.1128/aac.04419-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current antimalarials are under continuous threat due to the relentless development of drug resistance by malaria parasites. We previously reported promising in vitro parasite-killing activity with the histone methyltransferase inhibitor BIX-01294 and its analogue TM2-115. Here, we further characterize these diaminoquinazolines for in vitro and in vivo efficacy and pharmacokinetic properties to prioritize and direct compound development. BIX-01294 and TM2-115 displayed potent in vitro activity, with 50% inhibitory concentrations (IC50s) of <50 nM against drug-sensitive laboratory strains and multidrug-resistant field isolates, including artemisinin-refractory Plasmodium falciparum isolates. Activities against ex vivo clinical isolates of both P. falciparum and Plasmodium vivax were similar, with potencies of 300 to 400 nM. Sexual-stage gametocyte inhibition occurs at micromolar levels; however, mature gametocyte progression to gamete formation is inhibited at submicromolar concentrations. Parasite reduction ratio analysis confirms a high asexual-stage rate of killing. Both compounds examined displayed oral efficacy in in vivo mouse models of Plasmodium berghei and P. falciparum infection. The discovery of a rapid and broadly acting antimalarial compound class targeting blood stage infection, including transmission stage parasites, and effective against multiple malaria-causing species reveals the diaminoquinazoline scaffold to be a very promising lead for development into greatly needed novel therapies to control malaria.
Collapse
|
35
|
A male and female gametocyte functional viability assay to identify biologically relevant malaria transmission-blocking drugs. Antimicrob Agents Chemother 2014; 58:7292-302. [PMID: 25267664 DOI: 10.1128/aac.03666-14] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Malaria elimination will require interventions that prevent parasite transmission from the human host to the mosquito. Experimentally, this is usually determined by the expensive and laborious Plasmodium falciparum standard membrane feeding assay (PfSMFA), which has limited utility for high-throughput drug screening. In response, we developed the P. falciparum dual gamete formation assay (PfDGFA), which faithfully simulates the initial stages of the PfSMFA in vitro. It utilizes a dual readout that individually and simultaneously reports on the functional viability of male and female mature stage V gametocytes. To validate, we screen the Medicines for Malaria Venture (MMV) Malaria Box library with the PfDGFA. Unique to this assay, we find compounds that target male gametocytes only and also compounds with reversible and irreversible activity. Most importantly, we show that compound activity in the PfDGFA accurately predicts activity in PfSMFAs, which validates and supports its adoption into the transmission-stage screening pipeline.
Collapse
|
36
|
Leroy D, Campo B, Ding XC, Burrows JN, Cherbuin S. Defining the biology component of the drug discovery strategy for malaria eradication. Trends Parasitol 2014; 30:478-90. [PMID: 25131411 DOI: 10.1016/j.pt.2014.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022]
Abstract
Malaria is still considered a deadly scourge in Africa, Asia, and South America despite improved vector control and curative treatments with new antimalarial combinations. The next challenge is to work towards disease eradication. To achieve this goal it is crucial to develop, validate, and integrate biological assays into test cascades that align with the key target product profiles. For anti-relapse, a parent molecule should kill hypnozoites or cause activation of Plasmodium vivax liver stages. For transmission blocking, dual equal-activity antimalarials killing both the asexual and the sexual parasite stages in human blood are favored. Finally, by assessing cross resistance and generating drug resistance in the laboratory, it is expected that new medicines with acceptable resistance profiles will be forthcoming.
Collapse
Affiliation(s)
- Didier Leroy
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 route de Pré-Bois, 1215 Geneva 15, Switzerland.
| | - Brice Campo
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Xavier C Ding
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Jeremy N Burrows
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Stéphanie Cherbuin
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 route de Pré-Bois, 1215 Geneva 15, Switzerland
| |
Collapse
|
37
|
Stone WJR, Churcher TS, Graumans W, van Gemert GJ, Vos MW, Lanke KHW, van de Vegte-Bolmer MG, Siebelink-Stoter R, Dechering KJ, Vaughan AM, Camargo N, Kappe SHI, Sauerwein RW, Bousema T. A scalable assessment of Plasmodium falciparum transmission in the standard membrane-feeding assay, using transgenic parasites expressing green fluorescent protein-luciferase. J Infect Dis 2014; 210:1456-63. [PMID: 24829466 DOI: 10.1093/infdis/jiu271] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The development of drugs and vaccines to reduce malaria transmission is an important part of eradication plans. The transmission-reducing activity (TRA) of these agents is currently determined in the standard membrane-feeding assay (SMFA), based on subjective microscopy-based readouts and with limitations in upscaling and throughput. METHODS Using a Plasmodium falciparum strain expressing the firefly luciferase protein, we present a luminescence-based approach to SMFA evaluation that eliminates the requirement for mosquito dissections in favor of a simple approach in which whole mosquitoes are homogenized and examined directly for luciferase activity. RESULTS Analysis of 6860 Anopheles stephensi mosquitoes across 68 experimental feeds shows that the luminescence assay was as sensitive as microscopy for infection detection. The mean luminescence intensity of individual and pooled mosquitoes accurately quantifies mean oocyst intensity and generates comparable TRA estimates. The luminescence assay presented here could increase SMFA throughput so that 10-30 experimental feeds could be evaluated in a single 96-well plate. CONCLUSIONS This new method of assessing Plasmodium infection and transmission intensity could expedite the screening of novel drug compounds, vaccine candidates, and sera from malaria-exposed individuals for TRA. Luminescence-based estimates of oocyst intensity in individual mosquitoes should be interpreted with caution.
Collapse
Affiliation(s)
- Will J R Stone
- Department of Medical Microbiology, Radboud University Medical Center
| | - Thomas S Churcher
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London
| | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Medical Center
| | | | - Martijn W Vos
- Department of Medical Microbiology, Radboud University Medical Center TropIQ Health Sciences, Nijmegen, the Netherlands
| | | | | | | | | | | | | | - Stefan H I Kappe
- Seattle Biomedical Research Institute Department of Global Health, University of Washington, Seattle
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center TropIQ Health Sciences, Nijmegen, the Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, United Kingdom
| |
Collapse
|
38
|
Morahan B, Garcia-Bustos J. Kinase signalling in Plasmodium sexual stages and interventions to stop malaria transmission. Mol Biochem Parasitol 2014; 193:23-32. [PMID: 24509402 DOI: 10.1016/j.molbiopara.2014.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 12/26/2022]
Abstract
The symptoms of malaria, one of the infectious diseases with the highest mortality and morbidity world-wide, are caused by asexual parasites replicating inside red blood cells. Disease transmission, however, is effected by non-replicating cells which have differentiated into male or female gametocytes. These are the forms infectious to mosquito vectors and the insects are the only hosts where parasite sexual reproduction can take place. Malaria is thus a complex infection in which pharmacological treatment of symptoms may still allow transmission for long periods, while pharmacological blockage of infectivity may not cure symptoms. The process of parasite sexual differentiation and development is still being revealed but it is clear that kinase-mediated signalling mechanisms play a significant role. This review attempts to summarise our limited current knowledge on the signalling mechanisms involved in the transition from asexual replication to sexual differentiation and reproduction, with a brief mention to the effects of current treatments on the sexual stages and to some of the difficulties inherent in developing pharmacological interventions to curtail disease transmission.
Collapse
Affiliation(s)
- Belinda Morahan
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Jose Garcia-Bustos
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
39
|
|
40
|
Abstract
Malaria elimination has recently been reinstated as a global health priority but current therapies seem to be insufficient for the task. Elimination efforts require new drug classes that alleviate symptoms, prevent transmission and provide a radical cure. To develop these next-generation medicines, public-private partnerships are funding innovative approaches to identify compounds that target multiple parasite species at multiple stages of the parasite life cycle. In this Review, we discuss the cell-, chemistry- and target-based approaches used to discover new drug candidates that are currently in clinical trials or undergoing preclinical testing.
Collapse
|
41
|
Vial H, Taramelli D, Boulton IC, Ward SA, Doerig C, Chibale K. CRIMALDDI: platform technologies and novel anti-malarial drug targets. Malar J 2013; 12:396. [PMID: 24498961 PMCID: PMC3827883 DOI: 10.1186/1475-2875-12-396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/22/2013] [Indexed: 12/24/2022] Open
Abstract
The Coordination, Rationalization, and Integration of antiMALarial drug Discovery & Development Initiatives (CRIMALDDI) Consortium, funded by the EU Framework Seven Programme, has attempted, through a series of interactive and facilitated workshops, to develop priorities for research to expedite the discovery of new anti-malarials. This paper outlines the recommendations for the development of enabling technologies and the identification of novel targets.Screening systems must be robust, validated, reproducible, and represent human malaria. They also need to be cost-effective. While such systems exist to screen for activity against blood stage Plasmodium falciparum, they are lacking for other Plasmodium spp. and other stages of the parasite's life cycle. Priority needs to be given to developing high-throughput screens that can identify activity against the liver and sexual stages. This in turn requires other enabling technologies to be developed to allow the study of these stages and to allow for the culture of liver cells and the parasite at all stages of its life cycle.As these enabling technologies become available, they will allow novel drug targets to be studied. Currently anti-malarials are mostly targeting the asexual blood stage of the parasite's life cycle. There are many other attractive targets that need to be investigated. The liver stages and the sexual stages will become more important as malaria control moves towards malaria elimination. Sexual development is a process offering multiple targets, even though the mechanisms of differentiation are still not fully understood. However, designing a drug whose effect is not curative but would be used in asymptomatic patients is difficult given current safety thresholds. Compounds active against the liver schizont would have a prophylactic effect and Plasmodium vivax elimination requires effectors against the dormant liver hypnozoites. It may be that drugs to be used in elimination campaigns will also need to have utility in the control phase. Compounds with activity against blood stages need to be screened for activity against other stages.Natural products should also be a valuable source of new compounds. They often occupy non-Lipinski chemical space and so may reveal valuable new chemotypes.
Collapse
Affiliation(s)
| | | | | | - Steve A Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | |
Collapse
|
42
|
Flannery EL, Fidock DA, Winzeler EA. Using genetic methods to define the targets of compounds with antimalarial activity. J Med Chem 2013; 56:7761-71. [PMID: 23927658 DOI: 10.1021/jm400325j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although phenotypic cellular screening has been used to drive antimalarial drug discovery in recent years, in some cases target-based drug discovery remains more attractive. This is especially true when appropriate high-throughput cellular assays are lacking, as is the case for drug discovery efforts that aim to provide a replacement for primaquine (4-N-(6-methoxyquinolin-8-yl)pentane-1,4-diamine), the only drug that can block Plasmodium transmission to Anopheles mosquitoes and eliminate liver-stage hypnozoites. At present, however, there are no known chemically validated parasite protein targets that are important in all Plasmodium parasite developmental stages and that can be used in traditional biochemical compound screens. We propose that a plethora of novel, chemically validated, cross-stage antimalarial targets still remain to be discovered from the ~5,500 proteins encoded by the Plasmodium genomes. Here we discuss how in vitro evolution of drug-resistant strains of Plasmodium falciparum and subsequent whole-genome analysis can be used to find the targets of some of the many compounds discovered in whole-cell phenotypic screens.
Collapse
Affiliation(s)
- Erika L Flannery
- Department of Pediatrics, University of California, San Diego, School of Medicine , 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | | | | |
Collapse
|
43
|
Male and Female Plasmodium falciparum Mature Gametocytes Show Different Responses to Antimalarial Drugs. Antimicrob Agents Chemother 2013; 57:3268-74. [DOI: 10.1128/aac.00325-13] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
It is the mature gametocytes of
Plasmodium
that are solely responsible for parasite transmission from the mammalian host to the mosquito. They are therefore a logical target for transmission-blocking antimalarial interventions, which aim to break the cycle of reinfection and reduce the prevalence of malaria cases. Gametocytes, however, are not a homogeneous cell population. They are sexually dimorphic, and both males and females are required for parasite transmission. Using two bioassays, we explored the effects of 20 antimalarials on the functional viability of both male and female mature gametocytes of
Plasmodium falciparum
. We show that mature male gametocytes (as reported by their ability to produce male gametes, i.e., to exflagellate) are sensitive to antifolates, some endoperoxides, methylene blue, and thiostrepton, with submicromolar 50% inhibitory concentrations (IC
50
s), whereas female gametocytes (as reported by their ability to activate and form gametes expressing the marker Pfs25) are much less sensitive to antimalarial intervention, with only methylene blue and thiostrepton showing any significant activity. These findings show firstly that the antimalarial responses of male and female gametocytes differ and secondly that the mature male gametocyte should be considered a more vulnerable target than the female gametocyte for transmission-blocking drugs. Given the female-biased sex ratio of
Plasmodium falciparum
(∼3 to 5 females:1 male), current gametocyte assays without a sex-specific readout are unlikely to identify male-targeted compounds and prioritize them for further development. Both assays reported here are being scaled up to at least medium throughput and will permit identification of key transmission-blocking molecules that have been overlooked by other screening campaigns.
Collapse
|
44
|
Biamonte MA, Wanner J, Le Roch KG. Recent advances in malaria drug discovery. Bioorg Med Chem Lett 2013; 23:2829-43. [PMID: 23587422 PMCID: PMC3762334 DOI: 10.1016/j.bmcl.2013.03.067] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 01/18/2023]
Abstract
This digest covers some of the most relevant progress in malaria drug discovery published between 2010 and 2012. There is an urgent need to develop new antimalarial drugs. Such drugs can target the blood stage of the disease to alleviate the symptoms, the liver stage to prevent relapses, and the transmission stage to protect other humans. The pipeline for the blood stage is becoming robust, but this should not be a source of complacency, as the current therapies set a high standard. Drug discovery efforts directed towards the liver and transmission stages are in their infancy but are receiving increasing attention as targeting these stages could be instrumental in eradicating malaria.
Collapse
Affiliation(s)
- Marco A Biamonte
- Drug Discovery for Tropical Diseases, Suite 230, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
45
|
Plasmodium cell biology should inform strategies used in the development of antimalarial transmission-blocking drugs. Future Med Chem 2013; 4:2251-63. [PMID: 23234549 DOI: 10.4155/fmc.12.182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Malaria is a disease with a devastating impact affecting 216 million people each year and causing 655,000 deaths, most of which are children under 5 years old. Recent appreciation that malaria eradication will require novel interventions to target the parasite during transmission from the human host to the mosquito has lead to an exciting surge in activity to develop transmission-blocking drugs and the high-throughput assays to screen for them. This article presents an overview of transmission-stage cell biology and discusses its impact on assay development to provide a context for researchers to evaluate the relative merits/drawbacks of both screening data obtained from current assays and considerations for future assay design. The most recent knowledge of the transmission-blocking properties of current antimalarial classes is also summarized and, underdeveloped targets for transmission-stage drug discovery are highlighted.
Collapse
|
46
|
Heparin-functionalized nanocapsules: enabling targeted delivery of antimalarial drugs. Future Med Chem 2013; 5:737-9. [DOI: 10.4155/fmc.13.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Nilsen A, LaCrue AN, White KL, Forquer IP, Cross RM, Marfurt J, Mather MW, Delves MJ, Shackleford DM, Saenz FE, Morrisey JM, Steuten J, Mutka T, Li Y, Wirjanata G, Ryan E, Duffy S, Kelly JX, Sebayang BF, Zeeman AM, Noviyanti R, Sinden RE, Kocken CHM, Price RN, Avery VM, Angulo-Barturen I, Jiménez-Díaz MB, Ferrer S, Herreros E, Sanz LM, Gamo FJ, Bathurst I, Burrows JN, Siegl P, Guy RK, Winter RW, Vaidya AB, Charman SA, Kyle DE, Manetsch R, Riscoe MK. Quinolone-3-diarylethers: a new class of antimalarial drug. Sci Transl Med 2013; 5:177ra37. [PMID: 23515079 PMCID: PMC4227885 DOI: 10.1126/scitranslmed.3005029] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite's life cycle, thus impacting prevention, treatment, and transmission of the disease. The 4(1H)-quinolone-3-diarylethers are selective potent inhibitors of the parasite's mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax. They target both the liver and blood stages of the parasite as well as the forms that are crucial for disease transmission, that is, the gametocytes, the zygote, the ookinete, and the oocyst. Selected as a preclinical candidate, ELQ-300 has good oral bioavailability at efficacious doses in mice, is metabolically stable, and is highly active in blocking transmission in rodent models of malaria. Given its predicted low dose in patients and its predicted long half-life, ELQ-300 has potential as a new drug for the treatment, prevention, and, ultimately, eradication of human malaria.
Collapse
Affiliation(s)
- Aaron Nilsen
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Alexis N. LaCrue
- Department of Global Health, College of Public Health, 3720 Spectrum Blvd. (Ste 304), Tampa, FL 33612, USA
| | - Karen L. White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Isaac P. Forquer
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Richard M. Cross
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620-5250, USA
| | - Jutta Marfurt
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Michael W. Mather
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Michael J. Delves
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Fabian E. Saenz
- Department of Global Health, College of Public Health, 3720 Spectrum Blvd. (Ste 304), Tampa, FL 33612, USA
| | - Joanne M. Morrisey
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Jessica Steuten
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Tina Mutka
- Department of Global Health, College of Public Health, 3720 Spectrum Blvd. (Ste 304), Tampa, FL 33612, USA
| | - Yuexin Li
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Grennady Wirjanata
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Eileen Ryan
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Sandra Duffy
- Eskitis Institute for Cell & Molecular Therapies, Brisbane Innovation Park, Nathan campus, Griffith University, QLD 4111, Australia
| | - Jane Xu Kelly
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Boni F. Sebayang
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Rintis Noviyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia
| | - Robert E. Sinden
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Ric N. Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Vicky M. Avery
- Eskitis Institute for Cell & Molecular Therapies, Brisbane Innovation Park, Nathan campus, Griffith University, QLD 4111, Australia
| | - Iñigo Angulo-Barturen
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - María Belén Jiménez-Díaz
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Santiago Ferrer
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Esperanza Herreros
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Laura M. Sanz
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Francisco-Javier Gamo
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Ian Bathurst
- Medicines for Malaria Venture, 20, route de Pré-Bois, PO Box 1826, 1215 Geneva 15, Switzerland
| | - Jeremy N. Burrows
- Medicines for Malaria Venture, 20, route de Pré-Bois, PO Box 1826, 1215 Geneva 15, Switzerland
| | - Peter Siegl
- Siegl Pharma Consulting LLC, Blue Bell, PA, USA
| | - R. Kiplin Guy
- Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Rolf W. Winter
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Akhil B. Vaidya
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Dennis E. Kyle
- Department of Global Health, College of Public Health, 3720 Spectrum Blvd. (Ste 304), Tampa, FL 33612, USA
| | - Roman Manetsch
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620-5250, USA
| | - Michael K. Riscoe
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
- Department of Molecular Microbiology and Immunology, 3181 Sam Jackson Blvd., Portland, Oregon 97239, USA
| |
Collapse
|
48
|
Sinden RE, Blagborough AM, Churcher T, Ramakrishnan C, Biswas S, Delves MJ. The design and interpretation of laboratory assays measuring mosquito transmission of Plasmodium. Trends Parasitol 2012; 28:457-65. [DOI: 10.1016/j.pt.2012.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 12/14/2022]
|
49
|
A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle. Mol Biochem Parasitol 2012; 186:143-7. [PMID: 23107927 DOI: 10.1016/j.molbiopara.2012.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 01/06/2023]
Abstract
Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages.
Collapse
|