1
|
Validating Immunomodulatory Responses of r- LdODC Protein and Its Derived HLA-DRB1 Restricted Epitopes against Visceral Leishmaniasis in BALB/c Mice. Pathogens 2022; 12:pathogens12010016. [PMID: 36678364 PMCID: PMC9867430 DOI: 10.3390/pathogens12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Vaccination is considered the most appropriate way to control visceral leishmaniasis (VL). With this background, the r-LdODC protein as well as its derived HLA-DRB1-restricted synthetic peptides (P1: RLMPSAHAI, P2: LLDQYQIHL, P3: GLYHSFNCI, P4: AVLEVLSAL, and P5: RLPASPAAL) were validated in BALB/c mice against visceral leishmaniasis. The study was initiated by immunization of the r-LdODC protein as well as its derived peptides cocktail with adjuvants (r-CD2 and MPL-A) in different mice groups, separately. Splenocytes isolated from the challenged and differentially immunized mice group exhibited significantly higher IFN-γ secretion, which was evidenced by the increase in the expression profile of intracellular CD4+IFN-γ T cells. However, the IL-10 secretion did not show a significant increase against the protein and peptide cocktail. Subsequently, the study confirmed the ability of peptides as immunoprophylactic agents, as the IE-I/AD-I molecule overexpressed on monocytes and macrophages of the challenged mice group. The parasitic load in macrophages of the protein and peptides cocktail immunized mice groups, and T cell proliferation rate, further established immunoprophylactic efficacy of the r-LdODC protein and peptide cocktail. This study suggests that the r-LdODC protein, as well as its derived HLA-DRB1-restricted synthetic peptides, have immunoprophylactic potential and can activate other immune cells' functions towards protection against visceral leishmaniasis. However, a detailed study in a humanized mice model can explore its potential as a vaccine candidate.
Collapse
|
2
|
Ramu D, Singh S. Potential molecular targets of Leishmania pathways in developing novel antileishmanials. Future Microbiol 2021; 17:41-57. [PMID: 34877877 DOI: 10.2217/fmb-2021-0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The illness known as leishmaniasis has not become a household name like malaria, although it stands as the second-largest parasitic disease, surpassed only by malaria. As no licensed vaccine is available, treatment for leishmaniasis mostly relies on chemotherapy. Inefficiency and drug resistance are the major impediments in current therapeutics. In this scenario, identification of novel molecular drug candidates is indispensable to develop robust antileishmanials. The exploration of structure-based drugs to target enzymes/molecules of Leishmania which differ structurally/functionally from their equivalents in mammalian hosts not only helps in developing a new class of antileishmanials, but also paves the way to understand Leishmania biology. This review provides a comprehensive overview on possible drug candidates relating to various Leishmania molecular pathways.
Collapse
Affiliation(s)
- Dandugudumula Ramu
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
3
|
Pandey RK, Dikhit MR, Lokhande KB, Pandey K, Das P, Bimal S. An immunoprophylactic evaluation of Ld-ODC derived HLA-A0201 restricted peptides against visceral leishmaniasis. J Biomol Struct Dyn 2021; 40:6086-6096. [PMID: 33602055 DOI: 10.1080/07391102.2021.1876773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Five (5) HLA-A 0201 restricted epitopes of ornithine decarboxylase derived from Leishmania donovani (Ld-ODC) were examined by reverse vaccinology to develop prophylactics against visceral leishmaniasis (VL). These consensus epitopes comprising (P1: RLMPSAHAI, P2: LLDQYQIHL, P3: GLYHSFNCI, P4: AVLEVLSAL and P5: RLPASPAAL) were observed and presented by diverse HLA alleles screened by immune-informatics tools. These epitopes were also observed for strong stability for appropriate immune response in in silico screening and molecular dynamics. Top five selected epitopes filtered from population coverage analysis and TAP binding affinity were identified and evaluated against treated cases of VL subjects. Experiments were run individually with synthetic peptides or as the cocktail of peptides. A major population of CD8+ T cells were predominantly IFN-γ producers but not the IL-10 cytokines and shown with granzyme-B activity. Therefore, it can be concluded that the screened HLA-A0201 restricted epitope hotspots derived from Leishmania ODC can trigger CD8+ T cells, which can skew other immune cells functions toward protection. However, a detailed analysis can explore its potentiality as a vaccine candidate.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raj Kishor Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research, Hajipur, India.,Division of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Manas Ranjan Dikhit
- Department of Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Kiran Bharat Lokhande
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Sanjiva Bimal
- Division of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| |
Collapse
|
4
|
Suman SS, Kumar A, Singh AK, Amit A, Topno RK, Pandey K, Das VNR, Das P, Ali V, Bimal S. Dendritic cell engineered cTXN as new vaccine prospect against L. donovani. Cytokine 2020; 145:155208. [PMID: 32736961 DOI: 10.1016/j.cyto.2020.155208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Dendritic cells (DCs), as antigen-presenting cells, can reportedly be infected withLeishmaniaparasites and hence provide a better option to trigger T-cell primary immune responses and immunological memory. We consistently primed DCs during culture with purified recombinant cytosolic tryparedoxin (rcTXN) and then evaluated the vaccine prospect of presentation of rcTXN against VL in BALB/c mice. We reported earlier the immunogenic properties of cTXN antigen derived fromL. donovani when anti-cTXN antibody was detected in the sera of kala-azar patients. It was observed that cTXN antigen, when used as an immunogen with murine DCs acting as a vehicle, was able to induce complete protection against VL in an infected group of immunized mice. This vaccination triggered splenic macrophages to produce more IL-12 and GM-CSF, and restricted IL-10 release to a minimum in an immunized group of infected animals. Concomitant changes in T-cell responses against cTXN antigen were also noticed, which increased the release of protective cytokine-like IFN-γ under the influence of NF-κβ in the indicated vaccinated group of animals. All cTXN-DCs-vaccinated BALB/c mice survived during the experimental period of 120 days. The results obtained in our study suggest that DCs primed with cTXN can be used as a vaccine prospect for the control of visceral leishmaniasis.
Collapse
Affiliation(s)
- Shashi S Suman
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Akhilesh Kumar
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ashish K Singh
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) 495009, India
| | - R K Topno
- Department of Epidemiology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - K Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - V N R Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - P Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Vahab Ali
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India.
| |
Collapse
|
5
|
Pandey R, Dikhit MR, Kumar A, Dehury B, Pandey K, Topno RK, Das P, Bimal S. Evaluating the immunomodulatory responses of LdODC-derived MHC Class-II restricted peptides against VL. Parasite Immunol 2020; 42:e12699. [PMID: 31976563 DOI: 10.1111/pim.12699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022]
Abstract
In a bid to develop a novel immunoprophylactic measure against visceral leishmaniasis (VL), MHC class-II-restricted epitopes of LdODC were identified by reverse vaccinology approach. Five consensus HLA-DRB1*0101-restricted epitopes were screened. The analysis revealed that the set of epitopes was presented by at least 54 diverse MHC class-II alleles. Based on in silico screening, followed by molecular dynamics simulation, population coverage analysis, and HLA cross-presentation ability, five best epitopes were evaluated. PBMCs isolated from treated VL subjects, when stimulated with synthetic peptide alone or as a cocktail of peptides, triggered a secretory IFN-γ, but not the IL-10 level. Support in this notion came from intracellular cytokine level with a considerable up-regulated IFN-γ produced by CD4+ T cells. Also, the enhanced IFN-γ seemed to be augmented with the activation of macrophages with prominent IL-12 production. Therefore, it can be concluded that the screened MHC class-II-restricted epitope hotspots derived from Leishmania ODC can trigger CD4+ T cells, which can skew macrophage functions towards protection. However, a detailed analysis can explore its potentiality as a vaccine candidate.
Collapse
Affiliation(s)
- RajKishor Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research, Hajipur, India.,Division of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Manas Ranjan Dikhit
- Department of Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Avinash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research, Hajipur, India
| | - Budheswar Dehury
- Department of Bioinformatics, ICMR-RMRC, Government of India, Bhubaneswar, India
| | - Krishna Pandey
- Departmentof Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Roshan Kamal Topno
- Departmentof Epidemiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Sanjiva Bimal
- Division of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| |
Collapse
|
6
|
Kwofie SK, Broni E, Dankwa B, Enninful KS, Kwarko GB, Darko L, Durvasula R, Kempaiah P, Rathi B, Miller Iii WA, Yaya A, Wilson MD. Outwitting an Old Neglected Nemesis: A Review on Leveraging Integrated Data-Driven Approaches to Aid in Unraveling of Leishmanicides of Therapeutic Potential. Curr Top Med Chem 2020; 20:349-366. [PMID: 31994465 DOI: 10.2174/1568026620666200128160454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/20/2019] [Accepted: 09/12/2019] [Indexed: 11/22/2022]
Abstract
The global prevalence of leishmaniasis has increased with skyrocketed mortality in the past decade. The causative agent of leishmaniasis is Leishmania species, which infects populations in almost all the continents. Prevailing treatment regimens are consistently inefficient with reported side effects, toxicity and drug resistance. This review complements existing ones by discussing the current state of treatment options, therapeutic bottlenecks including chemoresistance and toxicity, as well as drug targets. It further highlights innovative applications of nanotherapeutics-based formulations, inhibitory potential of leishmanicides, anti-microbial peptides and organometallic compounds on leishmanial species. Moreover, it provides essential insights into recent machine learning-based models that have been used to predict novel leishmanicides and also discusses other new models that could be adopted to develop fast, efficient, robust and novel algorithms to aid in unraveling the next generation of anti-leishmanial drugs. A plethora of enriched functional genomic, proteomic, structural biology, high throughput bioassay and drug-related datasets are currently warehoused in both general and leishmania-specific databases. The warehoused datasets are essential inputs for training and testing algorithms to augment the prediction of biotherapeutic entities. In addition, we demonstrate how pharmacoinformatics techniques including ligand-, structure- and pharmacophore-based virtual screening approaches have been utilized to screen ligand libraries against both modeled and experimentally solved 3D structures of essential drug targets. In the era of data-driven decision-making, we believe that highlighting intricately linked topical issues relevant to leishmanial drug discovery offers a one-stop-shop opportunity to decipher critical literature with the potential to unlock implicit breakthroughs.
Collapse
Affiliation(s)
- Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana.,West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Bismark Dankwa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| | - Kweku S Enninful
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| | - Gabriel B Kwarko
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Louis Darko
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Ravi Durvasula
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Brijesh Rathi
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States.,Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, 110007, India
| | - Whelton A Miller Iii
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States.,Department of Chemistry, Physics, & Engineering, Lincoln University, Lincoln University, PA 19352, United States.,Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Abu Yaya
- Department of Materials Science and Engineering, College of Basic & Applied Sciences, University of Ghana, Legon, Ghana
| | - Michael D Wilson
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States.,Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
7
|
Conceição-Silva F, Morgado FN. Leishmania Spp-Host Interaction: There Is Always an Onset, but Is There an End? Front Cell Infect Microbiol 2019; 9:330. [PMID: 31608245 PMCID: PMC6761226 DOI: 10.3389/fcimb.2019.00330] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023] Open
Abstract
For a long time Leishmaniasis had been considered as a neglected tropical disease. Recently, it has become a priority in public health all over the world for different aspects such as geographic spread, number of population living at risk of infection as well as the potential lethality and/or the development of disfiguring lesions in the, respectively, visceral and tegumentary forms of the disease. As a result, several groups have been bending over this issue and many valuable data have been published. Nevertheless, parasite-host interactions are still not fully known and, consequently, we do not entirely understand the infection dynamics and parasite persistence. This knowledge may point targets for modulation or blockage, being very useful in the development of measures to interfere in the course of infection/ disease and to minimize the risks and morbidity. In the present review we will discuss some aspects of the Leishmania spp-mammalian host interaction in the onset of infection and after the clinical cure of the lesions. We will also examine the information already available concerning the parasite strategy to evade immune response mainly at the beginning of the infection, as well as during the parasite persistence. This knowledge can improve the conditions of treatment, follow-up and cure control of patients, minimizing the potential damages this protozoosis can cause to infected individuals.
Collapse
Affiliation(s)
- Fatima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda N Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Antileishmanial Evaluation of the Leaf Latex of Aloe macrocarpa, Aloin A/B, and Its Semisynthetic Derivatives against Two Leishmania Species. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4736181. [PMID: 30915146 PMCID: PMC6409032 DOI: 10.1155/2019/4736181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/22/2018] [Accepted: 02/10/2019] [Indexed: 02/01/2023]
Abstract
The currently available antileishmanial drugs are either toxic or too expensive for routine use in developing countries where the disease is most common. Local people in the Somalia region of Ethiopia use the leaves of Aloe macrocarpa Todaro for the treatment of malaria, jaundice, and skin diseases. In our ongoing search for new, efficient, and safe antileishmanial drugs, we investigated the leaf latex of Aloe macrocarpa and its acid-hydrolyzed product aloin A/B (1), as well as the semisynthesized derivatives of aloin A/B, namely, aloe-emodin (2) and rhein (3) against promastigotes and axenically cultured amastigotes of Leishmania aethiopica and L. donovani clinical isolates. Activity study was carried out based on the fluorescence characteristic of resazurin added to drug-treated cultures. Oxidative hydrolysis of aloin A/B by ferric chloride and concentrated hydrochloric acid afforded aloe-emodin (2), which was further oxidized using sodium nitrite and concentrated sulfuric acid to furnish rhein (3). Cytotoxicity study of test substances was performed against human monocytic cell line THP-1 using Alamar Blue and cell viability was measured fluorometrically. The test compounds showed lower activity (IC50 = 6.7 to 12.1 μM for promastigotes and IC50 = 3.6 to 10.2 μM for axenic amastigotes) than the reference drug amphotericin B (IC50 = 1.3 to 2.7 μM). However, amphotericin B (LC50 = 11.1 μM) was much more toxic than the test compounds (LC50 = 369.2 – 611.6 μM) towards human monocytic cell line (THP-1) despite its efficiency. As demonstrated in the current study, high selectivity indices (SIs) of the test compounds represent a remarkable advantage over the reference drug and highlight their potential use as templates for further development of safe leishmanicidal drugs.
Collapse
|
9
|
Dikhit MR, Das S, Mahantesh V, Kumar A, Singh AK, Dehury B, Rout AK, Ali V, Sahoo GC, Topno RK, Pandey K, Das VNR, Bimal S, Das P. The potential HLA Class I-restricted epitopes derived from LeIF and TSA of Leishmania donovani evoke anti-leishmania CD8+ T lymphocyte response. Sci Rep 2018; 8:14175. [PMID: 30242172 PMCID: PMC6154976 DOI: 10.1038/s41598-018-32040-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
To explore new protective measure against visceral leishmaniasis, reverse vaccinology approach was employed to identify key immunogenic regions which can mediate long-term immunity. In-depth computational analysis revealed nine promiscuous epitopes which can possibly be presented by 46 human leukocyte antigen, thereby broadening the worldwide population up to 94.16%. This is of reasonable significance that most of the epitopes shared 100% sequence homology with other Leishmania species and could evoke a common pattern of protective immune response. Transporter associated with antigen processing binding affinity, molecular docking approach followed by dynamics simulation and human leukocyte antigen stabilization assay suggested that the best five optimal set of epitopes bind in between α1 and α2 binding groove with sufficient affinity and stability which allows the translocation of intact epitope to the cell surface. Fascinatingly, the human leukocyte antigen stabilization assay exhibited a modest correlation with the positive immunogenicity score predicted by class I pMHC immunogenicity predictor. A support for this notion came from ELISA and FACS analysis where the epitopes as a cocktail induced CD8+ IFN-γ and Granzyme B levels significantly in treated visceral leishmaniasis subject which suggests the immunogenic ability of the selected epitopes.
Collapse
Affiliation(s)
- Manas Ranjan Dikhit
- BioMedical Informatics Division, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India.,Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | - Vijaya Mahantesh
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Akhilesh Kumar
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Ashish Kumar Singh
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Budheswar Dehury
- BioMedical Informatics Centre, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Ajaya Kumar Rout
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Vahab Ali
- Department of Clinical Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Ganesh Chandra Sahoo
- BioMedical Informatics Division, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Roshan Kamal Topno
- Department of Epidemiology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - V N R Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Pradeep Das
- Department of Molecular Parasitology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India.
| |
Collapse
|
10
|
Suman SS, Amit A, Singh KP, Gupta P, Equbal A, Kumari A, Topno RK, Ravidas V, Pandey K, Bimal S, Das P, Ali V. Cytosolic tryparedoxin of Leishmania donovani modulates host immune response in visceral leishmaniasis. Cytokine 2018; 108:1-8. [DOI: 10.1016/j.cyto.2018.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/28/2018] [Accepted: 03/10/2018] [Indexed: 11/24/2022]
|
11
|
Kumar A, Dikhit MR, Amit A, Zaidi A, Pandey RK, Singh AK, Suman SS, Ali V, Das VNR, Pandey K, kumar V, Singh SK, Narayan S, Chourasia HK, Das P, Bimal S. Immunomodulation induced through ornithine decarboxylase DNA immunization in Balb/c mice infected with Leishmania donovani. Mol Immunol 2018; 97:33-44. [DOI: 10.1016/j.molimm.2018.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
|
12
|
Computational elucidation of novel antagonists and binding insights by structural and functional analyses of serine hydroxymethyltransferase and interaction with inhibitors. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2017.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Dikhit MR, Kumar A, Das S, Dehury B, Rout AK, Jamal F, Sahoo GC, Topno RK, Pandey K, Das VNR, Bimal S, Das P. Identification of Potential MHC Class-II-Restricted Epitopes Derived from Leishmania donovani Antigens by Reverse Vaccinology and Evaluation of Their CD4+ T-Cell Responsiveness against Visceral Leishmaniasis. Front Immunol 2017; 8:1763. [PMID: 29312304 PMCID: PMC5735068 DOI: 10.3389/fimmu.2017.01763] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Visceral leishmaniasis (VL) is one of the most neglected tropical diseases for which no vaccine exists. In spite of extensive efforts, no successful vaccine is available against this dreadful infectious disease. To support vaccine development, an immunoinformatics approach was applied to screen potential MHC class-II-restricted epitopes that can activate the immune cells. Initially, 37 epitopes derived from six stage-dependent, overexpressed antigens were predicted, which were presented by at least 26 diverse MHC class-II allele. Based on a population coverage analysis and human leukocyte antigen cross-presentation ability, six of the 37 epitopes were selected for further analysis. Stimulation with synthetic peptide alone or as a cocktail triggered intracellular IFN-γ production. Moreover, specific IgG antibodies were detected in the serum of active VL cases against P1, P4, P5, and P6 in order to evaluate the peptide effect on the humoral immune response. Additionally, most of the peptides, except P2, were found to be non-inducers of CD4+ IL-10 against both active VL as well as treated VL subjects. This finding suggests there is no role of these peptides in the pathogenesis of Leishmania. Peptide immunogenicity was validated in BALB/c mice immunized with a cocktail of synthetic peptide emulsified in complete Freund’s adjuvant/incomplete Freund’s adjuvant. The immunized splenocytes induced strong spleen cell proliferation upon parasite re-stimulation. Furthermore, increased IFN-γ, interleukin-12, IL-17, and IL-22 production augmented with elevated nitric oxide (NO) synthesis is thought to play a crucial role in macrophage activation. In this investigation, we identified six MHC class-II-restricted epitope hotspots of Leishmania antigens that induce CD4+ Th1 and Th17 responses, which could be used to potentiate a human universal T-epitope vaccine against VL.
Collapse
Affiliation(s)
- Manas Ranjan Dikhit
- BioMedical Informatics Division, Rajendra Memorial Research Institute of Medical Sciences, Patna, India.,Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Akhilesh Kumar
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, India
| | - Budheswar Dehury
- Biomedical Informatics Centre, ICMR-Regional Medical Research Centre, Odisha, India
| | - Ajaya Kumar Rout
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Kolkata, India
| | - Fauzia Jamal
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Ganesh Chandra Sahoo
- BioMedical Informatics Division, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Roshan Kamal Topno
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - V N R Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Parasitology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| |
Collapse
|
14
|
Jain V, Jain K. Molecular targets and pathways for the treatment of visceral leishmaniasis. Drug Discov Today 2017; 23:161-170. [PMID: 28919438 DOI: 10.1016/j.drudis.2017.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/28/2017] [Accepted: 09/06/2017] [Indexed: 12/25/2022]
Abstract
Visceral leishmaniasis (VL) represents the most severe form of the tropical disease, leishmaniasis. Treatment of VL is complicated because of the few clinically approved antileishmanial drugs available; emerging resistance to first-line drugs; need for a temperature-controlled 'cold' supply chain; serious toxicity concerns over drugs such as amphotericin B; high cost of medication; and unavailability of clinically approved antileishmanial vaccines. Attacking potential molecular targets, specific to the parasite, is a vital step in the treatment of this and other infectious diseases. As we discuss here, comprehensive investigation of these targets could provide a promising strategy for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Vineet Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, India
| | - Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, India.
| |
Collapse
|
15
|
Dikhit MR, Amit A, Singh AK, Kumar A, Mansuri R, Sinha S, Topno RK, Mishra R, Das VNR, Pandey K, Sahoo GC, Ali V, Bimal S, Das P. Vaccine potential of HLA-A2 epitopes from Leishmania
Cysteine Protease Type III (CPC). Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Affiliation(s)
- M. R. Dikhit
- Department of Bioinformatics; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - A. Amit
- Department of Immunology; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - A. K. Singh
- Department of Immunology; Rajendra Memorial Research Institute of Medical Sciences; Patna India
- Department of Pathology; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - A. Kumar
- Department of Immunology; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - R. Mansuri
- Department of Bioinformatics; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - S. Sinha
- Department of Bioinformatics; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - R. K. Topno
- Department of Epidemiology; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - R. Mishra
- Department of Clinical Medicine; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - V. N. R. Das
- Department of Clinical Medicine; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - K. Pandey
- Department of Clinical Medicine; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - G. C. Sahoo
- Department of Bioinformatics; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - V. Ali
- Department of Biochemistry; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - S. Bimal
- Department of Immunology; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| | - P. Das
- Department of Molecular Parasitology; Rajendra Memorial Research Institute of Medical Sciences; Patna India
| |
Collapse
|
16
|
Dikhit MR, Kumar A, Amit A, Dehury B, Nathsharma YP, Ansari MY, Ali V, Topno RK, Das V, Pandey K, Sahoo GC, Bimal S, Das P. Mining the Proteome of Leishmania donovani for the Development of Novel MHC Class I Restricted Epitope for the Control of Visceral Leishmaniasis. J Cell Biochem 2017; 119:378-391. [PMID: 28585770 DOI: 10.1002/jcb.26190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/05/2017] [Indexed: 12/26/2022]
Abstract
Although, the precise host defence mechanism(s) is not completely understood, T cell-mediated immune responses is believed to play a pivotal role in controlling parasite infection. Here we target the stage dependent over expressed gene. Here, the consensus based computational approach was adopted for the screening of potential major histocompatibility complex class I restricted epitopes. Based on the computational analysis and previously published report, a set 19 antigenic proteins derived from Leishmania donovani were screened for further characterization as vaccine candidates. A total of 49 epitopes were predicted, which revealed a comprehensive binding affinity to the 40 different MHC class I supertypes. Based on the population coverage and HLA cross presentation, nine highly promiscuous epitopes such as LTYDDVWTV (P1), FLFPQRTAL(P2), FLFSNGAVV (P3), YIYNFGIRV (P4), YMTAAFAAL (P5), KLLRPFAPL (P6), FMLGWIVTI (P7), SLFERNKRV (P8), and SVWNRIFTL (P9) which have either a high or an intermediate TAP binding affinity were selected for further analysis. Theoretical population coverage analysis of polytope vaccine (P1-P9) revealed more than 92% population. Stimulation with the cocktail of peptide revealed a proliferative CD8+ T cell response and increased IFN-γ production. An upregulated NF-κB activity is thought to be play a pivotal role in T cell proliferation against the selected peptide. The Th1-type cytokine profile (presence of IFN-γ and absence of IL-10) suggests the potentiality of the cocktail of epitope as a subunit vaccine against leishmaniasis. However, the efficiency of these epitopes to trigger other Th1 cytokines and chemokines in a humanized mice model could explore its plausibility as a vaccine candidate. J. Cell. Biochem. 119: 378-391, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Manas R Dikhit
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | -
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Akhilesh Kumar
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ajay Amit
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Budheswar Dehury
- Department of Bioinformatics, ICMR Regional Medical research Centre, Bhubaneswar, Odisha 751016, India
| | - Yangya Prasad Nathsharma
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Mohammad Yousuf Ansari
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Vahab Ali
- Departmentof Biochemistry, Rajendra Memorial Research Institute of Medical, Patna 800007, India
| | - Roshan Kamal Topno
- Department of Epidemiology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Vnr Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ganesh Chandra Sahoo
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Pradeep Das
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India.,Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| |
Collapse
|
17
|
Diet-induced obesity promotes systemic inflammation and increased susceptibility to murine visceral leishmaniasis. Parasitology 2016; 143:1647-55. [DOI: 10.1017/s003118201600127x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SUMMARYObesity is the main causal factor for metabolic syndrome and chronic systemic inflammation, which impacts on immune function and increases susceptibility to pathogens. Here, we investigated the effect of obesity on the outcome of visceral leishmaniasis caused by Leishmaniasis infantum chagasi. C57BL/6 mice fed with high-sugar and butter diet (HSB) showed a significant increase in body weight, adiposity index and morphological changes in adipocyte. To investigate the consequences of obesity on the specific immunity against Leishmania, both control and HSB diet groups were infected with 107L. infantum chagasi promastigotes in the eighth-week after diet started and euthanized 4 weeks later. HSB-diet fed mice exhibited a significantly higher parasite burden in both liver and spleen compared with control- diet group. Gonadal adipocyte tissue from HSB-diet mice showed increased TNF-α, IL-6 and leptin and diminished IL-10 production compared with control. Cytokines production analysis in the spleen and liver from these animals also demonstrated higher production of IFN-γ, TNF-α, IL-6 and nitric oxide and diminished production of IL-10 and TGF-β, which correlate with inflammatory foci and the cell hyperplasia observed. Taken together, obesity can interfere with responses to pathogen-derived signals and impair the development of protective anti-Leishmania immunity.
Collapse
|
18
|
Amit A, Dikhit MR, Mahantesh V, Chaudhary R, Singh AK, Singh A, Singh SK, Das VNR, Pandey K, Ali V, Narayan S, Sahoo GC, Das P, Bimal S. Immunomodulation mediated through Leishmania donovani protein disulfide isomerase by eliciting CD8+ T-cell in cured visceral leishmaniasis subjects and identification of its possible HLA class-1 restricted T-cell epitopes. J Biomol Struct Dyn 2016; 35:128-140. [PMID: 26727289 DOI: 10.1080/07391102.2015.1134349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Protein disulphide isomerase (PDI) is one of the key enzymes essential for the survival of Leishmania donovani in the host. Our study suggested that PDI is associated with the generation of Th1-type of cellular responses in treated Visceral leishmaniasis (VL) subjects. The stimulation of Peripheral blood mononuclear cells (PBMCs) with recombinant Protein Disulphide Isomerase upregulated the reactive oxygen species generation, Nitric oxide release, IL12 and IFN-γ production indicating its pivotal role in protective immune response. Further, a pre-stimulation of PBMCs with Protein disulphide isomerase induced a strong IFN-γ response through CD8+ T cells in treated VL subjects. These findings also supported through the evidence that this antigen was processed and presented by major histocompatibility complex class I (MHC-1) dependent pathway and had an immunoprophylactic potential which can induce CD8+ T cell protective immune response in MHC class I dependent manner against VL. To find out the possible epitopes that might be responsible for CD8+ T cell specific IFN-γ response, computational approach was adopted. Six novel promiscuous epitopes were predicted to be highly immunogenic and can be presented by 32 different HLA allele to CD8+ T cells. Further investigation will explore more about their immunological relevance and usefulness as vaccine candidates.
Collapse
Affiliation(s)
- Ajay Amit
- a Division of Immunology , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India
| | - Manas R Dikhit
- a Division of Immunology , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India.,b Department of Bioinformatics , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India
| | - Vijay Mahantesh
- a Division of Immunology , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India.,c Department of Biotechnology , National Institutes of Pharmaceutical Education and Research , Hajipur 844102 , India
| | - Rajesh Chaudhary
- a Division of Immunology , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India
| | - Ashish Kumar Singh
- a Division of Immunology , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India.,d Dept. of Pathology , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India
| | - Ashu Singh
- c Department of Biotechnology , National Institutes of Pharmaceutical Education and Research , Hajipur 844102 , India
| | - Shubhankar Kumar Singh
- h Dept. of Microbiology , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India
| | - V N R Das
- e Dept. of Clinical Medicine , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India
| | - Krishna Pandey
- e Dept. of Clinical Medicine , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India
| | - Vahab Ali
- f Dept. of Molecular Biochemistry , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India
| | - Shyam Narayan
- h Dept. of Microbiology , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India
| | - Ganesh C Sahoo
- b Department of Bioinformatics , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India
| | - Pradeep Das
- g Dept. of Molecular Biology , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India
| | - Sanjiva Bimal
- a Division of Immunology , Rajendra Memorial Research Institute of Medical Sciences , Patna 800007 , India
| |
Collapse
|
19
|
Chavarria D, Silva T, Magalhães e Silva D, Remião F, Borges F. Lessons from black pepper: piperine and derivatives thereof. Expert Opin Ther Pat 2015; 26:245-64. [PMID: 26560940 DOI: 10.1517/13543776.2016.1118057] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Piperine is a simple and pungent alkaloid found in the seeds of black pepper (Piper nigrum). Following its isolation and full characterization, the biological properties of piperine have been extensively studied, and piperine-like derivatives have shown an interesting range of pharmacological activities. In this context, significant advances have been made in the discovery of new chemical entities based on the piperine scaffold endowed with therapeutic potential. AREAS COVERED The aim of this review is to provide a thorough inquiry on the therapeutic potential of piperine and related derivatives. It provides an overview of recent developments in patented processes and applications thereof between 2000 and 2015. EXPERT OPINION Cumulative evidence shows that piperine is currently paving its way to become a privileged scaffold for the development of bioactive compounds with therapeutic application in multiple human diseases. In particular, piperine derivatives were shown to modulate the activity of several targets related to neurological disorders, including epilepsy, Parkinson's disease, depression and pain related disorders. Moreover, the efflux pump inhibitory ability of piperine and its analogues tackles important drug resistance mechanisms and may improve the clinical efficacy of antibiotic and anticancer drugs. Although the use of piperine as a scaffold for bioactive compounds is still in its early stages, the continuous exploration of this structure may lead to remarkable advances in drug discovery programs.
Collapse
Affiliation(s)
- D Chavarria
- a CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - T Silva
- a CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - D Magalhães e Silva
- a CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - F Remião
- b UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - F Borges
- a CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| |
Collapse
|
20
|
Intranasal vaccination with killed Leishmania amazonensis promastigotes antigen (LaAg) associated with CAF01 adjuvant induces partial protection in BALB/c mice challenged with Leishmania (infantum) chagasi. Parasitology 2015; 142:1640-6. [DOI: 10.1017/s0031182015001250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe CAF01 adjuvant has previously been shown to be safe for human use and to be a potent adjuvant for several vaccine antigens. In the present work, we sought to optimize the Leishmania amazonensis antigens (LaAg) intranasal vaccine in an attempt to enhance the protective immune responses against Leishmania (infantum) chagasi by using the CAF01 association. LaAg/CAF01 vaccinated mice that were challenged 15 days after booster dose with L. (infantum) chagasi showed a significant reduction in their parasite burden in both the spleen and liver, which is associated with an increase in specific production of IFN-γ and nitrite, and a decrease in IL-4 production. In addition, LaAg/CAF01 intranasal delivery was able to increase lymphoproliferative immune responses after parasite antigen recall. These results suggest the feasibility of using the intranasal route for the delivery of crude antigens and of a human-compatible adjuvant against visceral leishmaniasis.
Collapse
|