1
|
Bhalerao P, Singh S, Prajapati VK, Bhatt TK. Exploring malaria parasite surface proteins to devise highly immunogenic multi-epitope subunit vaccine for Plasmodium falciparum. J Genet Eng Biotechnol 2024; 22:100377. [PMID: 38797552 PMCID: PMC11089370 DOI: 10.1016/j.jgeb.2024.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 04/13/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Malaria has remained a major health concern for decades among people living in tropical and sub-tropical countries. Plasmodium falciparum is one of the critical species that cause severe malaria and is responsible for major mortality. Moreover, the parasite has generated resistance against all WHO recommended drugs and therapies. Therefore, there is an urgent need for preventive measures in the form of reliable vaccines to achieve the target of a malaria-free world. Surface proteins are the preferable choice for subunit vaccine development because they are rapidly detected and engaged by host immune cells and vaccination-induced antibodies. Additionally, abundant surface or membrane proteins may contribute to the opsonization of pathogens by vaccine-induced antibodies. RESULTS In our study, we have listed all those surface proteins from the literature that could be functionally important and essential for infection and immune evasion of the malaria parasite. Eight Plasmodium surface and membrane proteins from the pre-erythrocyte and erythrocyte stages were shortlisted. Thirty-seven epitopes (B-cell, CTL, and HTL epitopes) from these proteins were predicted using immune-informatic tools and joined with suitable peptide linkers to design a vaccine construct. A TLR-4 agonist peptide adjuvant was added at the N-terminus of the multi-epitope series, followed by the PADRE sequence and EAAAK linker. The TLR-4 receptor was docked with the construct's anticipated model structure. The complex of vaccine and TLR-4, with the lowest energy -1514, was found to be stable under simulated physiological settings. CONCLUSION This study has provided a novel multi-epitope construct that may be exploited further for the development of an efficient vaccine for malaria.
Collapse
Affiliation(s)
- Preshita Bhalerao
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
2
|
Ofori EA, Garcia-Senosiain A, Naghizadeh M, Kana IH, Dziegiel MH, Adu B, Singh S, Theisen M. Human blood neutrophils generate ROS through FcγR-signaling to mediate protection against febrile P. falciparum malaria. Commun Biol 2023; 6:743. [PMID: 37463969 PMCID: PMC10354059 DOI: 10.1038/s42003-023-05118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Blood phagocytes, such as neutrophils and monocytes, generate reactive oxygen species (ROS) as a part of host defense response against infections. We investigated the mechanism of Fcγ-Receptor (FcγR) mediated ROS production in these cells to understand how they contribute to anti-malarial immunity. Plasmodium falciparum merozoites opsonized with naturally occurring IgG triggered both intracellular and extracellular ROS generation in blood phagocytes, with neutrophils being the main contributors. Using specific inhibitors, we show that both FcγRIIIB and FcγRIIA acted synergistically to induce ROS production in neutrophils, and that NADPH oxidase 2 and the PI3K intracellular signal transduction pathway were involved in this process. High levels of neutrophil ROS were also associated with protection against febrile malaria in two geographically diverse malaria endemic regions from Ghana and India, stressing the importance of the cooperation between anti-malarial IgG and neutrophils in triggering ROS-mediated parasite killing as a mechanism for naturally acquired immunity against malaria.
Collapse
Affiliation(s)
- Ebenezer Addo Ofori
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Asier Garcia-Senosiain
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hanefeld Dziegiel
- Blood Bank KI 2034, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Subhash Singh
- ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India.
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Matos ADS, Soares IF, Baptista BDO, de Souza HADS, Chaves LB, Perce-da-Silva DDS, Riccio EKP, Albrecht L, Totino PRR, Rodrigues-da-Silva RN, Daniel-Ribeiro CT, Pratt-Riccio LR, Lima-Junior JDC. Construction, Expression, and Evaluation of the Naturally Acquired Humoral Immune Response against Plasmodium vivax RMC-1, a Multistage Chimeric Protein. Int J Mol Sci 2023; 24:11571. [PMID: 37511330 PMCID: PMC10380678 DOI: 10.3390/ijms241411571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The PvCelTOS, PvCyRPA, and Pvs25 proteins play important roles during the three stages of the P. vivax lifecycle. In this study, we designed and expressed a P. vivax recombinant modular chimeric protein (PvRMC-1) composed of the main antigenic regions of these vaccine candidates. After structure modelling by prediction, the chimeric protein was expressed, and the antigenicity was assessed by IgM and IgG (total and subclass) ELISA in 301 naturally exposed individuals from the Brazilian Amazon. The recombinant protein was recognized by IgG (54%) and IgM (40%) antibodies in the studied individuals, confirming the natural immunogenicity of the epitopes that composed PvRMC-1 as its maintenance in the chimeric structure. Among responders, a predominant cytophilic response mediated by IgG1 (70%) and IgG3 (69%) was observed. IgM levels were inversely correlated with age and time of residence in endemic areas (p < 0.01). By contrast, the IgG and IgM reactivity indexes were positively correlated with each other, and both were inversely correlated with the time of the last malaria episode. Conclusions: The study demonstrates that PvRMC-1 was successfully expressed and targeted by natural antibodies, providing important insights into the construction of a multistage chimeric recombinant protein and the use of naturally acquired antibodies to validate the construction.
Collapse
Affiliation(s)
- Ada da Silva Matos
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Isabela Ferreira Soares
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Barbara de Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Hugo Amorim Dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Lana Bitencourt Chaves
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Daiana de Souza Perce-da-Silva
- Laboratório de Imunologia Básica e Aplicada, Centro Universitário Arthur Sá Earp Neto/Faculdade de Medicina de Petrópolis (UNIFASE/FMP), Petrópolis 25680-120, RJ, Brazil
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Curitiba 81350-010, PR, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Rodrigo Nunes Rodrigues-da-Silva
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz e Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro 21040-900, RJ, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz e Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro 21040-900, RJ, Brazil
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
4
|
Computational Clues of Immunogenic Hotspots in Plasmodium falciparum Erythrocytic Stage Vaccine Candidate Antigens: In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5886687. [PMID: 36277884 PMCID: PMC9584662 DOI: 10.1155/2022/5886687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
Malaria is the most pernicious parasitic infection, and Plasmodium falciparum is the most virulent species with substantial morbidity and mortality worldwide. The present in silico investigation was performed to reveal the biophysical characteristics and immunogenic epitopes of the 14 blood-stage proteins of the P. falciparum using comprehensive immunoinformatics approaches. For this aim, various web servers were employed to predict subcellular localization, antigenicity, allergenicity, solubility, physicochemical properties, posttranslational modification sites (PTMs), the presence of signal peptide, and transmembrane domains. Moreover, structural analysis for secondary and 3D model predictions were performed for all and stable proteins, respectively. Finally, human helper T lymphocyte (HTL) epitopes were predicted using HLA reference set of IEDB server and screened in terms of antigenicity, allergenicity, and IFN-γ induction as well as population coverage. Also, a multiserver B-cell epitope prediction was done with subsequent screening for antigenicity, allergenicity, and solubility. Altogether, these proteins showed appropriate antigenicity, abundant PTMs, and many B-cell and HTL epitopes, which could be directed for future vaccination studies in the context of multiepitope vaccine design.
Collapse
|
5
|
Abad P, Marín-García P, Heras M, Fobil JN, Hutchful AG, Diez A, Puyet A, Reyes-Palomares A, Azcárate IG, Bautista JM. Microscopic and submicroscopic infection by Plasmodium falciparum: Immunoglobulin M and A profiles as markers of intensity and exposure. Front Cell Infect Microbiol 2022; 12:934321. [PMID: 36118030 PMCID: PMC9478039 DOI: 10.3389/fcimb.2022.934321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
Assessment of serological Plasmodium falciparum–specific antibodies in highly endemic areas provides valuable information about malaria status and parasite exposure in the population. Although serological evidence of Plasmodium exposure is commonly determined by Plasmodium-specific immunoglobulin G (IgG) levels; IgM and IgA are likely markers of malaria status that remain relatively unexplored. Previous studies on IgM and IgA responses have been based on their affinity for single antigens with shortage of immune responses analysis against the whole Plasmodium proteome. Here, we provide evidence of how P. falciparum infection triggers the production of specific IgM and IgA in plasma and its relationship with parasite density and changes in hematological parameters. A total of 201 individuals attending a hospital in Breman Asikuma, Ghana, were recruited into this study. Total and P. falciparum–specific IgM, IgA, and IgG were assessed by ELISA and examined in relation to age (0–5, 14–49, and ≥50 age ranges); infection (submicroscopic vs. microscopic malaria); pregnancy and hematological parameters. Well-known IgG response was used as baseline control. P. falciparum–specific IgM and IgA levels increased in the population with the age, similarly to IgG. These data confirm that acquired humoral immunity develops by repeated infections through the years endorsing IgM and IgA as exposure markers in endemic malaria regions. High levels of specific IgA and IgM in children were associated with microscopic malaria and worse prognosis, because most of them showed severe anemia. This new finding shows that IgM and IgA may be used as diagnostic markers in this age group. We also found an extremely high prevalence of submicroscopic malaria (46.27% on average) accompanied by IgM and IgA levels indistinguishable from those of uninfected individuals. These data, together with the observed lack of sensitivity of rapid diagnostic tests (RDTs) compared to PCR, invoke the urgent need to implement diagnostic markers for submicroscopic malaria. Overall, this study opens the potential use of P. falciparum–specific IgM and IgA as new serological markers to predict malaria status in children and parasite exposure in endemic populations. The difficulties in finding markers of submicroscopic malaria are highlighted, emphasizing the need to explore this field in depth.
Collapse
Affiliation(s)
- Paloma Abad
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | | | - Marcos Heras
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Julius N. Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Alfred G. Hutchful
- Laboratory of Hematology and Infectious Diseases, Our Lady of Grace Hospital, Breman-Asikuma, Ghana
| | - Amalia Diez
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Puyet
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel G. Azcárate
- Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Spain
- *Correspondence: Isabel G. Azcárate, ; José M. Bautista,
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Isabel G. Azcárate, ; José M. Bautista,
| |
Collapse
|
6
|
Dechavanne C, Nouatin O, Adamou R, Edslev S, Hansen A, Meurisse F, Sadissou I, Gbaguidi E, Milet J, Cottrell G, Gineau L, Sabbagh A, Massougbodji A, Moutairou K, Donadi EA, Carosella ED, Moreau P, Remarque E, Theisen M, Rouas-Freiss N, Garcia A, Favier B, Courtin D. Placental Malaria is Associated with Higher LILRB2 Expression in Monocyte Subsets and Lower Anti-Malarial IgG Antibodies During Infancy. Front Immunol 2022; 13:909831. [PMID: 35911674 PMCID: PMC9326509 DOI: 10.3389/fimmu.2022.909831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background Placental malaria (PM) is associated with a higher susceptibility of infants to Plasmodium falciparum (Pf) malaria. A hypothesis of immune tolerance has been suggested but no clear explanation has been provided so far. Our goal was to investigate the involvement of inhibitory receptors LILRB1 and LILRB2, known to drive immune evasion upon ligation with pathogen and/or host ligands, in PM-induced immune tolerance. Method Infants of women with or without PM were enrolled in Allada, southern Benin, and followed-up for 24 months. Antibodies with specificity for five blood stage parasite antigens were quantified by ELISA, and the frequency of immune cell subsets was quantified by flow cytometry. LILRB1 or LILRB2 expression was assessed on cells collected at 18 and 24 months of age. Findings Infants born to women with PM had a higher risk of developing symptomatic malaria than those born to women without PM (IRR=1.53, p=0.040), and such infants displayed a lower frequency of non-classical monocytes (OR=0.74, p=0.01) that overexpressed LILRB2 (OR=1.36, p=0.002). Moreover, infants born to women with PM had lower levels of cytophilic IgG and higher levels of IL-10 during active infection. Interpretation Modulation of IgG and IL-10 levels could impair monocyte functions (opsonisation/phagocytosis) in infants born to women with PM, possibly contributing to their higher susceptibility to malaria. The long-lasting effect of PM on infants’ monocytes was notable, raising questions about the capacity of ligands such as Rifins or HLA-I molecules to bind to LILRB1 and LILRB2 and to modulate immune responses, and about the reprogramming of neonatal monocytes/macrophages.
Collapse
Affiliation(s)
- Celia Dechavanne
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Odilon Nouatin
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Rafiou Adamou
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Sofie Edslev
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anita Hansen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Ibrahim Sadissou
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Erasme Gbaguidi
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Jacqueline Milet
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Gilles Cottrell
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Laure Gineau
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Audrey Sabbagh
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Achille Massougbodji
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Kabirou Moutairou
- Laboratoire de Biologie et Physiologie Cellulaires, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Benin
| | - Eduardo A. Donadi
- Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, Ribeirão Preto, Brazil
| | - Edgardo D. Carosella
- CEAA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Philippe Moreau
- CEAA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Ed Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Nathalie Rouas-Freiss
- CEAA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - André Garcia
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - David Courtin
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- *Correspondence: David Courtin,
| |
Collapse
|
7
|
Wahl I, Wardemann H. How to induce protective humoral immunity against Plasmodium falciparum circumsporozoite protein. J Exp Med 2022; 219:212951. [PMID: 35006242 PMCID: PMC8754000 DOI: 10.1084/jem.20201313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
The induction of protective humoral immune responses against sporozoite surface proteins of the human parasite Plasmodium falciparum (Pf) is a prime goal in the development of a preerythrocytic malaria vaccine. The most promising antibody target is circumsporozoite protein (CSP). Although PfCSP induces strong humoral immune responses upon vaccination, vaccine efficacy is overall limited and not durable. Here, we review recent efforts to gain a better molecular and cellular understanding of anti-PfCSP B cell responses in humans and discuss ways to overcome limitations in the induction of stable titers of high-affinity antibodies that might help to increase vaccine efficacy and promote long-lived protection.
Collapse
Affiliation(s)
- Ilka Wahl
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
8
|
Neutrophils dominate in opsonic phagocytosis of P. falciparum blood-stage merozoites and protect against febrile malaria. Commun Biol 2021; 4:984. [PMID: 34413459 PMCID: PMC8376957 DOI: 10.1038/s42003-021-02511-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022] Open
Abstract
Antibody-mediated opsonic phagocytosis (OP) of Plasmodium falciparum blood-stage merozoites has been associated with protection against malaria. However, the precise contribution of different peripheral blood phagocytes in the OP mechanism remains unknown. Here, we developed an in vitro OP assay using peripheral blood leukocytes that allowed us to quantify the contribution of each phagocytic cell type in the OP of merozoites. We found that CD14 + +CD16- monocytes were the dominant phagocytic cells at very low antibody levels and Fc gamma receptor (FcγR) IIA plays a key role. At higher antibody levels however, neutrophils were the main phagocytes in the OP of merozoites with FcγRIIIB acting synergistically with FcγRIIA in the process. We found that OP activity by neutrophils was strongly associated with protection against febrile malaria in longitudinal cohort studies performed in Ghana and India. Our results demonstrate that peripheral blood neutrophils are the main phagocytes of P. falciparum blood-stage merozoites.
Collapse
|
9
|
Suau R, Vidal M, Aguilar R, Ruiz-Olalla G, Vázquez-Santiago M, Jairoce C, Nhabomba AJ, Gyan B, Dosoo D, Asante KP, Owusu-Agyei S, Campo JJ, Izquierdo L, Cavanagh D, Coppel RL, Chauhan V, Angov E, Dutta S, Gaur D, Beeson JG, Moncunill G, Dobaño C. RTS,S/AS01 E malaria vaccine induces IgA responses against CSP and vaccine-unrelated antigens in African children in the phase 3 trial. Vaccine 2020; 39:687-698. [PMID: 33358704 DOI: 10.1016/j.vaccine.2020.12.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The evaluation of immune responses to RTS,S/AS01 has traditionally focused on immunoglobulin (Ig) G antibodies that are only moderately associated with protection. The role of other antibody isotypes that could also contribute to vaccine efficacy remains unclear. Here we investigated whether RTS,S/AS01E elicits antigen-specific serum IgA antibodies to the vaccine and other malaria antigens, and we explored their association with protection. METHODS Ninety-five children (age 5-17 months old at first vaccination) from the RTS,S/AS01E phase 3 clinical trial who received 3 doses of RTS,S/AS01E or a comparator vaccine were selected for IgA quantification 1 month post primary immunization. Two sites with different malaria transmission intensities (MTI) and clinical malaria cases and controls, were included. Measurements of IgA against different constructs of the circumsporozoite protein (CSP) vaccine antigen and 16 vaccine-unrelated Plasmodium falciparum antigens were performed using a quantitative suspension array assay. RESULTS RTS,S vaccination induced a 1.2 to 2-fold increase in levels of serum/plasma IgA antibodies to all CSP constructs, which was not observed upon immunization with a comparator vaccine. The IgA response against 13 out of 16 vaccine-unrelated P. falciparum antigens also increased after vaccination, and levels were higher in recipients of RTS,S than in comparators. IgA levels to malaria antigens before vaccination were more elevated in the high MTI than the low MTI site. No statistically significant association of IgA with protection was found in exploratory analyses. CONCLUSIONS RTS,S/AS01E induces IgA responses in peripheral blood against CSP vaccine antigens and other P. falciparum vaccine-unrelated antigens, similar to what we previously showed for IgG responses. Collectively, data warrant further investigation of the potential contribution of vaccine-induced IgA responses to efficacy and any possible interplay, either synergistic or antagonistic, with protective IgG, as identifying mediators of protection by RTS,S/AS01E immunization is necessary for the design of improved second-generation vaccines. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: NCT008666191.
Collapse
Affiliation(s)
- Roger Suau
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Marta Vidal
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Miquel Vázquez-Santiago
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Chenjerai Jairoce
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique.
| | - Augusto J Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Ben Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana.
| | - David Dosoo
- Kintampo Health Research Centre, Kintampo, Ghana.
| | | | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Kintampo, Ghana; Disease Control Department. London School of Hygiene and Tropical Medicine, London, UK
| | - Joseph J Campo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK.
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| | - Virander Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA.
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA.
| | - Deepak Gaur
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India; Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Australia; Department of Medicine, University of Melbourne, Australia.
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique.
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique.
| |
Collapse
|
10
|
Lei Y, Shen F, Zhu H, Zhu L, Chu R, Tang J, Yao W, Zhu G, Zhang D, Cao J, Cheng Y. Low genetic diversity and strong immunogenicity within the apical membrane antigen-1 of plasmodium ovale spp. imported from africa to china. Acta Trop 2020; 210:105591. [PMID: 32562621 PMCID: PMC7456792 DOI: 10.1016/j.actatropica.2020.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 10/27/2022]
Abstract
Malaria is still an important challenge for global public health because of its extensive mortality and morbidity. Plasmodium ovale is mainly distributed in tropical regions of Africa and Asia. it includes two distinct ovale malaria species, which are P. ovale curtisi and P. ovale wallikeri. Apical membrane antigen-1 (AMA-1) is an asexual blood-stage protein which is essential for Plasmodium. Thus far, no study on gene polymorphism and immunogenicity of P. ovale AMA-1 (PoAMA-1) has been conducted. Amplified poama1 gene products from 14 P ovale curtisi samples and 12 P ovale wallikeri samples imported from Africa to Jiangsu Province, China were sequenced and their polymorphisms were analyzed. We expressed recombinant PoAMA-1 (rPoAMA-1, 53 kDa) proteins in an E. coli expression system and evaluated immune responses against the rPoAMA-1 in BALB/c mice. We identified a synonymous mutation in nucleotide position 333 of the pocama-1 gene and powama-1 did not reveal any variation. The humoral and cellular immune responses to rPoAMA-1 were evaluated using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. rPoAMA-1-immunized mice produced specific antibodies as verified by immunoblotting. The rPoAMA-1 induced high antibody titers (1: 640,000), and had high avidity indexes (an average of 78.63% and 83.40%). The antibodies also recognized the native proteins, namely, crude antigen from blood stages. Cross-reactivity between rPocAMA-1 and rPowAMA-1 was observed. Moreover, rPoAMA-1 s induced interferon (IFN)-gamma-secreting cells in mice and increased lymphocyte proliferation response. Low genetic diversity was observed in poama-1 from the Jiangsu Province imported malaria cases, and further studies conclusively showed its strong immunogenicity. Significant cross-reactivity was found between rPocAMA-1 and rPowAMA-1, suggesting that a single PoAMA-1 antigen could be used to diagnose P. ovale curtisi or P. ovale wallikeri patient simultaneously. However, further evaluation needs to be carried out to validate the potential and limitations of PoAMA-1 as a candidate vaccine.
Collapse
|
11
|
Stoute JA, Landmesser ME, Biryukov S. Treatment of Plasmodium falciparum merozoites with the protease inhibitor E64 and mechanical filtration increases their susceptibility to complement activation. PLoS One 2020; 15:e0237786. [PMID: 32822376 PMCID: PMC7442247 DOI: 10.1371/journal.pone.0237786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum malaria killed 451,000 people in 2017. Merozoites, the stage of the parasite that invades RBCs, are a logical target for vaccine development. Treatment with the protease inhibitor E64 followed by filtration through a 1.2 μm filter is being used to purify merozoites for immunologic assays. However, there have been no studies to determine the effect of these treatments on the susceptibility of merozoites to complement or antibodies. To address this gap, we purified merozoites with or without E64 followed by filtration through either a 1.2 or 2.7 μm filter, or no filtration. Merozoites were then incubated in either 10% fresh or heat-inactivated serum followed by surface staining and flow cytometry with monoclonal antibodies against the complement effector molecules C3b or C5b9. To determine the effect of anti-merozoite antibodies, we incubated merozoites with MAb5.2, a mouse monoclonal antibody that targets the merozoite surface protein 1. We used an amine-reactive fluorescent dye to measure membrane integrity. Treatment with E64 resulted in an insignificant increase in the proportion of merozoites that were C3b positive but in a significant increase in the proportion that were C5b9 positive. Filtration increased the proportion of merozoites that were either C3b or C5b9-positive. The combination of filtration and E64 treatment resulted in marked deposition of C3b and C5b9. MAb5.2 induced greater complement deposition than serum alone or an IgG2b isotype control. The combination of E64 treatment, filtration, and MAb5.2 resulted in very rapid and significant deposition of C5b9. Filtration through the 1.2 μm filter selected a population of merozoites with greater membrane integrity, but their integrity deteriorated rapidly upon exposure to serum. We conclude that E64 treatment and filtration increase the susceptibility of merozoites to complement and antibody. Filtered or E64-treated merozoites are not suitable for immunologic studies that address the efficacy of antibodies in vitro.
Collapse
Affiliation(s)
- José A. Stoute
- The Division of Infectious Diseases, Department of Medicine, the Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Microbiology and Immunology, The Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail: ,
| | - Mary E. Landmesser
- The Division of Infectious Diseases, Department of Medicine, the Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Sergei Biryukov
- Department of Microbiology and Immunology, The Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
12
|
Pérez‐Mazliah D, Ndungu FM, Aye R, Langhorne J. B-cell memory in malaria: Myths and realities. Immunol Rev 2020; 293:57-69. [PMID: 31733075 PMCID: PMC6972598 DOI: 10.1111/imr.12822] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022]
Abstract
B-cell and antibody responses to Plasmodium spp., the parasite that causes malaria, are critical for control of parasitemia and associated immunopathology. Antibodies also provide protection to reinfection. Long-lasting B-cell memory has been shown to occur in response to Plasmodium spp. in experimental model infections, and in human malaria. However, there are reports that antibody responses to several malaria antigens in young children living with malaria are not similarly long-lived, suggesting a dysfunction in the maintenance of circulating antibodies. Some studies attribute this to the expansion of atypical memory B cells (AMB), which express multiple inhibitory receptors and activation markers, and are hyporesponsive to B-cell receptor (BCR) restimulation in vitro. AMB are also expanded in other chronic infections such as tuberculosis, hepatitis B and C, and HIV, as well as in autoimmunity and old age, highlighting the importance of understanding their role in immunity. Whether AMB are dysfunctional remains controversial, as there are also studies in other infections showing that AMB can produce isotype-switched antibodies and in mouse can contribute to protection against infection. In light of these controversies, we review the most recent literature on either side of the debate and challenge some of the currently held views regarding B-cell responses to Plasmodium infections.
Collapse
Affiliation(s)
- Damián Pérez‐Mazliah
- The Francis Crick InstituteLondonUK
- York Biomedical Research InstituteHull York Medical SchoolUniversity of YorkYorkUK
| | | | - Racheal Aye
- Department of Immunology and Infectious DiseaseJohn Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | | |
Collapse
|
13
|
Silveira ELV, Dominguez MR, Soares IS. To B or Not to B: Understanding B Cell Responses in the Development of Malaria Infection. Front Immunol 2018; 9:2961. [PMID: 30619319 PMCID: PMC6302011 DOI: 10.3389/fimmu.2018.02961] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Malaria is a widespread disease caused mainly by the Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) protozoan parasites. Depending on the parasite responsible for the infection, high morbidity and mortality can be triggered. To escape the host immune responses, Plasmodium parasites disturb the functionality of B cell subsets among other cell types. However, some antibodies elicited during a malaria infection have the potential to block pathogen invasion and dissemination into the host. Thus, the question remains, why is protection not developed and maintained after the primary parasite exposure? In this review, we discuss different aspects of B cell responses against Plasmodium antigens during malaria infection. Since most studies have focused on the quantification of serum antibody titers, those B cell responses have not been fully characterized. However, to secrete antibodies, a complex cellular response is set up, including not only the activation and differentiation of B cells into antibody-secreting cells, but also the participation of other cell subsets in the germinal center reactions. Therefore, a better understanding of how B cell subsets are stimulated during malaria infection will provide essential insights toward the design of potent interventions.
Collapse
Affiliation(s)
- Eduardo L V Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana R Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Frimpong A, Kusi KA, Ofori MF, Ndifon W. Novel Strategies for Malaria Vaccine Design. Front Immunol 2018; 9:2769. [PMID: 30555463 PMCID: PMC6281765 DOI: 10.3389/fimmu.2018.02769] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
The quest for a licensed effective vaccine against malaria remains a global priority. Even though classical vaccine design strategies have been successful for some viral and bacterial pathogens, little success has been achieved for Plasmodium falciparum, which causes the deadliest form of malaria due to its diversity and ability to evade host immune responses. Nevertheless, recent advances in vaccinology through high throughput discovery of immune correlates of protection, lymphocyte repertoire sequencing and structural design of immunogens, provide a comprehensive approach to identifying and designing a highly efficacious vaccine for malaria. In this review, we discuss novel vaccine approaches that can be employed in malaria vaccine design.
Collapse
Affiliation(s)
- Augustina Frimpong
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,African Institute for Mathematical Sciences, Cape Coast, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Wilfred Ndifon
- African Institute for Mathematical Sciences, Cape Coast, Ghana.,African Institute for Mathematical Sciences, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|