1
|
Lenière AC, Vlandas A, Follet J. Treating cryptosporidiosis: A review on drug discovery strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100542. [PMID: 38669849 PMCID: PMC11066572 DOI: 10.1016/j.ijpddr.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Despite several decades of research on therapeutics, cryptosporidiosis remains a major concern for human and animal health. Even though this field of research to assess antiparasitic drug activity is highly active and competitive, only one molecule is authorized to be used in humans. However, this molecule was not efficacious in immunocompromised people and the lack of animal therapeutics remains a cause of concern. Indeed, the therapeutic arsenal needs to be developed for both humans and animals. Our work aims to clarify research strategies that historically were diffuse and poorly directed. This paper reviews in vitro and in vivo methodologies to assess the activity of future therapeutic compounds by screening drug libraries or through drug repurposing. It focuses on High Throughput Screening methodologies (HTS) and discusses the lack of knowledge of target mechanisms. In addition, an overview of several specific metabolic pathways and enzymatic activities used as targets against Cryptosporidium is provided. These metabolic processes include glycolytic pathways, fatty acid production, kinase activities, tRNA elaboration, nucleotide synthesis, gene expression and mRNA maturation. As a conclusion, we highlight emerging future strategies for screening natural compounds and assessing drug resistance issues.
Collapse
Affiliation(s)
- Anne-Charlotte Lenière
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Alexis Vlandas
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Jérôme Follet
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France.
| |
Collapse
|
2
|
Gilbert IH, Vinayak S, Striepen B, Manjunatha UH, Khalil IA, Van Voorhis WC. Safe and effective treatments are needed for cryptosporidiosis, a truly neglected tropical disease. BMJ Glob Health 2023; 8:e012540. [PMID: 37541693 PMCID: PMC10407372 DOI: 10.1136/bmjgh-2023-012540] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/25/2023] [Indexed: 08/06/2023] Open
Affiliation(s)
| | - Sumiti Vinayak
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Boris Striepen
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ujjini H Manjunatha
- Global Health, Novartis Institutes for BioMedical Research, Inc, Emeryville, California, USA
| | - Ibrahim A Khalil
- Department of Health, State of Washington, Seattle, Washington, USA
| | | |
Collapse
|
3
|
Hulverson MA, Choi R, Schaefer DA, Betzer DP, McCloskey MC, Whitman GR, Huang W, Lee S, Pranata A, McLeod MD, Marsh KC, Kempf DJ, LeRoy BE, Zafiratos MT, Bielinski AL, Hackman RC, Ojo KK, Arnold SLM, Barrett LK, Tzipori S, Riggs MW, Fan E, Van Voorhis WC. Comparison of Toxicities among Different Bumped Kinase Inhibitor Analogs for Treatment of Cryptosporidiosis. Antimicrob Agents Chemother 2023; 67:e0142522. [PMID: 36920244 PMCID: PMC10112232 DOI: 10.1128/aac.01425-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
Recent advances on the development of bumped kinase inhibitors for treatment of cryptosporidiosis have focused on the 5-aminopyrazole-4-carboxamide scaffold, due to analogs that have less hERG inhibition, superior efficacy, and strong in vitro safety profiles. Three compounds, BKI-1770, -1841, and -1708, showed strong efficacy in C. parvum infected mice. Both BKI-1770 and BKI-1841 had efficacy in the C. parvum newborn calf model, reducing diarrhea and oocyst excretion. However, both compounds caused hyperflexion of the limbs seen as dropped pasterns. Toxicity experiments in rats and calves dosed with BKI-1770 showed enlargement of the epiphyseal growth plate at doses only slightly higher than the efficacious dose. Mice were used as a screen to check for bone toxicity, by changes to the tibia epiphyseal growth plate, or neurological causes, by use of a locomotor activity box. These results showed neurological effects from both BKI-1770 and BKI-1841 and bone toxicity in mice from BKI-1770, indicating one or both effects may be contributing to toxicity. However, BKI-1708 remains a viable treatment candidate for further evaluation as it showed no signs of bone toxicity or neurological effects in mice.
Collapse
Affiliation(s)
- Matthew A. Hulverson
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington, USA
| | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington, USA
| | - Deborah A. Schaefer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Dana P. Betzer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Molly C. McCloskey
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington, USA
| | - Grant R. Whitman
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington, USA
| | - Wenlin Huang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Sangun Lee
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Andy Pranata
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Malcolm D. McLeod
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Kennan C. Marsh
- Research and Development, AbbVie, Inc., North Chicago, Illinois, USA
| | - Dale J. Kempf
- Research and Development, AbbVie, Inc., North Chicago, Illinois, USA
- Former employee of AbbVie, Inc., North Chicago, Illinois, USA
| | - Bruce E. LeRoy
- Research and Development, AbbVie, Inc., North Chicago, Illinois, USA
| | - Mark T. Zafiratos
- Research and Development, AbbVie, Inc., North Chicago, Illinois, USA
| | | | - Robert C. Hackman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Kayode K. Ojo
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington, USA
| | - Samuel L. M. Arnold
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington, USA
| | - Lynn K. Barrett
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Michael W. Riggs
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Wesley C. Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Tyrosine Kinase Inhibitors Display Potent Activity against Cryptosporidium parvum. Microbiol Spectr 2023; 11:e0387422. [PMID: 36533912 PMCID: PMC9927415 DOI: 10.1128/spectrum.03874-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The protozoan parasite Cryptosporidium is a leading cause of diarrheal disease (cryptosporidiosis) and death in young children. Cryptosporidiosis can be life-threatening in individuals with weak immunity such as HIV/AIDS patients and organ transplant recipients. There is currently no effective drug to treat cryptosporidiosis in the pediatric and immunocompromised population. Therefore, there is an urgent need to expedite the drug discovery process in order to develop new and effective therapies to reduce the global disease burden of cryptosporidiosis. In this study, we employed a drug repurposing strategy to screen a library of 473 human kinase inhibitors to determine their activity against Cryptosporidium parvum. We have identified 67 new anti-cryptosporidial compounds using phenotypic screening based on a transgenic C. parvum strain expressing a luciferase reporter. Further, dose-response assays led to the identification of 11 hit compounds that showed potent inhibition of C. parvum at nanomolar concentration. Kinome profiling of these 11 prioritized hits identified compounds that displayed selectivity in targeting specific families of kinases, particularly tyrosine kinases. Overall, this study identified tyrosine kinase inhibitors that hold potential for future development as new drug candidates against cryptosporidiosis. IMPORTANCE The intestinal parasite Cryptosporidium parvum is a major cause of diarrhea-associated morbidity and mortality in children, immunocompromised people, and young ruminant animals. With no effective drug available to treat cryptosporidiosis in humans and animals, there is an urgent need to identify anti-parasitic compounds and new targets for drug development. To address this unmet need, we screened a GSK library of kinase inhibitors and identified several potent compounds, including tyrosine kinase inhibitors, that were highly effective in killing C. parvum. Overall, our study revealed several novel compounds and a new family of kinases that can be targeted for anti-cryptosporidial drug development.
Collapse
|
5
|
Khan SM, Witola WH. Past, current, and potential treatments for cryptosporidiosis in humans and farm animals: A comprehensive review. Front Cell Infect Microbiol 2023; 13:1115522. [PMID: 36761902 PMCID: PMC9902888 DOI: 10.3389/fcimb.2023.1115522] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
The intracellular protozoan parasite of the genus Cryptosporidium is among the leading causes of waterborne diarrheal disease outbreaks throughout the world. The parasite is transmitted by ingestion of infective oocysts that are highly stable in the environment and resistant to almost all conventional disinfection methods and water treatments. Control of the parasite infection is exceedingly difficult due to the excretion of large numbers of oocysts in the feces of infected individuals that contaminate the environment and serve as a source of infection for susceptible hosts including humans and animals. Drug development against the parasite is challenging owing to its limited genetic tractability, absence of conventional drug targets, unique intracellular location within the host, and the paucity of robust cell culture platforms for continuous parasite propagation. Despite the high prevalence of the parasite, the only US Food and Drug Administration (FDA)-approved treatment of Cryptosporidium infections is nitazoxanide, which has shown moderate efficacy in immunocompetent patients. More importantly, no effective therapeutic drugs are available for treating severe, potentially life-threatening cryptosporidiosis in immunodeficient patients, young children, and neonatal livestock. Thus, safe, inexpensive, and efficacious drugs are urgently required to reduce the ever-increasing global cryptosporidiosis burden especially in low-resource countries. Several compounds have been tested for both in vitro and in vivo efficacy against the disease. However, to date, only a few experimental compounds have been subjected to clinical trials in natural hosts, and among those none have proven efficacious. This review provides an overview of the past and present anti-Cryptosporidium pharmacotherapy in humans and agricultural animals. Herein, we also highlight the progress made in the field over the last few years and discuss the different strategies employed for discovery and development of effective prospective treatments for cryptosporidiosis.
Collapse
|
6
|
Dhal AK, Panda C, Yun SIL, Mahapatra RK. An update on Cryptosporidium biology and therapeutic avenues. J Parasit Dis 2022; 46:923-939. [PMID: 35755159 PMCID: PMC9215156 DOI: 10.1007/s12639-022-01510-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0–24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium’s unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Chinmaya Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Soon-IL Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | | |
Collapse
|
7
|
Bone Relat RM, Winder PL, Bowden GD, Guzmán EA, Peterson TA, Pomponi SA, Roberts JC, Wright AE, O’Connor RM. High-Throughput Screening of a Marine Compound Library Identifies Anti-Cryptosporidium Activity of Leiodolide A. Mar Drugs 2022; 20:md20040240. [PMID: 35447913 PMCID: PMC9026894 DOI: 10.3390/md20040240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Cryptosporidium sp. are apicomplexan parasites that cause significant morbidity and possible mortality in humans and valuable livestock. There are no drugs on the market that are effective in the population most severely affected by this parasite. This study is the first high-throughput screen for potent anti-Cryptosporidium natural products sourced from a unique marine compound library. The Harbor Branch Oceanographic Institute at Florida Atlantic University has a collection of diverse marine organisms some of which have been subjected to medium pressure liquid chromatography to create an enriched fraction library. Numerous active compounds have been discovered from this library, but it has not been tested against Cryptosporidium parvum. A high-throughput in vitro growth inhibition assay was used to test 3764 fractions in the library, leading to the identification of 23 fractions that potently inhibited the growth of Cryptosporidium parvum. Bioassay guided fractionation of active fractions from a deep-sea sponge, Leiodermatium sp., resulted in the purification of leiodolide A, the major active compound in the organism. Leiodolide A displayed specific anti-Cryptosporidium activity at a half maximal effective concentration of 103.5 nM with selectivity indexes (SI) of 45.1, 11.9, 19.6 and 14.3 for human ileocecal colorectal adenocarcinoma cells (HCT-8), human hepatocellular carcinoma cells (Hep G2), human neuroblastoma cells (SH-SY5Y) and green monkey kidney cells (Vero), respectively. The unique structure of leiodolide A provides a valuable drug scaffold on which to develop new anti-Cryptosporidium compounds and supports the importance of screening natural product libraries for new chemical scaffolds.
Collapse
Affiliation(s)
- Rachel M. Bone Relat
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, 100 Dairy Rd, Pullman, WA 99164, USA; (R.M.B.R.); (G.D.B.)
| | - Priscilla L. Winder
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (P.L.W.); (E.A.G.); (T.A.P.); (S.A.P.); (J.C.R.)
| | - Gregory D. Bowden
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, 100 Dairy Rd, Pullman, WA 99164, USA; (R.M.B.R.); (G.D.B.)
| | - Esther A. Guzmán
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (P.L.W.); (E.A.G.); (T.A.P.); (S.A.P.); (J.C.R.)
| | - Tara A. Peterson
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (P.L.W.); (E.A.G.); (T.A.P.); (S.A.P.); (J.C.R.)
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (P.L.W.); (E.A.G.); (T.A.P.); (S.A.P.); (J.C.R.)
| | - Jill C. Roberts
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (P.L.W.); (E.A.G.); (T.A.P.); (S.A.P.); (J.C.R.)
| | - Amy E. Wright
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (P.L.W.); (E.A.G.); (T.A.P.); (S.A.P.); (J.C.R.)
- Correspondence: (A.E.W.); (R.M.O.)
| | - Roberta M. O’Connor
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, 100 Dairy Rd, Pullman, WA 99164, USA; (R.M.B.R.); (G.D.B.)
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Ave, St Paul, MN 55108, USA
- Correspondence: (A.E.W.); (R.M.O.)
| |
Collapse
|
8
|
Hulverson MA, Choi R, McCloskey MC, Whitman GR, Ojo KK, Michaels SA, Somepalli M, Love MS, McNamara CW, Rabago LM, Barrett LK, Verlinde CLMJ, Arnold SL, Striepen B, Jimenez-Alfaro D, Ballell L, Fernández E, Greenwood MN, las Heras LD, Calderón F, Van Voorhis WC. Repurposing Infectious Disease Hits as Anti- Cryptosporidium Leads. ACS Infect Dis 2021; 7:1275-1282. [PMID: 33740373 DOI: 10.1021/acsinfecdis.1c00076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New drugs are critically needed to treat Cryptosporidium infections, particularly for malnourished children under 2 years old in the developing world and persons with immunodeficiencies. Bioactive compounds from the Tres-Cantos GSK library that have activity against other pathogens were screened for possible repurposing against Cryptosporidium parvum growth. Nineteen compounds grouped into nine structural clusters were identified using an iterative process to remove excessively toxic compounds and screen related compounds from the Tres-Cantos GSK library. Representatives of four different clusters were advanced to a mouse model of C. parvum infection, but only one compound, an imidazole-pyrimidine, led to significant clearance of infection. This imidazole-pyrimidine compound had a number of favorable safety and pharmacokinetic properties and was maximally active in the mouse model down to 30 mg/kg given daily. Though the mechanism of action against C. parvum was not definitively established, this imidazole-pyrimidine compound inhibits the known C. parvum drug target, calcium-dependent protein kinase 1, with a 50% inhibitory concentration of 2 nM. This compound, and related imidazole-pyrimidine molecules, should be further examined as potential leads for Cryptosporidium therapeutics.
Collapse
Affiliation(s)
- Matthew A. Hulverson
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Ryan Choi
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Molly C. McCloskey
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Grant R. Whitman
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Kayode K. Ojo
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Samantha A. Michaels
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Mastanbabu Somepalli
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Melissa S. Love
- Calibr, a division of The Scripps Research Institute, La Jolla, California 92037, United States
| | - Case W. McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lesley M. Rabago
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Lynn K. Barrett
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | | | - Samuel L.M. Arnold
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Boris Striepen
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dolores Jimenez-Alfaro
- Medicines Development Campus, Global Health Pharma Unit, GlaxoSmithKline, Tres Cantos, 28760, Madrid Spain
| | - Lluis Ballell
- Medicines Development Campus, Global Health Pharma Unit, GlaxoSmithKline, Tres Cantos, 28760, Madrid Spain
| | - Elena Fernández
- Medicines Development Campus, Global Health Pharma Unit, GlaxoSmithKline, Tres Cantos, 28760, Madrid Spain
| | - M. Nicole Greenwood
- Academic Liaison, GlaxoSmithKline, Upper Providence, Pennsylvania 19426, United States
| | | | - Felix Calderón
- Medicines Development Campus, Global Health Pharma Unit, GlaxoSmithKline, Tres Cantos, 28760, Madrid Spain
| | - Wesley C. Van Voorhis
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
9
|
Opportunities and Challenges in Developing a Cryptosporidium Controlled Human Infection Model for Testing Antiparasitic Agents. ACS Infect Dis 2021; 7:959-968. [PMID: 33822577 PMCID: PMC8154424 DOI: 10.1021/acsinfecdis.1c00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cryptosporidiosis is a leading cause of moderate-to-severe diarrhea in low- and middle-income countries, responsible for high mortality in children younger than two years of age, and it is also strongly associated with childhood malnutrition and growth stunting. There is no vaccine for cryptosporidiosis and existing therapeutic options are suboptimal to prevent morbidity and mortality in young children. Recently, novel therapeutic agents have been discovered through high-throughput phenotypic and target-based screening strategies, repurposing malaria hits, etc., and these agents have a promising preclinical in vitro and in vivo anti-Cryptosporidium efficacy. One key step in bringing safe and effective new therapies to young vulnerable children is the establishment of some prospect of direct benefit before initiating pediatric clinical studies. A Cryptosporidium controlled human infection model (CHIM) in healthy adult volunteers can be a robust clinical proof of concept model for evaluating novel therapeutics. CHIM could potentially accelerate the development path to pediatric studies by establishing the safety of a proposed pediatric dosing regimen and documenting preliminary efficacy in adults. We present, here, perspectives regarding the opportunities and perceived challenges with the Cryptosporidium human challenge model.
Collapse
|
10
|
Hulverson MA, Choi R, Vidadala RSR, Whitman GR, Vidadala VN, Ojo KK, Barrett LK, Lynch JJ, Marsh K, Kempf DJ, Maly DJ, Van Voorhis WC. Pyrrolopyrimidine Bumped Kinase Inhibitors for the Treatment of Cryptosporidiosis. ACS Infect Dis 2021; 7:1200-1207. [PMID: 33565854 PMCID: PMC8559537 DOI: 10.1021/acsinfecdis.0c00803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bumped kinase inhibitors (BKIs) that target Cryptosporidium parvum calcium-dependent protein kinase 1 have been well established as potential drug candidates against cryptosporidiosis. Recently, BKI-1649, with a 7H-pyrrolo[2,3-d]pyrimidin-4-amine, or "pyrrolopyrimidine", central scaffold, has shown improved efficacy in mouse models of Cryptosporidium at substantially reduced doses compared to previously explored analogs of the pyrazolopyrimidine scaffold. Here, two pyrrolopyrimidines with varied substituent groups, BKI-1812 and BKI-1814, were explored in several in vitro and in vivo models and show improvements in potency over the previously utilized pyrazolopyrimidine bumped kinase inhibitors while maintaining equivalent results in other key properties, such as toxicity and efficacy, with their pyrazolopyrimidine isosteric counterparts.
Collapse
Affiliation(s)
- Matthew A. Hulverson
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, WA, 98109, USA
| | | | - Grant R. Whitman
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, WA, 98109, USA
| | | | - Kayode K. Ojo
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Lynn K. Barrett
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, WA, 98109, USA
| | - James J. Lynch
- Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Kennan Marsh
- Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Dale J. Kempf
- Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Dustin J. Maly
- Department of Chemistry, University of Washington, Seattle, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Wesley C. Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
11
|
Van Voorhis WC, Hulverson MA, Choi R, Huang W, Arnold SLM, Schaefer DA, Betzer DP, Vidadala RSR, Lee S, Whitman GR, Barrett LK, Maly DJ, Riggs MW, Fan E, Kennedy TJ, Tzipori S, Doggett JS, Winzer P, Anghel N, Imhof D, Müller J, Hemphill A, Ferre I, Sanchez-Sanchez R, Ortega-Mora LM, Ojo KK. One health therapeutics: Target-Based drug development for cryptosporidiosis and other apicomplexa diseases. Vet Parasitol 2021; 289:109336. [PMID: 33418437 PMCID: PMC8582285 DOI: 10.1016/j.vetpar.2020.109336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
This is a review of the development of bumped-kinase inhibitors (BKIs) for the therapy of One Health parasitic apicomplexan diseases. Many apicomplexan infections are shared between humans and livestock, such as cryptosporidiosis and toxoplasmosis, as well as livestock only diseases such as neosporosis. We have demonstrated proof-of-concept for BKI therapy in livestock models of cryptosporidiosis (newborn calves infected with Cryptosporidium parvum), toxoplasmosis (pregnant sheep infected with Toxoplasma gondii), and neosporosis (pregnant sheep infected with Neospora caninum). We discuss the potential uses of BKIs for the treatment of diseases caused by apicomplexan parasites in animals and humans, and the improvements that need to be made to further develop BKIs.
Collapse
Affiliation(s)
- Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA.
| | - Matthew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Wenlin Huang
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Samuel L M Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Deborah A Schaefer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Dana P Betzer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Rama S R Vidadala
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Sangun Lee
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA
| | - Grant R Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Lynn K Barrett
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Michael W Riggs
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | | | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA
| | - J Stone Doggett
- Oregon Health & Science University, Portland, OR, 97239, USA
| | - Pablo Winzer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Ignacio Ferre
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Roberto Sanchez-Sanchez
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
12
|
Love MS, McNamara CW. Phenotypic screening techniques for Cryptosporidium drug discovery. Expert Opin Drug Discov 2020; 16:59-74. [PMID: 32892652 DOI: 10.1080/17460441.2020.1812577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Two landmark epidemiological studies identified Cryptosporidium spp. as a significant cause of diarrheal disease in pediatric populations in resource-limited countries. Notably, nitazoxanide is the only approved drug for treatment of cryptosporidiosis but shows limited efficacy. As a result, many drug discovery efforts have commenced to find improved treatments. The unique biology of Cryptosporidium presents challenges for traditional drug discovery methods, which has inspired new assay platforms to study parasite biology and drug screening. Areas covered: The authors review historical advancements in phenotypic-based assays and techniques for Cryptosporidium drug discovery, as well as recent advances that will define future drug discovery. The reliance on phenotypic-based screens and repositioning of phenotypic hits from other pathogens has quickly created a robust pipeline of potential cryptosporidiosis therapeutics. The latest advances involve new in vitro culture methods for oocyst generation, continuous culturing capabilities, and more physiologically relevant assays for testing compounds. Expert opinion: Previous phenotypic screening techniques have laid the groundwork for recent cryptosporidiosis drug discovery efforts. The resulting improved methodologies characterize compound activity, identify, and validate drug targets, and prioritize new compounds for drug development. The most recent improvements in phenotypic assays are poised to help advance compounds into clinical development.
Collapse
Affiliation(s)
- Melissa S Love
- Calibr, a division of The Scripps Research Institute , La Jolla, CA, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute , La Jolla, CA, USA
| |
Collapse
|
13
|
Shrestha A, Ruttkowski B, Greber P, Whitman GR, Hulverson MA, Choi R, Michaels SA, Ojo KK, Van Voorhis WC, Joachim A. Reduced treatment frequencies with bumped kinase inhibitor 1369 are effective against porcine cystoisosporosis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:37-45. [PMID: 32861205 PMCID: PMC7442133 DOI: 10.1016/j.ijpddr.2020.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 11/14/2022]
Abstract
Bumped kinase inhibitors (BKIs) are a new class of antiprotozoal drugs that target calcium-dependent protein kinase 1 (CDPK1) in various apicomplexan parasites. A multiple dose regimen of BKI 1369 has been shown to be highly effective against Cystoisospora suis (syn. Isospora suis), the causative agent of neonatal porcine coccidiosis. However, multiple dosing may not be widely applicable in the field. The present study aimed to determine the efficacy of reduced treatment frequencies with BKI 1369 against porcine cystoisosporosis in vitro and in vivo. Pre-incubation of sporozoites with BKI 1369 completely failed to inhibit the infection in vitro unless treatment was prolonged post-infection. Notably, a single treatment of infected cell cultures 2 days post-infection (dpi) resulted in a significant reduction of merozoite replication. In an experimental infection model, treatment of suckling piglets experimentally infected with C. suis 2 and 4 dpi with 20 mg BKI 1369/kg body weight completely suppressed oocyst excretion. A single treatment on the day of infection or 2 dpi suppressed oocyst excretion in 50% and 82% of the piglets and reduced the quantitative excretion in those that shed oocysts by 95.2% and 98.4%, respectively. Moreover, a significant increase in body weight gain and reduced number of diarrhea days were observed in BKI 1369 treated piglets compared to the control piglets, irrespective of time points and frequencies of treatment. Given that reduced treatment frequencies with BKI 1369 are comparable in efficacy to repeated applications without any adverse effects, this could be considered as a practical therapeutic alternative against porcine cystoisosporosis. BKI 1369 does not target host cell invasion by C. suis sporozoites but replication of merozoites. Single treatment with BKI 1369 in parallel with experimental infection is not effective for the control of cystoisosporosis. Two doses of BKI 1369 at 2 and 4 dpi completely suppressed oocyst excretion in piglets experimentally infected with C. suis.
Collapse
Affiliation(s)
- Aruna Shrestha
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria.
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Patricia Greber
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Grant R Whitman
- Center for Emerging and Reemerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Matthew A Hulverson
- Center for Emerging and Reemerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Ryan Choi
- Center for Emerging and Reemerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Samantha A Michaels
- Center for Emerging and Reemerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Kayode K Ojo
- Center for Emerging and Reemerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Wesley C Van Voorhis
- Center for Emerging and Reemerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA; Departments of Microbiology and Global Health, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| |
Collapse
|
14
|
Anghel N, Winzer PA, Imhof D, Müller J, Langa X, Rieder J, Barrett LK, Vidadala RSR, Huang W, Choi R, Hulverson MA, Whitman GR, Arnold SL, Van Voorhis WC, Ojo KK, Maly DJ, Fan E, Hemphill A. Comparative assessment of the effects of bumped kinase inhibitors on early zebrafish embryo development and pregnancy in mice. Int J Antimicrob Agents 2020; 56:106099. [PMID: 32707170 DOI: 10.1016/j.ijantimicag.2020.106099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
Bumped kinase inhibitors (BKIs) are effective against a variety of apicomplexan parasites. Fifteen BKIs with promising in vitro efficacy against Neospora caninum tachyzoites, low cytotoxicity in mammalian cells, and no toxic effects in non-pregnant BALB/c mice were assessed in pregnant mice. Drugs were emulsified in corn oil and were applied by gavage for 5 days. Five BKIs did not affect pregnancy, five BKIs exhibited ~15-35% neonatal mortality and five compounds caused strong effects (infertility, abortion, stillbirth and pup mortality). Additionally, the impact of these compounds on zebrafish (Danio rerio) embryo development was assessed by exposing freshly fertilised eggs to 0.2-50 μM of BKIs and microscopic monitoring of embryo development in a blinded manner for 4 days. We propose an algorithm that includes quantification of malformations and embryo deaths, and established a scoring system that allows the calculation of an impact score (Si) indicating at which concentrations BKIs visibly affect zebrafish embryo development. Comparison of the two models showed that for nine compounds no clear correlation between Si and pregnancy outcome was observed. However, the three BKIs affecting zebrafish embryos only at high concentrations (≥40 μM) did not impair mouse pregnancy at all, and the three compounds that inhibited zebrafish embryo development already at 0.2 μM showed detrimental effects in the pregnancy model. Thus, the zebrafish embryo development test has limited predictive value to foresee pregnancy outcome in BKI-treated mice. We conclude that maternal health-related factors such as cardiovascular, pharmacokinetic and/or bioavailability properties also contribute to BKI-pregnancy effects.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Pablo A Winzer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Xavier Langa
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern, Switzerland
| | - Jessica Rieder
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Lynn K Barrett
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | | | - Wenlin Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Mathew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Grant R Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Samuel L Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
15
|
Wang B, Castellanos-Gonzalez A, White AC. Novel drug targets for treatment of cryptosporidiosis. Expert Opin Ther Targets 2020; 24:915-922. [PMID: 32552166 DOI: 10.1080/14728222.2020.1785432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction Cryptosporidium species are protozoan parasites that are important causes of diarrheal disease including waterborne outbreaks, childhood diarrhea in resource-poor countries, and diarrhea in compromised hosts worldwide. Recent studies highlight the importance of cryptosporidiosis in childhood diarrhea, malnutrition, and death in resource-poor countries. Despite this, only a single drug, nitazoxanide, has demonstrated efficacy in human cryptosporidiosis and its efficacy is limited in malnourished children and patients with HIV. Areas covered In this review, we highlight work on potential targets for chemotherapy and review progress on drug development. A number of new targets have been identified for chemotherapy and progress has been made at developing drugs for these targets. Targets include parasite kinases, nucleic acid synthesis and processing, proteases, and lipid metabolism. Other groups have performed high-throughput screening to identify potential drugs. Several compounds have advanced to large animal studies. Expert opinion Development of drugs for cryptosporidiosis has been plagued by a lack of success. Barriers have included poor correlations between in vitro activity and clinical success as well as frequent unanticipated adverse effects. Without a clear pathway forward, it is wise to maintain a diverse development pipeline. Drug developers should also realize that success will likely require a sustained, methodical effort.
Collapse
Affiliation(s)
- Beilin Wang
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch , Galveston, TX, USA
| | | | - A Clinton White
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch , Galveston, TX, USA
| |
Collapse
|
16
|
Choy RKM, Huston CD. Cryptosporidiosis should be designated as a tropical disease by the US Food and Drug Administration. PLoS Negl Trop Dis 2020; 14:e0008252. [PMID: 32614819 PMCID: PMC7332027 DOI: 10.1371/journal.pntd.0008252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Christopher D. Huston
- University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| |
Collapse
|
17
|
Kempf DJ, Marsh KC. Assembling Pharma Resources to Tackle Diseases of Underserved Populations. ACS Med Chem Lett 2020; 11:1094-1100. [PMID: 32550987 DOI: 10.1021/acsmedchemlett.0c00051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
Abstract
Tropical diseases that disproportionally affect the world's poorest people have traditionally been neglected from research efforts toward the discovery and development of new and effective therapies. Over the past two decades, major global health funders have made efforts to bring together various research institutions to work together in these disease areas offering little or no commercial return. This work describes the genesis and growth of an informal program devoted to contributing to new therapies for neglected tropical diseases within the environment of a major biopharmaceutical company (AbbVie).
Collapse
|
18
|
Bumped Kinase Inhibitors as therapy for apicomplexan parasitic diseases: lessons learned. Int J Parasitol 2020; 50:413-422. [PMID: 32224121 DOI: 10.1016/j.ijpara.2020.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 11/24/2022]
Abstract
Bumped Kinase Inhibitors, targeting Calcium-dependent Protein Kinase 1 in apicomplexan parasites with a glycine gatekeeper, are promising new therapeutics for apicomplexan diseases. Here we will review advances, as well as challenges and lessons learned regarding efficacy, safety, and pharmacology that have shaped our selection of pre-clinical candidates.
Collapse
|
19
|
De Rycker M, Horn D, Aldridge B, Amewu RK, Barry CE, Buckner FS, Cook S, Ferguson MAJ, Gobeau N, Herrmann J, Herrling P, Hope W, Keiser J, Lafuente-Monasterio MJ, Leeson PD, Leroy D, Manjunatha UH, McCarthy J, Miles TJ, Mizrahi V, Moshynets O, Niles J, Overington JP, Pottage J, Rao SPS, Read KD, Ribeiro I, Silver LL, Southern J, Spangenberg T, Sundar S, Taylor C, Van Voorhis W, White NJ, Wyllie S, Wyatt PG, Gilbert IH. Setting Our Sights on Infectious Diseases. ACS Infect Dis 2020; 6:3-13. [PMID: 31808676 PMCID: PMC6958537 DOI: 10.1021/acsinfecdis.9b00371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In
May 2019, the Wellcome Centre for Anti-Infectives Research (WCAIR) at the University of Dundee, UK, held an international
conference with the aim of discussing some key questions around discovering
new medicines for infectious diseases and a particular focus on diseases
affecting Low and Middle Income Countries. There is an urgent need
for new drugs to treat most infectious diseases. We were keen to see
if there were lessons that we could learn across different disease
areas and between the preclinical and clinical phases with the aim
of exploring how we can improve and speed up the drug discovery, translational,
and clinical development processes. We started with an introductory
session on the current situation and then worked backward from clinical
development to combination therapy, pharmacokinetic/pharmacodynamic
(PK/PD) studies, drug discovery pathways, and new starting points
and targets. This Viewpoint aims to capture some of the learnings.
Collapse
Affiliation(s)
- Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Bree Aldridge
- Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Richard K. Amewu
- Department of Chemistry, University of Ghana, P.O. Box LG56, Legon, Accra, Ghana
| | - Clifton E. Barry
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Frederick S. Buckner
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, MS 358061, 750 Republican Street, Rm E-606, Seattle, Washington 98109-4766, United States
| | - Sarah Cook
- School of Humanities, University of Glasgow, 1 University Gardens, Glasgow G12 8QQ, United Kingdom
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Nathalie Gobeau
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 Route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Department Microbial Natural Products, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research, partner
site Hannover-Braunschweig, Germany
| | | | - William Hope
- Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland
- University of Basel, CH-4001 Basel, Switzerland
| | | | | | - Didier Leroy
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 Route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases (NITD), Novartis Institutes for BioMedical Research (NIBR), 5300 Chiron Way, Emeryville, California 94608, United States
| | - James McCarthy
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Hertson, Queensland 4006, Australia
| | - Timothy J. Miles
- Tres Cantos Medicines Development Campus, Diseases of the Developing World (DDW), GlaxoSmithKline, Tres Cantos, Spain
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Olena Moshynets
- Biofilm Study Group, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150 Zabolotnoho Street, Kiev 03143, Ukraine
| | - Jacquin Niles
- School of Engineering, Massachusetts Institute of Technology, Building 1-206, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - John P. Overington
- Medicines Discovery Catapult, Alderley
Park, Alderley Edge, Cheshire SK10 4TG, United Kingdom
| | - John Pottage
- ViiV Healthcare, 980 Great West Road, Brentford, Middlesex TW8 9GS, United Kingdom
| | - Srinivasa P. S. Rao
- Novartis Institute for Tropical Diseases (NITD), Novartis Institutes for BioMedical Research (NIBR), 5300 Chiron Way, Emeryville, California 94608, United States
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Isabela Ribeiro
- Drugs for Neglected Diseases Initiative (DNDi), Chemin Louis-Dunant 15, 1202 Genève, Switzerland
| | | | - Jen Southern
- Lancaster Institute for the Contemporary Arts (LICA), The LICA Building, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary
of Merck KGaA Darmstadt Germany, Route de Crassier 1, 1262 Eysins, Switzerland
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Caitlin Taylor
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Wes Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, MS 358061, 750 Republican Street, Rm E-606, Seattle, Washington 98109-4766, United States
| | - Nicholas J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 3/F, 60th Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok 10400, Thailand
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Paul G. Wyatt
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Ian H. Gilbert
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
20
|
Yarlett N, Morada M, Gobin M, Van Voorhis W, Arnold S. In Vitro Culture of Cryptosporidium parvum Using Hollow Fiber Bioreactor: Applications for Simultaneous Pharmacokinetic and Pharmacodynamic Evaluation of Test Compounds. Methods Mol Biol 2020; 2052:335-350. [PMID: 31452171 DOI: 10.1007/978-1-4939-9748-0_19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hollow fiber technology is a powerful tool for the culture of difficult-to-grow cells. Cryptosporidium parvum has a multistage sexual and asexual life cycle that has proved difficult to culture by conventional in vitro culture methods. Here, we describe a method utilizing a hollow fiber bioreactor for the continuous in vitro growth of C. parvum that produces sexual and asexual stages. The method enables the evaluation of potential therapeutic compounds under conditions that mirror the dynamic conditions found in the gut facilitating preliminary pharmacokinetic and pharmacodynamic data to be obtained.
Collapse
Affiliation(s)
- Nigel Yarlett
- Haskins Laboratories, Pace University, New York, NY, USA.
- The Department of Chemistry and Physical Chemistry, Pace University, New York, NY, USA.
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY, USA
| | - Mohini Gobin
- Haskins Laboratories, Pace University, New York, NY, USA
| | - Wesley Van Voorhis
- Division of Allergy and Infectious Disease, Department of Medicine, The Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Samuel Arnold
- Division of Allergy and Infectious Disease, Department of Medicine, The Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Abstract
Cryptosporidiosis, caused by the apicomplexan parasite Cryptosporidium parvum, is a moderate-to-severe diarrheal disease now recognized as one of the leading causes of morbidity and mortality in livestock globally, and in humans living in resource-limited parts of the world, particularly those with AIDS or malnourished individuals. This recognition has fueled efforts for the discovery of effective therapeutics. While recent progress in drug discovery has been encouraging, there are presently no acceptably effective parasite-specific drugs for the disease. The urgent need for new drug discovery or drug repurposing has also increased the need for refined animal models of clinical disease for therapeutic efficacy evaluation. Here, we describe an acute model of cryptosporidiosis using newborn calves to evaluate well-defined clinical and parasitological parameter outcomes, including the effect on diarrhea severity and duration, oocyst numbers produced, and multiple measures of clinical health. The model is highly reproducible and provides unequivocal direct measures of treatment efficacy on diarrhea severity and parasite replication.
Collapse
Affiliation(s)
- Jan R. Mead
- Atlanta Veterans Affairs Medical Center, Decatur, GA USA
| | - Michael J. Arrowood
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
22
|
Bumped kinase inhibitor 1369 is effective against Cystoisospora suis in vivo and in vitro. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:9-19. [PMID: 30959327 PMCID: PMC6453670 DOI: 10.1016/j.ijpddr.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022]
Abstract
Cystoisosporosis is a leading diarrheal disease in suckling piglets. With the confirmation of resistance against the only available drug toltrazuril, there is a substantial need for novel therapeutics to combat the infection and its negative effects on animal health. In closely related apicomplexan species, bumped kinase inhibitors (BKIs) targeting calcium-dependent protein kinase 1 (CDPK1) were shown to be effective in inhibiting host-cell invasion and parasite growth. Therefore, the gene coding for Cystoisospora suis CDPK1 (CsCDPK1) was identified and cloned to investigate activity and thermal stabilization of the recombinant CsCDPK1 enzyme by BKI 1369. In this comprehensive study, the efficacy, safety and pharmacokinetics of BKI 1369 in piglets experimentally infected with Cystoisospora suis (toltrazuril-sensitive, Wien-I and toltrazuril-resistant, Holland-I strains) were determined in vivo and in vitro using an established animal infection model and cell culture, respectively. BKI 1369 inhibited merozoite proliferation in intestinal porcine epithelial cells-1 (IPEC-1) by at least 50% at a concentration of 40 nM, and proliferation was almost completely inhibited (>95%) at 200 nM. Nonetheless, exposure of infected cultures to 200 nM BKI 1369 for five days did not induce structural alterations in surviving merozoites as confirmed by transmission electron microscopy. Five-day treatment with BKI 1369 (10 mg/kg BW twice a day) effectively suppressed oocyst excretion and diarrhea and improved body weight gains in treated piglets without obvious side effects for both toltrazuril-sensitive, Wien-I and resistant, Holland-I C. suis strains. The plasma concentration of BKI 1369 in piglets increased to 11.7 μM during treatment, suggesting constant drug accumulation and exposure of parasites to the drug. Therefore, oral applications of BKI 1369 could potentially be a therapeutic alternative against porcine cystoisosporosis. For use in pigs, future studies on BKI 1369 should be directed towards ease of drug handling and minimizing treatment frequencies. Oral application of BKI 1369 effectively reduced oocyst excretion and diarrhea in Cystoisospora suis infected piglets. 200 nM of BKI 1369 almost completely suppressed parasite proliferation in vitro. IC50 and IC95 concentrations of BKI 1369 did not induce morphological alterations in in vitro cultured merozoites. Cystoisosporasuis CDPK1, the putative target of BKI 1369, has glycine as gatekeeper residue.
Collapse
|
23
|
Huang W, Hulverson MA, Choi R, Arnold SLM, Zhang Z, McCloskey MC, Whitman GR, Hackman RC, Rivas KL, Barrett LK, Ojo KK, Van Voorhis WC, Fan E. Development of 5-Aminopyrazole-4-carboxamide-based Bumped-Kinase Inhibitors for Cryptosporidiosis Therapy. J Med Chem 2019; 62:3135-3146. [PMID: 30830766 DOI: 10.1021/acs.jmedchem.9b00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cryptosporidium is a leading cause of pediatric diarrhea worldwide. Currently, there is neither a vaccine nor a consistently effective drug available for this disease. Selective 5-aminopyrazole-4-carboxamide-based bumped-kinase inhibitors (BKIs) are effective in both in vitro and in vivo models of Cryptosporidium parvum. Potential cardiotoxicity in some BKIs led to the continued exploration of the 5-aminopyrazole-4-carboxamide scaffold to find safe and effective drug candidates for Cryptosporidium. A series of newly designed BKIs were tested for efficacy against C. parvum using in vitro and in vivo (mouse infection model) assays and safety issues. Compound 6 (BKI 1708) was found to be efficacious at 8 mg/kg dosed once daily (QD) for 5 days with no observable signs of toxicity up to 200 mg/kg dosed QD for 7 days. Compound 15 (BKI 1770) was found to be efficacious at 30 mg/kg dosed twice daily (BID) for 5 days with no observable signs of toxicity up to 300 mg/kg dosed QD for 7 days. Compounds 6 and 15 are promising preclinical leads for cryptosporidiosis therapy with acceptable safety parameters and efficacy in the mouse model of cryptosporidiosis.
Collapse
Affiliation(s)
| | - Matthew A Hulverson
- Department of Medicine, Division of Allergy & Infectious Disease, Center for Emerging & Re-Emerging Infectious Disease (CERID) , University of Washington , Seattle , Washington 98109 , United States
| | - Ryan Choi
- Department of Medicine, Division of Allergy & Infectious Disease, Center for Emerging & Re-Emerging Infectious Disease (CERID) , University of Washington , Seattle , Washington 98109 , United States
| | - Samuel L M Arnold
- Department of Medicine, Division of Allergy & Infectious Disease, Center for Emerging & Re-Emerging Infectious Disease (CERID) , University of Washington , Seattle , Washington 98109 , United States
| | | | - Molly C McCloskey
- Department of Medicine, Division of Allergy & Infectious Disease, Center for Emerging & Re-Emerging Infectious Disease (CERID) , University of Washington , Seattle , Washington 98109 , United States
| | - Grant R Whitman
- Department of Medicine, Division of Allergy & Infectious Disease, Center for Emerging & Re-Emerging Infectious Disease (CERID) , University of Washington , Seattle , Washington 98109 , United States
| | - Robert C Hackman
- Fred Hutchinson Cancer Research Center , Seattle , Washington 98109 , United States
| | - Kasey L Rivas
- Department of Medicine, Division of Allergy & Infectious Disease, Center for Emerging & Re-Emerging Infectious Disease (CERID) , University of Washington , Seattle , Washington 98109 , United States
| | - Lynn K Barrett
- Department of Medicine, Division of Allergy & Infectious Disease, Center for Emerging & Re-Emerging Infectious Disease (CERID) , University of Washington , Seattle , Washington 98109 , United States
| | - Kayode K Ojo
- Department of Medicine, Division of Allergy & Infectious Disease, Center for Emerging & Re-Emerging Infectious Disease (CERID) , University of Washington , Seattle , Washington 98109 , United States
| | - Wesley C Van Voorhis
- Department of Medicine, Division of Allergy & Infectious Disease, Center for Emerging & Re-Emerging Infectious Disease (CERID) , University of Washington , Seattle , Washington 98109 , United States
| | | |
Collapse
|
24
|
Janes J, Young ME, Chen E, Rogers NH, Burgstaller-Muehlbacher S, Hughes LD, Love MS, Hull MV, Kuhen KL, Woods AK, Joseph SB, Petrassi HM, McNamara CW, Tremblay MS, Su AI, Schultz PG, Chatterjee AK. The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Proc Natl Acad Sci U S A 2018; 115:10750-10755. [PMID: 30282735 PMCID: PMC6196526 DOI: 10.1073/pnas.1810137115] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The chemical diversity and known safety profiles of drugs previously tested in humans make them a valuable set of compounds to explore potential therapeutic utility in indications outside those originally targeted, especially neglected tropical diseases. This practice of "drug repurposing" has become commonplace in academic and other nonprofit drug-discovery efforts, with the appeal that significantly less time and resources are required to advance a candidate into the clinic. Here, we report a comprehensive open-access, drug repositioning screening set of 12,000 compounds (termed ReFRAME; Repurposing, Focused Rescue, and Accelerated Medchem) that was assembled by combining three widely used commercial drug competitive intelligence databases (Clarivate Integrity, GVK Excelra GoStar, and Citeline Pharmaprojects), together with extensive patent mining of small molecules that have been dosed in humans. To date, 12,000 compounds (∼80% of compounds identified from data mining) have been purchased or synthesized and subsequently plated for screening. To exemplify its utility, this collection was screened against Cryptosporidium spp., a major cause of childhood diarrhea in the developing world, and two active compounds previously tested in humans for other therapeutic indications were identified. Both compounds, VB-201 and a structurally related analog of ASP-7962, were subsequently shown to be efficacious in animal models of Cryptosporidium infection at clinically relevant doses, based on available human doses. In addition, an open-access data portal (https://reframedb.org) has been developed to share ReFRAME screen hits to encourage additional follow-up and maximize the impact of the ReFRAME screening collection.
Collapse
Affiliation(s)
- Jeff Janes
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Megan E Young
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Emily Chen
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Nicole H Rogers
- California Institute for Biomedical Research, La Jolla, CA 92037
| | | | - Laura D Hughes
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Melissa S Love
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Mitchell V Hull
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Kelli L Kuhen
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Ashley K Woods
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Sean B Joseph
- California Institute for Biomedical Research, La Jolla, CA 92037
| | | | - Case W McNamara
- California Institute for Biomedical Research, La Jolla, CA 92037
| | | | - Andrew I Su
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Peter G Schultz
- California Institute for Biomedical Research, La Jolla, CA 92037;
| | | |
Collapse
|
25
|
Abstract
The intestinal apicomplexan parasite
Cryptosporidium is a major cause of diarrheal disease in humans worldwide. However, treatment options are severely limited. The search for novel interventions is imperative, yet there are several challenges to drug development, including intractability of the parasite and limited technical tools to study it. This review addresses recent, exciting breakthroughs in this field, including novel cell culture models, strategies for genetic manipulation, transcriptomics, and promising new drug candidates. These advances will stimulate the ongoing quest to understand
Cryptosporidium and the pathogenesis of cryptosporidiosis and to develop new approaches to combat this disease.
Collapse
Affiliation(s)
- Seema Bhalchandra
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, 02111, USA
| | - Daviel Cardenas
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, 02111, USA
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, 02111, USA.,Medicine, Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| |
Collapse
|
26
|
Therapeutic Efficacy of Bumped Kinase Inhibitor 1369 in a Pig Model of Acute Diarrhea Caused by Cryptosporidium hominis. Antimicrob Agents Chemother 2018; 62:AAC.00147-18. [PMID: 29661877 DOI: 10.1128/aac.00147-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Recent reports highlighting the global significance of cryptosporidiosis among children have renewed efforts to develop control measures. We evaluated the efficacy of bumped kinase inhibitor (BKI) 1369 in the gnotobiotic piglet model of acute diarrhea caused by Cryptosporidium hominis, the species responsible for most human cases. Five-day treatment with BKI 1369 reduced signs of disease early during treatment compared to those of untreated animals. Piglets treated with BKI 1369 exhibited significant reductions of oocyst excretion, mucosal colonization by C. hominis, and mucosal lesions, which resulted in considerable symptomatic improvement. BKI 1369 reduced the parasite burden and disease severity in the gnotobiotic pig model. Together these data suggest that a BKI-mediated therapeutic may be an effective treatment against cryptosporidiosis.
Collapse
|
27
|
Vidadala RSR, Golkowski M, Hulverson MA, Choi R, McCloskey MC, Whitman GR, Huang W, Arnold SLM, Barrett LK, Fan E, Merritt EA, Van Voorhis WC, Ojo KK, Maly DJ. 7 H-Pyrrolo[2,3- d]pyrimidin-4-amine-Based Inhibitors of Calcium-Dependent Protein Kinase 1 Have Distinct Inhibitory and Oral Pharmacokinetic Characteristics Compared with 1 H-Pyrazolo[3,4- d]pyrimidin-4-amine-Based Inhibitors. ACS Infect Dis 2018. [PMID: 29522315 DOI: 10.1021/acsinfecdis.7b00224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selective inhibitors of Cryptosporidium calcium-dependent protein kinase 1 ( CpCDPK1) based on the 1 H-pyrazolo[3,4- d]pyrimidin-4-amine (pyrazolopyrimidine, PP) scaffold are effective in both in vitro and in vivo models of cryptosporidiosis. However, the search for distinct safety and pharmacokinetic (PK) properties has motivated our exploration of alternative scaffolds. Here, we describe a series of 7 H-pyrrolo[2,3- d]pyrimidin-4-amine (pyrrolopyrimidine, PrP)-based analogs of PP CpCDPK1 inhibitors. Most of the PrP-based inhibitors described potently inhibit the CpCDPK1 enzyme, demonstrate no toxicity against mammalian cells, and block proliferation of the C. parvum parasite in the low micromolar range. Interestingly, certain substituents that show reduced CpCDPK1 potency when displayed from a PP scaffold provided notably enhanced efficacy in the context of a PrP scaffold. PK studies on these paired compounds show that some PrP analogs have distinct physiochemical properties compared with their PP counterparts. These results demonstrate that inhibitors based on a PrP scaffold are distinct therapeutic alternatives to previously developed PP inhibitors.
Collapse
Affiliation(s)
- Rama S. R. Vidadala
- Department of Chemistry, University of Washington, 36 Bagley Hall, Box 351700, Seattle, Washington 98195, United States
| | - Martin Golkowski
- Department of Pharmacology, University of Washington, 1959 NE Pacific Street, Box 357280, Seattle, Washington 98195, United States
| | - Matthew A. Hulverson
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, 750 Republican Street, Seattle, Washington 98109, United States
| | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, 750 Republican Street, Seattle, Washington 98109, United States
| | - Molly C. McCloskey
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, 750 Republican Street, Seattle, Washington 98109, United States
| | - Grant R. Whitman
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, 750 Republican Street, Seattle, Washington 98109, United States
| | - Wenlin Huang
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195, United States
| | - Samuel L. M. Arnold
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, 750 Republican Street, Seattle, Washington 98109, United States
| | - Lynn K. Barrett
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, 750 Republican Street, Seattle, Washington 98109, United States
| | - Erkang Fan
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195, United States
| | - Ethan A. Merritt
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195, United States
| | - Wesley C. Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, 750 Republican Street, Seattle, Washington 98109, United States
| | - Kayode K. Ojo
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, 750 Republican Street, Seattle, Washington 98109, United States
| | - Dustin J. Maly
- Department of Chemistry, University of Washington, 36 Bagley Hall, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
28
|
Hemphill A, Leitão A, Ortega-Mora LM, Cooke BM. ApiCOWplexa 2017 - 4th International Meeting on Apicomplexan Parasites in Farm Animals. Int J Parasitol 2017; 47:697-699. [PMID: 28942797 DOI: 10.1016/j.ijpara.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| | - Alexandre Leitão
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Brian M Cooke
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|