1
|
Ehsan M, Hu RS, Wang M, Hou JL, Rashid M, Malik MI. Immune modulation of goat monocytes by Fasciola gigantica Legumain-1 protein (Fg-LGMN-1). Exp Parasitol 2024; 256:108671. [PMID: 38081528 DOI: 10.1016/j.exppara.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Legumains belonging to C_13 peptidase family of proteins, and are ubiquitously disseminated among all vertebrate and invertebrate organisms, and have been implicated in innumerable biological and cellular functionality. Herein, we characterized and evaluated immunoregulatory characteristics of Legumain-1 from Fasciola gigantica (Fg-LGMN-1) during its interaction with host immune cells. The isopropyl-ß-d-thiogalactopyranoside (IPTG) stimulated RFg-LGMN-1 protein was positively detected by rat serum containing anti-RFg-LGMN-1 polyclonal antibodies. Furthermore, the uptake of RFg-LGMN-1 by goat monocytes was successfully confirmed using Immunofluorescence Assay (IFA). The immunohistochemical analysis revealed the native localization of LGMN-1 protein on the periphery and internal structures such as suckers, pharynx, and genital pore of the adult parasite, thereby validating its presence in excretory-secretory (ES) products of F. gigantica. The RFg-LGMN-1 co-incubated with concanavalin-A (Con-A) stimulated the increase of interleukin 2 (IL-2), IL-10, and IL-17 in monocytes derived from peripheral blood mononuclear cells (PBMCs) in the concentration-dependent manner. However, the IL-4 cytokine in response to the RFg-LGMN-1 protein declined. These results illuminated the role of LGMN-1 during the parasite-host interface. Our findings elaborated additional evidence that Legumain protein play a role in the manipulating host immune responses during parasite infections. However, further evaluation of RFg-LGMN-1 protein in context of its immunomodulatory roles should be conducted to enhance our understandings of the mechanisms employed by F. gigantica to evade host immune responses.
Collapse
Affiliation(s)
- Muhammad Ehsan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China; Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab Province 63100, Pakistan.
| | - Rui-Si Hu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Jun-Ling Hou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab Province 63100, Pakistan.
| | - Muhammad Irfan Malik
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab Province 63100, Pakistan.
| |
Collapse
|
2
|
Chantree P, Tarasuk M, Prathaphan P, Ruangtong J, Jamklang M, Chumkiew S, Martviset P. Type I Cystatin Derived from Fasciola gigantica Suppresses Macrophage-Mediated Inflammatory Responses. Pathogens 2023; 12:pathogens12030395. [PMID: 36986318 PMCID: PMC10051455 DOI: 10.3390/pathogens12030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
There is an inverse relationship between the high incidence of helminth infection and the low incidence of inflammatory disease. Hence, it may be that helminth molecules have anti-inflammatory effects. Helminth cystatins are being extensively studied for anti-inflammatory potential. Therefore, in this study, the recombinant type I cystatin (stefin-1) of Fasciola gigantica (rFgCyst) was verified to have LPS-activated anti-inflammatory potential, including in human THP-1-derived macrophages and RAW 264.7 murine macrophages. The results from the MTT assay suggest that rFgCyst did not alter cell viability; moreover, it exerted anti-inflammatory activity by decreasing the production of proinflammatory cytokines and mediators, including IL-1β, IL-6, IL-8, TNF-α, iNOS, and COX-2 at the gene transcription and protein expression levels, as determined by qRT-PCR and Western blot analysis, respectively. Further, the secretion levels of IL-1β, IL-6, and TNF-α determined by ELISA and the NO production level determined by the Griess test were decreased. Furthermore, in Western blot analysis, the anti-inflammatory effects involved the downregulation of pIKKα/β, pIκBα, and pNF-κB in the NF-κB signaling pathway, hence reducing the translocation from the cytosol into the nucleus of pNF-κB, which subsequently turned on the gene of proinflammatory molecules. Therefore, cystatin type 1 of F. gigantica is a potential candidate for inflammatory disease treatment.
Collapse
Affiliation(s)
- Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Mayuri Tarasuk
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Parisa Prathaphan
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Mantana Jamklang
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Chumkiew
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-863590511
| |
Collapse
|
3
|
Zhang K, Liu Y, Zhang G, Wang X, Li Z, Shang Y, Ning C, Ji C, Cai X, Xia X, Qiao J, Meng Q. Molecular Characteristics and Potent Immunomodulatory Activity of Fasciola hepatica Cystatin. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:117-126. [PMID: 35500893 PMCID: PMC9058280 DOI: 10.3347/kjp.2022.60.2.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
Cystatin, a cysteine protease inhibitor found in many parasites, plays important roles in immune evasion. This study analyzed the molecular characteristics of a cystatin from Fasciola hepatica (FhCystatin) and expressed recombinant FhCystatin (rFhcystatin) to investigate the immune modulatory effects on lipopolysaccharide-induced proliferation, migration, cytokine secretion, nitric oxide (NO) production, and apoptosis in mouse macrophages. The FhCystatin gene encoded 116 amino acids and contained a conserved cystatin-like domain. rFhCystatin significantly inhibited the activity of cathepsin B. rFhCystatin bound to the surface of mouse RAW264.7 cells, significantly inhibited cell proliferation and promoted apoptosis. Moreover, rFhCystatin inhibited the expression of cellular nitric oxide, interleukin-6, and tumor necrosis factor-α, and promoted the expression of transforming growth factor-β and interleukin-10. These results showed that FhCystatin played an important role in regulating the activity of mouse macrophages. Our findings provide new insights into mechanisms underlying the immune evasion and contribute to the exploration of potential targets for the development of new drug to control F. hepatica infection.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Yucheng Liu
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Guowu Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Xifeng Wang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Zhiyuan Li
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Yunxia Shang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Chengcheng Ning
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Chunhui Ji
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046,
China
| | - Xianzhu Xia
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Jun Qiao
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Qingling Meng
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
- Corresponding author ()
| |
Collapse
|
4
|
Corral-Ruiz GM, Sánchez-Torres LE. Fasciola hepatica-derived molecules as potential immunomodulators. Acta Trop 2020; 210:105548. [PMID: 32505597 DOI: 10.1016/j.actatropica.2020.105548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 05/18/2020] [Indexed: 01/15/2023]
Abstract
Through the years, helminths have co-existed with many species. This process has allowed parasites to live within them for long periods and, in some cases, to generate offspring. In particular, this ability has allowed Fasciola hepatica to survive the diverse immunological responses faced within its wide range of hosts. The vast repertoire of molecules that are constantly secreted in large quantities by the parasite, acts directly on several cells of the immune system affecting their antiparasitic capacities. Interestingly, these molecules can direct the host immune response to an anti-inflammatory and regulatory phenotype that assures the survival of the parasite with less harm to the host. Based on these observations, some of the products of F. hepatica, as well as those of other helminths, have been studied, either as a total extract, extracellular vesicles or as purified molecules, to establish and characterize their anti-inflammatory mechanisms. Until now, the results obtained encourage further research directed to discover new helminth-derived alternatives to replace current therapies, which can be useful for people suffering from inflammatory diseases like autoimmunity or allergy processes that affect their life quality. In this review, some of the most studied molecules derived from F. hepatica and their modulating capacities are discussed.
Collapse
Affiliation(s)
- Gerardo Manuel Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, s/n, 11340 Ciudad de México, México
| | - Luvia Enid Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, s/n, 11340 Ciudad de México, México.
| |
Collapse
|
5
|
Tian AL, Tian X, Chen D, Lu M, Calderón-Mantilla G, Yuan XD, Li X, Elsheikha HM, Zhu XQ. Modulation of the Functions of Goat Peripheral Blood Mononuclear Cells by Fasciola gigantica Thioredoxin Peroxidase In Vitro. Pathogens 2020; 9:pathogens9090758. [PMID: 32957426 PMCID: PMC7559183 DOI: 10.3390/pathogens9090758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The liver fluke Fasciola gigantica has a remarkable ability to establish a long-term infection within the hepatobiliary system of the mammalian definitive host. F. gigantica achieves this by producing excretory-secretory molecules, which have immunomodulatory activities. In an effort to elucidate the immunomodulatory functions of F. gigantica thioredoxin peroxidase protein (FgTPx), we expressed recombinant FgTPx (rFgTPx) in Escherichia coli bacteria and examined its effects on several functions of goat peripheral blood mononuclear cells (PBMCs) in vitro. Sequence analysis revealed that FgTPx is related to a thioredoxin-like superfamily. Western blot analysis showed that rFgTPx was recognized by the sera of goats experimentally infected by F. gigantica. The specific binding of rFgTPx protein to the surface of goat PBMCs was demonstrated by immunofluorescence staining. We investigated the influence of serial concentrations of rFgTPx on various functions of goat PBMCs. All concentrations of rFgTPx increased the secretion of interleukin-2 (IL-2), IL-4, IL-10, IL-17, transforming growth factor-beta (TGF-β), and interferon gamma (IFN-γ), but inhibited PBMC proliferation, migration, and monocyte phagocytosis. Goat PBMCs exposed to 20-40 μg/mL of rFgTPx secreted increased levels of nitric oxide (NO), and 10-40 μg/mL of rFgTPx promoted cell apoptosis. These findings indicate that rFgTPx influences various functions of goat PBMCs by interacting with a large number of cellular targets, ultimately to promote the parasite's survival. The roles of rFgTPx and their interacting proteins warrant further investigation.
Collapse
Affiliation(s)
- Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.-L.T.); (D.C.); (X.-D.Y.)
| | - Xiaowei Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.T.); (M.L.); (X.L.)
| | - Dan Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.-L.T.); (D.C.); (X.-D.Y.)
| | - Mingmin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.T.); (M.L.); (X.L.)
| | - Guillermo Calderón-Mantilla
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca 140013, Colombia;
| | - Xiao-Dan Yuan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.-L.T.); (D.C.); (X.-D.Y.)
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.T.); (M.L.); (X.L.)
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Correspondence: (H.M.E.); (X.-Q.Z.)
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.-L.T.); (D.C.); (X.-D.Y.)
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (H.M.E.); (X.-Q.Z.)
| |
Collapse
|
6
|
Kiss M, Burns H, Donnelly S, Hawthorne WJ. Effectiveness of Helminth Therapy in the Prevention of Allograft Rejection: A Systematic Review of Allogeneic Transplantation. Front Immunol 2020; 11:1604. [PMID: 32849543 PMCID: PMC7426368 DOI: 10.3389/fimmu.2020.01604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Background: The unique immunomodulatory capacity of helminth parasites has been investigated as a novel strategy in the prevention of allograft rejection after transplantation. This review was conducted to fully evaluate the specific effects of helminth therapy on allograft survival reported in published studies of animal models of allogeneic transplantation. Method: Following PRISMA protocol guidelines, a literature search was conducted using PubMed, MEDLINE via OvidSP, along with additional manual searches of selected reference lists. Publications describing helminth intervention within allograft transplantation models were screened for relevance to eligibility criteria. Primary and secondary outcomes were extracted using standardized data collection tables. The SYRCLE risk of bias assessment tool was used for quality assessment. Due to heterogeneity of study designs, meta-analysis could not be performed; rather outcomes are presented as a narrative synthesis with concept mapping. This review was registered in PROSPERO with ID: CRD42018097175. Results: The literature search generated 1,443 publications, which after screening for relevance to the eligibility criteria yielded 15 publications for qualitative analysis. All 15 publications reported improvement to allograft survival as a result of helminth therapy. This prolonged allograft survival was not significantly different when helminth-derived products were used compared to live infection. However, the extent of positive impact on allograft survival was noted to be dependent on study design factors, such as the chronicity of the live helminth infection, allograft type and the species/genus of helminth selected. Conclusion: Both live and product-based helminth therapy have potential applications as novel immune regulators or adjuncts for the prevention of allograft rejection. However, there were differences in efficacy between different worms and preparations of worm-derived products. Therefore, further studies are required to determine the most appropriate worm for a specific allograft, to elucidate the optimal dose and route of administration, and to better understand the modulation of immune responses that can mediate tolerance.
Collapse
Affiliation(s)
- Michelle Kiss
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead Hospital, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| | - Heather Burns
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead Hospital, Sydney, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead Hospital, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia.,Department of Surgery, Western Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Naranjo-Lucena A, García-Campos A, Garza-Cuartero L, Britton L, Blanco A, Zintl A, Mulcahy G. Fasciola hepatica products can alter the response of bovine immune cells to Mycobacterium avium subsp. paratuberculosis. Parasite Immunol 2020; 42:e12779. [PMID: 32725900 PMCID: PMC8365740 DOI: 10.1111/pim.12779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/17/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Fasciola hepatica causes economically important disease in livestock worldwide. The relevance of this parasitic infection extends beyond its direct consequences due to its immunoregulatory properties. OBJECTIVES Given the importance of the T helper 1 (Th1) immune response in controlling infections with Mycobacterium avium subspecies paratuberculosis (MAP) in cattle, we aimed to establish the immunological consequences that co-infection with F. hepatica might have on the course of Johne's disease (JD). METHODS This study compared the in vitro response of bovine immune cells to infection with MAP or exposure to MAP antigens following F. hepatica infection or stimulation with F. hepatica products. RESULTS We found a decreased proliferation of peripheral blood mononuclear cells (PBMCs) after infection with F. hepatica. This reduction was inversely correlated with fluke burden. Pre-stimulation with F. hepatica molecules produced a significant reduction of ileocaecal lymph node leucocyte proliferation in response to MAP antigens. Additionally,F. hepatica products reduced expression of the CD14 receptor by macrophages and increased levels of apoptosis and bacterial (MAP) uptake. CONCLUSIONS Overall, F. hepatica infection had little impact on the in vitro response of immune cells to MAP, whereas in vitro co-stimulation with F. hepatica molecules had a measurable effect. Whether this is likely to affect JD progression during in vivo chronic conditions remains unclear.
Collapse
Affiliation(s)
- Amalia Naranjo-Lucena
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Andrés García-Campos
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laura Garza-Cuartero
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Louise Britton
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alfonso Blanco
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Annetta Zintl
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Drurey C, Coakley G, Maizels RM. Extracellular vesicles: new targets for vaccines against helminth parasites. Int J Parasitol 2020; 50:623-633. [PMID: 32659278 PMCID: PMC8313431 DOI: 10.1016/j.ijpara.2020.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
The hunt for effective vaccines against the major helminth diseases of humans has yet to bear fruit despite much effort over several decades. No individual parasite antigen has proved to elicit full protective immunity, suggesting that combinatorial strategies may be required. Recently it has been discovered that extracellular vesicles released by parasitic helminths contain multiple potential immune modulators, which could together be targeted by a future vaccine. Increasing knowledge of helminth extracellular vesicle components, both enclosed by and exposed on the membrane, will open up a new field of targets for an effective vaccine. This review discusses the interactions between helminth extracellular vesicles and the immune system discovered thus far, and the advantages of targeting these lipid-bound packages with a vaccine. In addition, we also comment upon specific antigens that may be the best targets for an anti-helminth vaccine. In the future, extensive knowledge of the parasites' full arsenal in controlling their host may finally provide us with the ideal target for a fully effective vaccine.
Collapse
Affiliation(s)
- Claire Drurey
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
9
|
Mei X, Shi W, Zhao W, Luo H, Zhang Y, Wang Y, Sheng Z, Wang D, Zhu XQ, Huang W. Fasciola gigantica excretory-secretory products (FgESPs) modulate the differentiation and immune functions of buffalo dendritic cells through a mechanism involving DNMT1 and TET1. Parasit Vectors 2020; 13:355. [PMID: 32680546 PMCID: PMC7368760 DOI: 10.1186/s13071-020-04220-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Fasciola gigantica infection threatens the health of both humans and animals in the world. The excretory/secretory products (ESPs) of this fluke has been reported to impair the activation and maturation of immune cells. We have previously shown the influence of F. gigantica ESPs (FgESPs) on the maturation of buffalo dendritic cells (DCs). However, the underlying mechanisms remain unclear. The objective of this study was to investigate the potency of FgESPs in shifting the differentiation and immune functions of buffalo DCs. Methods Buffalo DCs were incubated with FgESPs directly or further co-cultured with lymphocytes in vitro. qRT-PCR was employed to determine the gene expression profile of DCs or the mixed cells, and an ELISA was used to measure cytokine levels in the supernatants. Hoechst and Giemsa staining assays, transmission electron microscopy, caspase-3/7 activity test and histone methylation test were performed to determine DC phenotyping, apoptosis and methylation. To investigate the mechanism involved with DNA methylation, a Co-IP assay and immunofluorescent staining assay were performed to observe if there was any direct interaction between FgESPs and DNMT1/TET1 in buffalo DCs, while RNAi technology was employed to knockdown DNMT1 and TET1 in order to evaluate any different influence of FgESPs on DCs when these genes were absent. Results qRT-PCR and ELISA data together demonstrated the upregulation of DC2 and Th2/Treg markers in DCs alone and DCs with a mixed lymphocyte reaction (MLR), suggesting a bias of DC2 that potentially directed Th2 differentiation in vitro. DC apoptosis was also found and evidenced morphologically and biochemically, which might be a source of tolerogenic DCs that led to Treg differentiation. In addition, FgESPs induced methylation level changes of histones H3K4 and H3K9, which correlate with DNA methylation. Co-IP and immunofluorescent subcellular localization assays showed no direct interaction between the FgESPs and DNMT1/TET1 in buffalo DCs. The productions of IL-6 and IL-12 were found separately altered by the knockdown of DNMT1 and TET1 in DCs after FgESPs treatment. Conclusions FgESPs may induce the DC2 phenotype or the apoptosis of buffalo DCs to induce the downstream Th2/Treg response of T cells, possibly through a DNMT1- or TET1-dependent manner(s).![]()
Collapse
Affiliation(s)
- Xuefang Mei
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Shi
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wenping Zhao
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Honglin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yaoyao Zhang
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yurui Wang
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhaoan Sheng
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dongying Wang
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Weiyi Huang
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
10
|
Drug Targets: Screening for Small Molecules that Inhibit Fasciola hepatica Enzymes. Methods Mol Biol 2020. [PMID: 32399933 DOI: 10.1007/978-1-0716-0475-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The in vitro screening of small molecules for enzymatic inhibition provides an efficient means of finding new compounds for developing drug candidates. This strategy has the advantage of being rapid and inexpensive to perform. Enzymes are suitable targets for screening when simple methods to obtain them and measure their activities are available and there is evidence of their essential role in the parasite's life cycle. Here, we describe the screening of small molecules as inhibitors of two Fasciola hepatica enzyme targets (cathepsin L and triose phosphate isomerase), an initial step to find new potential compounds for drug development strategies.
Collapse
|
11
|
A Survey on the Adjuvant Role of Naloxone Alone or Combined with Alum in Vaccination Against Fasciolosis in BALB/c Mice. Acta Parasitol 2019; 64:236-245. [PMID: 30788648 DOI: 10.2478/s11686-019-00030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Fasciolosis is a zoonotic parasitic disease imposing a heavy load of livestock losses worldwide. PURPOSE We aimed to evaluate immune-stimulatory effects of naloxone (NLX), an opioid receptor antagonist, in combination with alum in mice vaccinated with excretory-secretory antigens (E/S) of Fasciola hepatica. METHODS 8-week-old female BALB/c mice were subcutaneously vaccinated using E/S antigens of F. hepatica. Experimental groups (14 mice per group) included: vaccine (E/S antigen), alum vaccine (E/S antigen plus alum), NLX vaccine (E/S antigen plus NLX), and alum-NLX vaccine (E/S antigen plus a mixture of alum-NLX). The control group was infused with PBS. Lymphocyte proliferation and the levels of IFN-γ, IL-4, IgG2a, IgG1, and total IgG were measured. RESULTS Mice vaccinated with NLX or alum-NLX adjuvants showed significantly higher rates of lymphocyte proliferation, IFN-γ, total IgG, and IgG2a levels. The mice that were injected with alum showed a significantly higher concentration of IL-4. Ratios of IFN-γ/Il-4 and IgG2a/IgG1 were significantly higher in the NLX and alum-NLX groups in comparison with the groups vaccinated either with alum or without any adjuvant. A significantly higher protection rate (62.5%) was seen in mice vaccinated with the alum-NLX adjuvant compared to the other groups. CONCLUSION NLX can be effective in conferring cellular immunity and protection against F. hepatica. It is recommended to consider this agent as a potential adjuvant in vaccines against fasciolosis.
Collapse
|
12
|
Immobilization of β-galactosidase and α-mannosidase onto magnetic nanoparticles: A strategy for increasing the potentiality of valuable glycomic tools for glycosylation analysis and biological role determination of glycoconjugates. Enzyme Microb Technol 2018; 117:45-55. [DOI: 10.1016/j.enzmictec.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 01/08/2023]
|
13
|
Tian AL, Lu M, Calderón-Mantilla G, Petsalaki E, Dottorini T, Tian X, Wang Y, Huang SY, Hou JL, Li X, Elsheikha HM, Zhu XQ. A recombinant Fasciola gigantica 14-3-3 epsilon protein (rFg14-3-3e) modulates various functions of goat peripheral blood mononuclear cells. Parasit Vectors 2018; 11:152. [PMID: 29510740 PMCID: PMC5840819 DOI: 10.1186/s13071-018-2745-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background The molecular structure of Fasciola gigantica 14-3-3 protein has been characterized. However, the involvement of this protein in parasite pathogenesis remains elusive and its effect on the functions of innate immune cells is unknown. We report on the cloning and expression of a recombinant F. gigantica 14-3-3 epsilon protein (rFg14-3-3e), and testing its effects on specific functions of goat peripheral blood mononuclear cells (PBMCs). Methods rFg14-3-3e protein was expressed in Pichia pastoris. Western blot and immunofluorescence assay (IFA) were used to examine the reactivity of rFg14-3-3e protein to anti-F. gigantica and anti-rFg14-3-3e antibodies, respectively. Various assays were used to investigate the stimulatory effects of the purified rFg14-3-3e protein on specific functions of goat PBMCs, including cytokine secretion, proliferation, migration, nitric oxide (NO) production, phagocytosis, and apoptotic capabilities. Potential protein interactors of rFg14-3-3e were identified by querying the databases Intact, String, BioPlex and BioGrid. A Total Energy analysis of each of the identified interaction was performed. Gene Ontology (GO) enrichment analysis was conducted using Funcassociate 3.0. Results Sequence analysis revealed that rFg14-3-3e protein had 100% identity to 14-3-3 protein from Fasciola hepatica. Western blot analysis showed that rFg14-3-3e protein is recognized by sera from goats experimentally infected with F. gigantica and immunofluorescence staining using rat anti-rFg14-3-3e antibodies demonstrated the specific binding of rFg14-3-3e protein to the surface of goat PBMCs. rFg14-3-3e protein stimulated goat PBMCs to produce interleukin-10 (IL-10) and transforming growth factor beta (TGF-β), corresponding with low levels of IL-4 and interferon gamma (IFN-γ). Also, this recombinant protein promoted the release of NO and cell apoptosis, and inhibited the proliferation and migration of goat PBMCs and suppressed monocyte phagocytosis. Homology modelling revealed 65% identity between rFg14-3-3e and human 14-3-3 protein YWHAE. GO enrichment analysis of the interacting proteins identified terms related to apoptosis, protein binding, locomotion, hippo signalling and leukocyte and lymphocyte differentiation, supporting the experimental findings. Conclusions Our data suggest that rFg14-3-3e protein can influence various cellular and immunological functions of goat PBMCs in vitro and may be involved in mediating F. gigantica pathogenesis. Because of its involvement in F. gigantica recognition by innate immune cells, rFg14-3-3e protein may have applications for development of diagnostics and therapeutic interventions. Electronic supplementary material The online version of this article (10.1186/s13071-018-2745-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - MingMin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Guillermo Calderón-Mantilla
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Tania Dottorini
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - XiaoWei Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - YuJian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
14
|
TLR Specific Immune Responses against Helminth Infections. J Parasitol Res 2017; 2017:6865789. [PMID: 29225962 PMCID: PMC5684585 DOI: 10.1155/2017/6865789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 01/07/2023] Open
Abstract
Despite marked improvement in the quality of lives across the globe, more than 2 million individuals in socioeconomically disadvantaged environments remain infected by helminth (worm) parasites. Owing to the longevity of the worms and paucity of immunologic controls, these parasites survive for long periods within the bloodstream, lymphatics, and gastrointestinal tract resulting in pathologic conditions such as anemia, cirrhosis, and lymphatic filariasis. Despite infection, an asymptomatic state may be maintained by the host immunoregulatory environment, which involves multiple levels of regulatory cells and cytokines; a breakdown of this regulation is observed in pathological disease. The role of TLR expression and function in relation to intracellular parasites has been documented but limited studies are available for multicellular helminth parasites. In this review, we discuss the unique and shared host effector mechanisms elicited by systemic helminth parasites and their derived products, including the role of TLRs and sphingolipids. Understanding and exploiting the interactions between these parasites and the host regulatory network are likely to highlight new strategies to control both infectious and immunological diseases.
Collapse
|
15
|
Zhang XX, Feng SY, Ma JG, Zheng WB, Yin MY, Qin SY, Zhou DH, Zhao Q, Zhu XQ. Seroprevalence and Risk Factors of Fascioliasis in Yaks, Bos grunniens, from Three Counties of Gansu Province, China. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:89-93. [PMID: 28285513 PMCID: PMC5365270 DOI: 10.3347/kjp.2017.55.1.89] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 11/12/2016] [Accepted: 12/24/2016] [Indexed: 11/26/2022]
Abstract
The aim of this study was to determine the seroprevalence and risk factors of fascioliasis in yaks, Bos grunniens, from 3 counties of Gansu Province in China. A total of 1,584 serum samples, including 974 samples from white yaks from Tianzhu, 464 from black yaks from Maqu, and 146 from black yaks from Luqu County, were collected and analyzed using ELISA to detect IgG antibodies against Fasciola hepatica. The overall F. hepatica seroprevalence was 28.7% (454/1,584), with 29.2% in white yaks (284/974) and 27.9% in black yaks (170/610). The seroprevalence of F. hepatica in yaks from Tianzhu, Luqu, and Maqu was 29.2%, 22.6%, and 29.5%, respectively. Female yaks (30.9%) had higher F. hepatica seroprevalence than male yaks (23.4%). Also, F. hepatica seroprevalence varied by different age group from 24.1% to 33.8%. Further, the seroprevalence ranged from 21.8% to 39.1% over different seasons. Interestingly, the season and age of yaks were associated with F. hepatica infection in yaks in the investigated areas. These findings provided a basis for further studies on this disease in yaks from 3 counties of Gansu Province in northwestern China, which may ultimately support the development of effective control strategies of fascioliasis in these areas.
Collapse
Affiliation(s)
- Xiao-Xuan Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Sheng-Yong Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Jian-Gang Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Wen-Bin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Ming-Yang Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Si-Yuan Qin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Quan Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| |
Collapse
|
16
|
Ziegler AD, Echaubard P, Lee YT, Chuah CJ, Wilcox BA, Grundy-Warr C, Sithithaworn P, Petney TN, Laithevewat L, Ong X, Andrews RH, Ismail T, Sripa B, Khuntikeo N, Poonpon K, Tungtang P, Tuamsuk K. Untangling the Complexity of Liver Fluke Infection and Cholangiocarcinoma in NE Thailand Through Transdisciplinary Learning. ECOHEALTH 2016; 13:316-327. [PMID: 26822781 DOI: 10.1007/s10393-015-1087-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/22/2015] [Accepted: 11/19/2015] [Indexed: 06/05/2023]
Abstract
This study demonstrates how a transdisciplinary learning approach provided new insights for explaining persistent Opisthorchis viverrini infection in northern Thailand, as well as elucidating problems of focusing solely on the parasite as a means of addressing high prevalence of cholangiocarcinoma. Researchers from diverse backgrounds collaborated to design an investigative homestay program for 72 Singaporean and Thai university students in five northeast Thai villages. The students explored how liver fluke infection and potential cholangiocarcinoma development are influenced by local landscape dynamics, aquatic ecology, livelihoods, food culture and health education. Qualitative fieldwork was guided daily by the researchers in a collaborative, co-learning process that led to viewing this health issue as a complex system, influenced by interlinked multidimensional factors. Our transdisciplinary experience has led us to believe that an incomplete understanding of these linkages may reduce the efficacy of interventions. Further, viewing liver fluke infection and cholangiocarcinoma as the same issue is inadvisable. Although O. viverrini infection is an established risk factor for the development of cholangiocarcinoma, multiple factors are known to influence the likelihood of acquiring either. Understanding the importance of the current livelihood transition, landscape modification and the resulting mismatch between local cultures and new socio-ecological settings on cholangiocarcinoma initiation and liver fluke transmission is of critical importance as it may help readjust our view of the respective role of O. viverrini and other socioeconomic risk factors in cholangiocarcinoma etiology and refine intervention strategies. As demonstrated in this study, transdisciplinary approaches have the potential to yield more nuanced perspectives to complex diseases than research that focuses on specific aspects of their epidemiology. They may therefore be valuable when designing effective solutions to context-sensitive diseases such as liver fluke infection and cholangiocarcinoma.
Collapse
Affiliation(s)
- A D Ziegler
- Department of Geography, Faculty of Arts and Social Sciences, National University of Singapore, AS2-04-21, 1 Arts Link, Singapore, 117570, Singapore.
| | - P Echaubard
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Global Health Asia, Faculty of Public Health, Mahidol University, Bangkok, Thailand
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Y T Lee
- Department of Geography, Faculty of Arts and Social Sciences, National University of Singapore, AS2-04-21, 1 Arts Link, Singapore, 117570, Singapore
| | - C J Chuah
- Department of Geography, Faculty of Arts and Social Sciences, National University of Singapore, AS2-04-21, 1 Arts Link, Singapore, 117570, Singapore
| | - B A Wilcox
- Global Health Asia, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - C Grundy-Warr
- Department of Geography, Faculty of Arts and Social Sciences, National University of Singapore, AS2-04-21, 1 Arts Link, Singapore, 117570, Singapore
| | - P Sithithaworn
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - T N Petney
- Department of Ecology and Parasitology, Karlsruhe Institute of Technology, Kornblumenstrasse 13, Karlsruhe, Germany
- Cholangiocarcinoma Screening and Care Program (CASCAP), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - L Laithevewat
- Office of Prevention and Control 8, Udonthani Province, Thailand
| | - X Ong
- Department of Geography, Faculty of Arts and Social Sciences, National University of Singapore, AS2-04-21, 1 Arts Link, Singapore, 117570, Singapore
| | - R H Andrews
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Screening and Care Program (CASCAP), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - T Ismail
- Department of Geography, Faculty of Arts and Social Sciences, National University of Singapore, AS2-04-21, 1 Arts Link, Singapore, 117570, Singapore
| | - B Sripa
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - N Khuntikeo
- Cholangiocarcinoma Screening and Care Program (CASCAP), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - K Poonpon
- Department of English Language, Faculty of Humanities and Social Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - P Tungtang
- Department of English Language, Faculty of Humanities and Social Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - K Tuamsuk
- Department of English Language, Faculty of Humanities and Social Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
17
|
The omic approach to parasitic trematode research—a review of techniques and developments within the past 5 years. Parasitol Res 2016; 115:2523-43. [DOI: 10.1007/s00436-016-5079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/26/2022]
|
18
|
Angelucci F, Miele AE, Ardini M, Boumis G, Saccoccia F, Bellelli A. Typical 2-Cys peroxiredoxins in human parasites: Several physiological roles for a potential chemotherapy target. Mol Biochem Parasitol 2016; 206:2-12. [PMID: 27002228 DOI: 10.1016/j.molbiopara.2016.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023]
Abstract
Peroxiredoxins (Prxs) are ubiquitary proteins able to play multiple physiological roles, that include thiol-dependent peroxidase, chaperone holdase, sensor of H2O2, regulator of H2O2-dependent signal cascades, and modulator of the immune response. Prxs have been found in a great number of human pathogens, both eukaryotes and prokaryotes. Gene knock-out studies demonstrated that Prxs are essential for the survival and virulence of at least some of the pathogens tested, making these proteins potential drug targets. However, the multiplicity of roles played by Prxs constitutes an unexpected obstacle to drug development. Indeed, selective inhibitors of some of the functions of Prxs are known (namely of the peroxidase and holdase functions) and are here reported. However, it is often unclear which function is the most relevant in each pathogen, hence which one is most desirable to inhibit. Indeed there are evidences that the main physiological role of Prxs may not be the same in different parasites. We here review which functions of Prxs have been demonstrated to be relevant in different human parasites, finding that the peroxidase and chaperone activities figure prominently, whereas other known functions of Prxs have rarely, if ever, been observed in parasites, or have largely escaped detection thus far.
Collapse
Affiliation(s)
- Francesco Angelucci
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Adriana Erica Miele
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Matteo Ardini
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Fulvio Saccoccia
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Andrea Bellelli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
19
|
Fleming JO, Weinstock JV. Clinical trials of helminth therapy in autoimmune diseases: rationale and findings. Parasite Immunol 2015; 37:277-92. [PMID: 25600983 DOI: 10.1111/pim.12175] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/11/2015] [Indexed: 12/26/2022]
Abstract
Some helminths are major human pathogens. Recently, however, increased understanding of the immunoregulatory responses induced by this class of parasites, in combination with epidemiologic and animal studies, suggests that helminths may have therapeutic potential in autoimmune diseases (AD) and other conditions. This article reviews the rationale for and results of clinical trials to test the safety and efficacy of helminth therapy in AD. Also discussed are future prospects for investigation and the possibility that helminth treatment may serve as a probe to help reveal the pathogenesis of AD.
Collapse
Affiliation(s)
- J O Fleming
- Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | |
Collapse
|
20
|
Fernández-Boo S, Villalba A, Cao A. Variable protein profiles in extracellular products of the protistan parasite Perkinsus olseni among regions of the Spanish coast. J Invertebr Pathol 2015; 132:233-241. [DOI: 10.1016/j.jip.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
21
|
Wedrychowicz H. Antiparasitic DNA vaccines in 21st century. Acta Parasitol 2015; 60:179-89. [PMID: 26203983 PMCID: PMC7088677 DOI: 10.1515/ap-2015-0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022]
Abstract
Demands for effective vaccines to control parasitic diseases of humans and livestock have been recently exacerbated by the development of resistance of most pathogenic parasites to anti-parasitic drugs. Novel genomic and proteomic technologies have provided opportunities for the discovery and improvement of DNA vaccines which are relatively easy as well as cheap to fabricate and stable at room temperatures. However, their main limitation is rather poor immunogenicity, which makes it necessary to couple the antigens with adjuvant molecules. This paper review recent advances in the development of DNA vaccines to some pathogenic protozoa and helminths. Numerous studies were conducted over the past 14 years of 21st century, employing various administration techniques, adjuvants and new immunogenic antigens to increase efficacy of DNA vaccines. Unfortunately, the results have not been rewarding. Further research is necessary using more extensive combinations of antigens; alternate delivery systems and more efficient adjuvants based on knowledge of the immunomodulatory capacities of parasitic protozoa and helminths.
Collapse
MESH Headings
- Animals
- Disease Transmission, Infectious/prevention & control
- Drug Discovery/trends
- Helminthiasis/immunology
- Helminthiasis/prevention & control
- Helminthiasis/transmission
- Helminthiasis, Animal/immunology
- Helminthiasis, Animal/prevention & control
- Helminthiasis, Animal/transmission
- Humans
- Protozoan Infections/immunology
- Protozoan Infections/prevention & control
- Protozoan Infections/transmission
- Protozoan Infections, Animal/immunology
- Protozoan Infections, Animal/prevention & control
- Protozoan Infections, Animal/transmission
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, DNA/isolation & purification
Collapse
Affiliation(s)
- Halina Wedrychowicz
- Department of Molecular Biology, Laboratory of Molecular Parasitology, W. Stefański Institute Parasitology, Polish Academy of Sciences, 51/55 Twarda St., 00-818 Warsaw, Poland
| |
Collapse
|
22
|
Falcón CR, Masih D, Gatti G, Sanchez MC, Motrán CC, Cervi L. Fasciola hepatica Kunitz type molecule decreases dendritic cell activation and their ability to induce inflammatory responses. PLoS One 2014; 9:e114505. [PMID: 25486609 PMCID: PMC4259355 DOI: 10.1371/journal.pone.0114505] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/10/2014] [Indexed: 12/04/2022] Open
Abstract
The complete repertoire of proteins with immunomodulatory activity in Fasciola hepatica (Fh) has not yet been fully described. Here, we demonstrated that Fh total extract (TE) reduced LPS-induced DC maturation, and the DC ability to induce allogeneic responses. After TE fractionating, a fraction lower than 10 kDa (F<10 kDa) was able to maintain the TE properties to modulate the DC pro- and anti-inflammatory cytokine production induced by LPS. In addition, TE or F<10 kDa treatment decreased the ability of immature DC to stimulate the allogeneic responses and induced a novo allogeneic CD4+CD25+Foxp3+ T cells. In contrast, treatment of DC with T/L or F<10 kDa plus LPS (F<10/L) induced a regulatory IL-27 dependent mechanism that diminished the proliferative and Th1 and Th17 allogeneic responses. Finally, we showed that a Kunitz type molecule (Fh-KTM), present in F<10 kDa, was responsible for suppressing pro-inflammatory cytokine production in LPS-activated DC, by printing tolerogenic features on DC that impaired their ability to induce inflammatory responses. These results suggest a modulatory role for this protein, which may be involved in the immune evasion mechanisms of the parasite.
Collapse
Affiliation(s)
- Cristian R. Falcón
- Department of Biological Chemistry, Faculty of Chemical Sciences, National University of Cordoba, CIQUIBIC-CONICET, Córdoba, Argentina
| | - Diana Masih
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, National University of Cordoba, CIBICI-CONICET, Córdoba, Argentina
| | - Gerardo Gatti
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, National University of Cordoba, CIBICI-CONICET, Córdoba, Argentina
- Foundation for the advancement of Medicine, Córdoba, Argentina
| | - María Cecilia Sanchez
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, National University of Cordoba, CIBICI-CONICET, Córdoba, Argentina
| | - Claudia C. Motrán
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, National University of Cordoba, CIBICI-CONICET, Córdoba, Argentina
| | - Laura Cervi
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, National University of Cordoba, CIBICI-CONICET, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
23
|
Alvarado R, O'Brien B, Tanaka A, Dalton JP, Donnelly S. A parasitic helminth-derived peptide that targets the macrophage lysosome is a novel therapeutic option for autoimmune disease. Immunobiology 2014; 220:262-9. [PMID: 25466586 DOI: 10.1016/j.imbio.2014.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/24/2022]
Abstract
Parasitic worms (helminths) reside in their mammalian hosts for many years. This is attributable, in part, to their ability to skew the host's immune system away from pro-inflammatory responses and towards anti-inflammatory or regulatory responses. This immune modulatory ability ensures helminth longevity within the host, while simultaneously minimises tissue destruction for the host. The molecules that the parasite releases clearly exert potent immune-modulatory actions, which could be exploited clinically, for example in the prophylactic and therapeutic treatment of pro-inflammatory and autoimmune diseases. We have identified a novel family of immune-modulatory proteins, termed helminth defence molecules (HDMs), which are secreted by several medically important helminth parasites. These HDMs share biochemical and structural characteristics with mammalian cathelicidin-like host defence peptides (HDPs), which are significant components of the innate immune system. Like their mammalian counterparts, parasite HDMs block the activation of macrophages via toll like receptor (TLR) 4 signalling, however HDMs are significantly less cytotoxic than HDPs. HDMs can traverse the cell membrane of macrophages and enter the endolysosomal system where they reduce the acidification of lysosomal compartments by inhibiting vacuolar (v)-ATPase activity. In doing this, HDMs can modulate critical cellular functions, such as cytokine secretion and antigen processing/presentation. Here, we review the role of macrophages, specifically their lysosomal mediated activities, in the initiation and perpetuation of pro-inflammatory immune responses. We also discuss the potential of helminth defence molecules (HDMs) as therapeutics to counteract the pro-inflammatory responses underlying autoimmune disease. Given the current lack of effective, non-cytotoxic treatment options to limit the progression of autoimmune pathologies, HDMs open novel treatment avenues.
Collapse
Affiliation(s)
- Raquel Alvarado
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Sydney, NSW, Australia
| | - Bronwyn O'Brien
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Sydney, NSW, Australia
| | - Akane Tanaka
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Sydney, NSW, Australia
| | - John P Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University, Belfast, Belfast, Northern Ireland, UK
| | - Sheila Donnelly
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Sydney, NSW, Australia; The i3 Institute, University of Technology, Sydney, Sydney, NSW, Australia.
| |
Collapse
|
24
|
McNeilly TN, Nisbet AJ. Immune modulation by helminth parasites of ruminants: implications for vaccine development and host immune competence. ACTA ACUST UNITED AC 2014; 21:51. [PMID: 25292481 PMCID: PMC4189095 DOI: 10.1051/parasite/2014051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 09/21/2014] [Indexed: 12/20/2022]
Abstract
Parasitic helminths reside in immunologically-exposed extracellular locations within their hosts, yet they are capable of surviving for extended periods. To enable this survival, these parasites have developed complex and multifaceted mechanisms to subvert or suppress host immunity. This review summarises current knowledge of immune modulation by helminth parasites of ruminants and the parasite-derived molecules involved in driving this modulation. Such immunomodulatory molecules have considerable promise as vaccine targets, as neutralisation of their function is predicted to enhance anti-parasite immunity and, as such, current knowledge in this area is presented herein. Furthermore, we summarise current evidence that, as well as affecting parasite-specific immunity, immune modulation by these parasites may also affect the ability of ruminant hosts to control concurrent diseases or mount effective responses to vaccination.
Collapse
Affiliation(s)
- Tom N McNeilly
- Disease Control, Moredun Research Institute, Pentlands Science Park, EH26 OPZ, UK
| | - Alasdair J Nisbet
- Vaccines and Diagnostics, Moredun Research Institute, Pentlands Science Park, EH26 OPZ, UK
| |
Collapse
|
25
|
Comparative community-level associations of helminth infections and microparasite shedding in wild long-tailed macaques in Bali, Indonesia. Parasitology 2014; 142:480-9. [PMID: 25249163 DOI: 10.1017/s0031182014001462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Helminthes have the capacity to modulate host immunity, leading to positive interactions with coinfecting microparasites. This phenomenon has been primarily studied during coinfections with a narrow range of geo-helminthes and intracellular microparasites in human populations or under laboratory conditions. Far less is known regarding differences in coinfection dynamics between helminth types, the range of microparasites that might be affected or the overall community-level effects of helminth infections on microparasites in wild systems. Here, we analysed the presence/absence and abundance patterns of enteric parasites in long-tailed macaques (Macaca fascicularis) on the island of Bali, Indonesia, to assess whether naturally occurring helminth infections were associated with increased shedding of the most common intracellular (Cryptosporidium spp., Isospora spp.) and extracellular (Entamoeba spp., Giardia spp.) microparasites. We also comparatively assessed the statistical correlations of different helminth taxa with microparasite shedding to determine if there were consistent relationships between the specific helminth taxa and microparasites. Helminth infections were associated with increased shedding of both intracellular and extracellular microparasites. Platyhelminthes repeatedly displayed strong positive correlations with several microparasites; while nematodes did not. Our results indicate that helminthes can influence microparasite community shedding dynamics under wild conditions, but that trends may be driven by a narrow range of helminthes.
Collapse
|
26
|
Silva JPE, Furtado AP, Santos JND. Ortleppascaris sp. and your host Rhinella marina: A proteomic view into a nematode-amphibian relationship. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2014; 3:118-23. [PMID: 25161910 PMCID: PMC4142271 DOI: 10.1016/j.ijppaw.2014.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 12/19/2022]
Abstract
Rhinella marina is a synanthropic amphibian that offers great possibilities for the study of parasite–host relations. A complex protein profile, including neuroendocrine proteins indicating intense stress in the liver of the host. Important aspects of the host’s immune response plasticity are shown. This study contributes to knowledge of the biochemical aspects of the helminth–host interface.
The success of the helminth–host relationship depends on a biochemical molecular arsenal. Perhaps the proteome is the largest and most important set of this weaponry, in which the proteins have a crucial role in vital processes to the parasite/host relationship, from basic metabolism and energy production to complex immune responses. Nowadays, the bioproducts expressed by the parasites are under the “spotlight” of immunoassays and biochemical analysis in helminthology, especially in proteomic analysis, which has provided valuable information about the physiology of the infecting agent. Looking into this point of view, why not turn to the infected agent as well? This study characterised the proteomic profile of fluid-filled fibrous cysts of encapsulated Ortleppascaris sp. larvae in the hepatic parenchyma of their intermediate host, the amphibian Rhinella marina. The proteins were separated by two-dimensional electrophoresis and identified by MS with the aid of Peptide Mass Fingerprint. A total of 54 molecules were analysed in this system, revealing a complex protein profile with molecules related to basic metabolic processes of the parasite, energy production, oxi-reduction and oxidative stress processes as well as molecules related to the host response. This study contributes to proteomic studies of protein markers of the development, infectivity, virulence and co-existence of helminths and their hosts.
Collapse
Affiliation(s)
- Jefferson Pereira E Silva
- Laboratory of Cell Biology and Helminthology (Laboratório de Biologia Celular e Helmintologia) "Profa. Dra. Reinalda Marisa Lanfredi", Biological Sciences Institute (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Adriano Penha Furtado
- Laboratory of Cell Biology and Helminthology (Laboratório de Biologia Celular e Helmintologia) "Profa. Dra. Reinalda Marisa Lanfredi", Biological Sciences Institute (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Jeannie Nascimento Dos Santos
- Laboratory of Cell Biology and Helminthology (Laboratório de Biologia Celular e Helmintologia) "Profa. Dra. Reinalda Marisa Lanfredi", Biological Sciences Institute (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| |
Collapse
|
27
|
Haçarız O, Baykal AT, Akgün M, Kavak P, Sağıroğlu MŞ, Sayers GP. Generating a detailed protein profile of Fasciola hepatica during the chronic stage of infection in cattle. Proteomics 2014; 14:1519-30. [PMID: 24733753 DOI: 10.1002/pmic.201400012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/11/2014] [Accepted: 03/27/2014] [Indexed: 12/12/2022]
Abstract
Fasciola hepatica is a trematode helminth causing a damaging disease, fasciolosis, in ruminants and humans. Comprehensive proteomic studies broaden our knowledge of the parasite's protein profile, and provide new insights into the development of more effective strategies to deal with fasciolosis. The objective of this study was to generate a comprehensive profile of F. hepatica proteins expressed during the chronic stage of infection in cattle by building on previous efforts in this area. The approach included an improved sample preparation procedure for surface and internal layers of the parasite, the application of nano-UPLC-ESI-qTOF-MS (nano-ultra-performance LC and ESI quadrupole TOF MS) integrated with different acquisition methods and in silico database search against various protein databases and a transcript database including a new assembly of publically available EST. Of a total of 776 identified proteins, 206 and 332 were specific to the surface and internal layers of the parasite, respectively. Furthermore, 238 proteins were common to both layers, with comparative differences of 172 proteins detected. Specific proteins not previously identified in F. hepatica, but shown to be immunomodulatory or potential drug targets for other parasites, are discussed.
Collapse
Affiliation(s)
- Orçun Haçarız
- TÜBİTAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, Gebze, Kocaeli, Turkey
| | | | | | | | | | | |
Collapse
|
28
|
Harnett W. Secretory products of helminth parasites as immunomodulators. Mol Biochem Parasitol 2014; 195:130-6. [PMID: 24704440 DOI: 10.1016/j.molbiopara.2014.03.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 12/28/2022]
Abstract
Parasitic helminths release molecules into their environment, which are generally referred to as excretory-secretory products or ES. ES derived from a wide range of nematodes, trematodes and cestodes have been studied during the past 30-40 years, their characterization evolving from simple biochemical procedures such as SDS-PAGE in the early days to sophisticated proteomics in the 21st century. Study has incorporated investigation of ES structure, potential as vaccines, immunodiagnostic utility, functional activities and immunomodulatory properties. Immunomodulation by ES is increasingly the area of most intensive research with a number of defined helminth products extensively analyzed with respect to the nature of their selective effects on cells of the immune system as well as the molecular mechanisms, which underlie these immunomodulatory effects. As a consequence, we are now beginning to learn the identities of the receptors that ES employ and are increasingly acquiring detailed knowledge of the signalling pathways that they interact with and subvert. Such information is contributing to the growing idea that the anti-inflammatory properties of a number of ES products makes them suitable starting points for the development of novel drugs for treating human inflammatory disease.
Collapse
Affiliation(s)
- William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
29
|
Garza-Cuartero L, Garcia-Campos A, Zintl A, Chryssafidis A, O’Sullivan J, Sekiya M, Mulcahy G. The Worm Turns. Vet Pathol 2014; 51:385-92. [DOI: 10.1177/0300985813519655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A reductionist approach to the study of infection does not lend itself to an appraisal of the interactions that occur between 2 or more organisms that infect a host simultaneously. In reality, hosts are subject to multiple simultaneous influences from multiple pathogens along the spectrum from symbiotic microflora to virulent pathogen. In this review, we draw from our own work on Fasciola hepatica and that of others studying helminth co-infection to give examples of how such interactions can influence not only the outcome of infection but also its diagnosis and control. The new tools of systems biology, including both the “omics” approaches and mathematical biology, have significant promise in unraveling the as yet largely unexplored complexities of co-infection.
Collapse
Affiliation(s)
- L. Garza-Cuartero
- School of Veterinary Medicine and Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Veterinary Sciences Centre, Belfield, Dublin, Ireland
| | - A. Garcia-Campos
- School of Veterinary Medicine and Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Veterinary Sciences Centre, Belfield, Dublin, Ireland
| | | | - A. Chryssafidis
- School of Veterinary Medicine and Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Veterinary Sciences Centre, Belfield, Dublin, Ireland
| | - J. O’Sullivan
- School of Veterinary Medicine and Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Veterinary Sciences Centre, Belfield, Dublin, Ireland
| | - M. Sekiya
- School of Veterinary Medicine and Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Veterinary Sciences Centre, Belfield, Dublin, Ireland
| | - G. Mulcahy
- School of Veterinary Medicine and Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Veterinary Sciences Centre, Belfield, Dublin, Ireland
| |
Collapse
|
30
|
Villa-Mancera A, Reynoso-Palomar A, Utrera-Quintana F, Carreón-Luna L. Cathepsin L1 mimotopes with adjuvant Quil A induces a Th1/Th2 immune response and confers significant protection against Fasciola hepatica infection in goats. Parasitol Res 2013; 113:243-50. [PMID: 24218177 DOI: 10.1007/s00436-013-3650-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/09/2013] [Indexed: 12/01/2022]
Abstract
Thirty goats were randomly allocated in five groups of six animals each, for immunization with 1 × 10(14) phage particles of clones 11, 13, and 13 with Quil A adjuvant and wild-type M13KE phage at the beginning and 4 weeks later. The control group received phosphate-buffered saline. All groups were challenged with 200 metacercariae at week 6 and slaughtered 14 weeks later. The mean worm burdens after challenge were reduced by 46.91% and 79.53% in goats vaccinated with clones 13 and 13 with Quil A (P < 0.05), respectively; no effect was observed in animals immunized with clone 11 and M13KE phage. Animals receiving clones 11, 13, and 13 with Quil A showed a significant reduction in eggs output. Vaccinated animals produced parasite-specific total IgG antibody which were boosted after challenge with metacercariae of F. hepatica. Furthermore, levels of anti-phage total IgG increased rapidly within 2 weeks of the first vaccination and were always significantly higher in all vaccinated goats than in the infected control group. The fluke burden of goats immunized with clones 13 and 13 with Quil A was significantly correlated with IgG2 and total IgG. Goats vaccinated with phage clones produced significantly high titres of IgG1 and IgG2 antibodies indicating a mixed Th1/Th2 response. These data indicate that cathepsin L1 mimotopes has a potential as a vaccine candidate against Fasciola hepatica, whose efficacy will be evaluated in other host species, including those of veterinary importance.
Collapse
Affiliation(s)
- Abel Villa-Mancera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, 4 Sur 304 Col. Centro, CP 75482, Tecamachalco Puebla, Mexico,
| | | | | | | |
Collapse
|
31
|
Robinson MW, Donnelly S, Dalton JP. Helminth defence molecules-immunomodulators designed by parasites! Front Microbiol 2013; 4:296. [PMID: 24101918 PMCID: PMC3787197 DOI: 10.3389/fmicb.2013.00296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/14/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mark W Robinson
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast Belfast, Northern Ireland
| | | | | |
Collapse
|
32
|
Magen E, Bychkov V, Ginovker A, Kashuba E. Chronic Opisthorchis felineus infection attenuates atherosclerosis--an autopsy study. Int J Parasitol 2013; 43:819-24. [PMID: 23792298 DOI: 10.1016/j.ijpara.2013.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 02/04/2023]
Abstract
Previously, we proposed a hypothesis that chronic helminthic infection may have beneficial effects on the development of atherosclerosis. The aim of this study was to investigate an association between Opisthorchis felineus chronic helminthic infections with aortic atherosclerosis and serum total cholesterol. A series of medico-legal autopsy specimens collected in Khanty-Mansiisk (the region in Russia endemic for O. felineus) were studied to assess O. felineus worm burden in cadaver livers. The areas of atherosclerotic lesions in the cadaver aortas were measured by visual planimetry. A family history of cardiovascular disease, smoking, hypertension or diabetes was elicited, and serum total cholesterol levels examined. Three hundred and nineteen cadavers (280 (87.8%) males and 39 (12.2%) females) aged 20-72 years were divided into five age groups: (i) 20-29, (ii) 30-39, (iii) 40-49, (iv) 50-59 and (v) >60 years old. The O. felineus mean worm burden was 257±312 worms/liver. Infected subjects were categorised into three subgroups depending on the worm burden: mild (<100 worms), moderate (100-500 worms) and severe (>500 worms). Infected subjects had lower serum total cholesterol (mild worm burden, 186.4±25.6 mg/dl; moderate worm burden, 183.4±23.1mg/dl, P=0.002; severe worm burden, 170.6±25.1mg/dl, P<0.001) than non-infected subjects (201.1±21.2 mg/dl). The average percentage of aortic surface covered by fatty streaks, fibrotic plaques and complicated lesions was negatively related to worm burden in the infected subjects. Chronic helminthic infections was a negative predictor of aortic atherosclerosis; with an odds ratio of 1.72 (1.02-2.91), P=0.041 for all subjects; and 3.19 (1.35-7.58), P=0.008 for subjects aged >40 years old. Opisthorchis felineus chronic helminthic infectionswas found to be associated with lower serum total cholesterol levels and a significant attenuation of atherosclerosis.
Collapse
Affiliation(s)
- Eli Magen
- Allergy and Clinical Immunology Unit, Barzilai Medical Center, Ben-Gurion University of the Negev, Ashkelon, Israel.
| | | | | | | |
Collapse
|
33
|
Dalton JP, Robinson MW, Mulcahy G, O'Neill SM, Donnelly S. Immunomodulatory molecules of Fasciola hepatica: candidates for both vaccine and immunotherapeutic development. Vet Parasitol 2013; 195:272-85. [PMID: 23623183 DOI: 10.1016/j.vetpar.2013.04.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The liver fluke, Fasciola hepatica, causes fascioliasis in domestic animals (sheep, cattle), a global disease that is also an important infection of humans. As soon as the parasite invades the gut wall its interaction with various host immune cells (e.g. dendritic cells, macrophages and mast cells) is complex. The parasite secretes a myriad of molecules that direct the immune response towards a favourable non-protective Th2-mediate/regulatory environment. These immunomodulatory molecules, such as cathepsin L peptidase (FhCL1), are under development as the first generation of fluke vaccines. However, this peptidase and other molecules, such as peroxiredoxin (FhPrx) and helminth defence molecule (FhHDM-1), exhibit various immunomodulatory properties that could be harnessed to help treat immune-related conditions in humans and animals.
Collapse
Affiliation(s)
- John P Dalton
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, St. Anne de Bellevue, Quebec H9X 3V9, Canada.
| | | | | | | | | |
Collapse
|