1
|
Hu W, Wang J, Li J, Yang M, Li Z, Zhang X, Wu F, Zhang Y, Luo Z, Xu H. Improvement of duplex-specific nuclease salt tolerance by fusing DNA-binding domain of DNase from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix. Extremophiles 2023; 27:11. [PMID: 37178420 DOI: 10.1007/s00792-023-01296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Salt tolerance is an important property of duplex-specific nuclease (DSN). DSN with high salt tolerance can be more widely used in genetic engineering, especially in the production of nucleic acid drugs. To improve the salt tolerance of DSN, we selected five DNA-binding domains from extremophilic organisms, which have been shown the ability to improve salt tolerance of DNA polymerases and nucleases. The experimental results demonstrated that the fusion protein TK-DSN produced by fusing a N-terminal DNA-binding domain, which comprised two HhH (helix-hairpin-helix) motifs domain from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix, has a significantly improved salt tolerance. TK-DSN can tolerate the concentration of NaCl up to 800 mM; in addition, the ability of digesting DNA was also enhanced during in vitro transcription and RNA purification. This strategy provides the method for the personalized customization of biological tool enzymes for different applications.
Collapse
Affiliation(s)
- Wenhao Hu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jin Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Juan Li
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, Wuhan, 430040, China
| | - Mengxia Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhixing Li
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xuning Zhang
- Jiangsu BestEnzymes Biotech Co. Ltd, Lianyungang, 222005, China
| | - Fang Wu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yaqi Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhidan Luo
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Henghao Xu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
2
|
Liu Y, Wang X, Luo X, Wang R, Zhai B, Wang P, Li J, Yang X. Transcriptomics and Proteomics of Haemonchus contortus in Response to Ivermectin Treatment. Animals (Basel) 2023; 13:ani13050919. [PMID: 36899776 PMCID: PMC10000067 DOI: 10.3390/ani13050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
A major problem faced by the agricultural industry is the resistance of Haemonchus contortus to anthelmintic drugs. For a better understanding of the response of H. contortus to IVM and for the screening of drug-resistance-related genes, we used RNA sequencing and isobaric tags for relative and absolute quantification (iTRAQ) technology to detect the transcriptomic and proteomic changes in H. contortus after ivermectin treatment. An integrated analysis of the two omics showed that the differentially expressed genes and proteins were significantly enriched in the pathways of amino acid degradation, the metabolism of xenobiotics by cytochrome P450, the biosynthesis of amino acids, and the tricarboxylic acid cycle. We found that the upregulated UDP-glycosyltransferases (UGT), glutathione S-transferase (GST), cytochrome P450 (CYP), and p-glycoprotein (Pgp) genes play important roles in drug resistance in H. contortus. Our work will help in the understanding of the transcriptome and proteome changes in H. contortus after IVM and will facilitate the discovery of genes related to drug resistance. This information can be further applied to increase the understanding of the response of IVM in relation to H. contortus.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaomin Wang
- The Bureau of Agriculture and Animal Husbandry of Kalaqin Banner, Chifeng 024400, China
- Correspondence: (X.W.); (X.Y.)
| | - Xiaoping Luo
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou 730050, China
| | - Penglong Wang
- Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junyan Li
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China
| | - Xiaoye Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (X.W.); (X.Y.)
| |
Collapse
|
3
|
The Use of Molecular Profiling to Track Equine Reinfection Rates of Cyathostomin Species Following Anthelmintic Administration. ANIMALS : AN OPEN ACCESS JOURNAL FROM MDPI 2021; 11:ani11051345. [PMID: 34065099 PMCID: PMC8150961 DOI: 10.3390/ani11051345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary
Cyathostomins (small strongyles) are a multispecies group of intestinal parasites in horses and the main target of deworming efforts by horse owners. It is not known whether species of cyathostomins have individual responses to dewormers. The objective of this study was to identify differences between cyathostomin species in reemergence rates following commercial dewormer treatment. This study used gene sequencing to profile the presence/absence of cyathostomin species in fecal samples at 2-week intervals following deworming to determine how quickly each species reinfected horses. Moxidectin was found to be the most effective at slowing the overall reemergence of these parasites, followed by Ivermectin, then Pyrantel. Seven species were resistant to all three deworming products. This study demonstrates that dewormer sensitivity differs between cyathostomin species, which could lead to more targeted control measures. Abstract Cyathostomins are a multispecies parasite ubiquitous in Equids. Cyathostomins have developed resistance to all but one class of anthelmintics, but species-level sensitivity to anthelmintics has not been shown. This study measured reinfection rates of cyathostomin species following the administration of three commercial dewormers. Nine treated horses were compared with 90 untreated controls during June-September 2017–2019. Ivermectin (IVM) (n = 6), Moxidectin (MOX) (n = 8) or Pyrantel (PYR) (n = 8) were orally administered. Fecal samples were collected every 14 d for 98 d. Fecal egg count reductions (FECR) were calculated using a modified McMaster technique. Nineteen cyathostomin species were identified by 5.8S-ITS-2 profiling using amplicon sequencing. Data were analyzed in QIIME1 and R statistical software using presence/absence methods. MOX had the lowest numbers of species present over the time course, followed by PYR then IVM (7.14, 10.17, 11.09, respectively); however, FECR was fastest for PYR. The presence of seven species: Coronocyclus labiatus, Cyathostomum catinatum, Cyathostomum tetracanthum, Cylicocylus elongatus, Cylicodontophorus bicoronatus, Cylicostephanus minutus, and Cylicostephanus goldi were unaffected by treatment (p > 0.05) points to species-specific differences in dewormer sensitivity and environmental persistence. Identifying resistance patterns at the species level will enable mechanistic understandings of cyathostomin anthelmintic resistance and targeted approaches to control them.
Collapse
|
4
|
Anthelmintic resistance and novel control options in equine gastrointestinal nematodes. Parasitology 2018; 146:425-437. [DOI: 10.1017/s0031182018001786] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractControl of equine nematodes has relied on benzimidazoles (BZs), tetrahydropyrimidines and macrocyclic lactones. The intensive use of anthelmintics has led to the development of anthelmintic resistance (AR) in equine cyathostomins and Parascaris equorum. Field studies indicate that BZ and pyrantel resistance is widespread in cyathostomins and there are also increasing reports of resistance to macrocyclic lactones in cyathostomins and P. equorum. The unavailability of reliable laboratory-based techniques for detecting resistance further augments the problem of nematode control in horses. The only reliable test used in horses is the fecal egg count reduction test; therefore, more focus should be given to develop and validate improved methodologies for diagnosing AR at an early stage, as well as determining the mechanisms involved in resistance development. Therefore, equine industry and researchers should devise and implement new strategies for equine worm control, such as the use of bioactive pastures or novel feed additives, and control should increasingly incorporate alternative and evidence-based parasite control strategies to limit the development of AR. This review describes the history and prevalence of AR in equine nematodes, along with recent advances in developing resistance diagnostic tests and worm control strategies in horses, as well as giving some perspective on recent research into novel control strategies.
Collapse
|
5
|
Jex AR, Gasser RB, Schwarz EM. Transcriptomic Resources for Parasitic Nematodes of Veterinary Importance. Trends Parasitol 2018; 35:72-84. [PMID: 30529253 DOI: 10.1016/j.pt.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Parasitic nematodes are important pathogens of animals, causing diseases that impact on agricultural production worldwide. Research on these worms has been constrained by a lack of genetic and genomic tools. Nonetheless, over the past decade this field has made substantial advances, many of which have been led by transcriptomic sequencing. The present review summarises major transcriptomic studies of veterinary parasitic nematodes in recent years, and comments on overarching themes stemming from this work that inform our understanding of parasitism. Finally, we comment on current, state-of-the-art informatic tools for the analysis of complex worm transcriptomes to extract maximum the molecular information from them.
Collapse
Affiliation(s)
- Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Erich M Schwarz
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
6
|
Stoltzfus JD, Pilgrim AA, Herbert DR. Perusal of parasitic nematode 'omics in the post-genomic era. Mol Biochem Parasitol 2016; 215:11-22. [PMID: 27887974 DOI: 10.1016/j.molbiopara.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023]
Abstract
The advent of high-throughput, next-generation sequencing methods combined with advances in computational biology and bioinformatics have greatly accelerated discovery within biomedical research. This "post-genomics" era has ushered in powerful approaches allowing one to quantify RNA transcript and protein abundance for every gene in the genome - often for multiple conditions. Herein, we chronicle how the post-genomics era has advanced our overall understanding of parasitic nematodes through transcriptomics and proteomics and highlight some of the important advances made in each major nematode clade. We primarily focus on organisms relevant to human health, given that nematode infections significantly impact disability-adjusted life years (DALY) scores within the developing world, but we also discuss organisms of veterinary importance as well as those used as laboratory models. As such, we envision that this review will serve as a comprehensive resource for those seeking a better understanding of basic parasitic nematode biology as well as those interested in targets for vaccination and pharmacological intervention.
Collapse
Affiliation(s)
- Jonathan D Stoltzfus
- Department of Biology, Millersville University, Millersville, PA, United States.
| | - Adeiye A Pilgrim
- Emory University School of Medicine MD/PhD Program, Atlanta, GA, United States
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Cunha MV, Inácio J, Freimanis G, Fusaro A, Granberg F, Höper D, King DP, Monne I, Orton R, Rosseel T. Next-generation sequencing in veterinary medicine: how can the massive amount of information arising from high-throughput technologies improve diagnosis, control, and management of infectious diseases? Methods Mol Biol 2014; 1247:415-36. [PMID: 25399113 PMCID: PMC7123048 DOI: 10.1007/978-1-4939-2004-4_30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of high-throughput molecular technologies and associated bioinformatics has dramatically changed the capacities of scientists to produce, handle, and analyze large amounts of genomic, transcriptomic, and proteomic data. A clear example of this step-change is represented by the amount of DNA sequence data that can be now produced using next-generation sequencing (NGS) platforms. Similarly, recent improvements in protein and peptide separation efficiencies and highly accurate mass spectrometry have promoted the identification and quantification of proteins in a given sample. These advancements in biotechnology have increasingly been applied to the study of animal infectious diseases and are beginning to revolutionize the way that biological and evolutionary processes can be studied at the molecular level. Studies have demonstrated the value of NGS technologies for molecular characterization, ranging from metagenomic characterization of unknown pathogens or microbial communities to molecular epidemiology and evolution of viral quasispecies. Moreover, high-throughput technologies now allow detailed studies of host-pathogen interactions at the level of their genomes (genomics), transcriptomes (transcriptomics), or proteomes (proteomics). Ultimately, the interaction between pathogen and host biological networks can be questioned by analytically integrating these levels (integrative OMICS and systems biology). The application of high-throughput biotechnology platforms in these fields and their typical low-cost per information content has revolutionized the resolution with which these processes can now be studied. The aim of this chapter is to provide a current and prospective view on the opportunities and challenges associated with the application of massive parallel sequencing technologies to veterinary medicine, with particular focus on applications that have a potential impact on disease control and management.
Collapse
Affiliation(s)
- Mónica V. Cunha
- Instituto Nacional de Investigação Agrária e Veterinária, IP and Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - João Inácio
- Instituto Nacional de Investigação Agrária e Veterinária, IP, Lisboa, Portugal and School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|