1
|
Rendle D, Hughes K, Bowen M, Bull K, Cameron I, Furtado T, Peachey L, Sharpe L, Hodgkinson J. BEVA primary care clinical guidelines: Equine parasite control. Equine Vet J 2024; 56:392-423. [PMID: 38169127 DOI: 10.1111/evj.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND There is a lack of consensus on how best to balance our need to minimise the risk of parasite-associated disease in the individual horse, with the need to limit the use of anthelmintics in the population to preserve their efficacy through delaying further development of resistance. OBJECTIVES To develop evidence-based guidelines utilising a modified GRADE framework. METHODS A panel of veterinary scientists with relevant expertise and experience was convened. Relevant research questions were identified and developed with associated search terms being defined. Evidence in the veterinary literature was evaluated using the GRADE evidence-to-decision framework. Literature searches were performed utilising CAB abstracts and PubMed. Where there was insufficient evidence to answer the research question the panel developed practical guidance based on their collective knowledge and experience. RESULTS Search results are presented, and recommendation or practical guidance were made in response to 37 clinically relevant questions relating to the use of anthelmintics in horses. MAIN LIMITATIONS There was insufficient evidence to answer many of the questions with any degree of certainty and practical guidance frequently had to be based upon extrapolation of relevant information and the panel members' collective experience and opinions. CONCLUSIONS Equine parasite control practices and current recommendations have a weak evidence base. These guidelines highlight changes in equine parasite control that should be considered to reduce the threat of parasite-associated disease and delay the development of further anthelmintic resistance.
Collapse
Affiliation(s)
| | - Kristopher Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Mark Bowen
- Medicine Vet Referrals, Nottinghamshire, UK
| | - Katie Bull
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | | | - Tamzin Furtado
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - Laura Peachey
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | | | - Jane Hodgkinson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| |
Collapse
|
2
|
Lightbody KL, Austin A, Lambert PA, von Samson-Himmelstjerna G, Jürgenschellert L, Krücken J, Nielsen MK, Sallé G, Reigner F, Donnelly CG, Finno CJ, Walshe N, Mulcahy G, Housby-Skeggs N, Grice S, Geyer KK, Austin CJ, Matthews JB. Validation of a serum ELISA test for cyathostomin infection in equines. Int J Parasitol 2024; 54:23-32. [PMID: 37536388 DOI: 10.1016/j.ijpara.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023]
Abstract
Cyathostomins are ubiquitous equine nematodes. Infection can result in larval cyathostominosis due to mass larval emergence. Although faecal egg count (FEC) tests provide estimates of egg shedding, these correlate poorly with burden and provide no information on mucosal/luminal larvae. Previous studies describe a serum IgG(T)-based ELISA (CT3) that exhibits utility for detection of mucosal/luminal cyathostomins. Here, this ELISA is optimised/validated for commercial application using sera from horses for which burden data were available. Optimisation included addition of total IgG-based calibrators to provide standard curves for quantification of antigen-specific IgG(T) used to generate a CT3-specific 'serum score' for each horse. Validation dataset results were then used to assess the optimised test's performance and select serum score cut-off values for diagnosis of burdens above 1000, 5000 and 10,000 cyathostomins. The test demonstrated excellent performance (Receiver Operating Characteristic Area Under the Curve values >0.9) in diagnosing infection, with >90% sensitivity and >70% specificity at the selected serum score cut-off values. CT3-specific serum IgG(T) profiles in equines in different settings were assessed to provide information for commercial test use. These studies demonstrated maternal transfer of CT3-specific IgG(T) in colostrum to newborns, levels of which declined before increasing as foals consumed contaminated pasture. Studies in geographically distinct populations demonstrated that the proportion of horses that reported as test positive at a 14.37 CT3 serum score (1000-cyathostomin threshold) was associated with parasite transmission risk. Based on the results, inclusion criteria for commercial use were developed. Logistic regression models were developed to predict probabilities that burdens of individuals are above defined thresholds based on the reported serum score. The models performed at a similar level to the serum score cut-off approach. In conclusion, the CT3 test provides an option for veterinarians to obtain evidence of low cyathostomin burdens that do not require anthelmintic treatment and to support diagnosis of infection.
Collapse
Affiliation(s)
- Kirsty L Lightbody
- Austin Davis Biologics, Unit 1 Denfield Lodge, Great Addington, NN14 4BL, UK
| | - Andrew Austin
- Austin Davis Biologics, Unit 1 Denfield Lodge, Great Addington, NN14 4BL, UK
| | - Peter A Lambert
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Georg von Samson-Himmelstjerna
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| | - Laura Jürgenschellert
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| | - Jürgen Krücken
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| | - Martin K Nielsen
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Guillaume Sallé
- INRAE, Université de Tours, UMR1282 ISP, F-37380 Nouzilly, France
| | - Fabrice Reigner
- INRAE, UE Physiologie Animale de l'Orfrasière, 37380 Nouzilly, France
| | - Callum G Donnelly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Nicola Walshe
- School of Veterinary Medicine, Veterinary Sciences Centre, Belfield, Dublin 4, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, Veterinary Sciences Centre, Belfield, Dublin 4, Ireland
| | | | - Steven Grice
- The Horse Trust, Slad Lane, Princes Risborough HP27 0PP, UK
| | | | - Corrine J Austin
- Austin Davis Biologics, Unit 1 Denfield Lodge, Great Addington, NN14 4BL, UK
| | | |
Collapse
|
3
|
Ai S, Zhang Z, Wang J, Wang X, Liu C, Duan Z. Prevalence and molecular identification of gastrointestinal nematodes in Qinghai-Tibetan Plateau of China. Vet Med Sci 2023; 9:2693-2702. [PMID: 37882479 PMCID: PMC10650333 DOI: 10.1002/vms3.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Gastrointestinal nematodes (GINs) have seriously affected the production and earnings of animal husbandry in various countries, while some species of GINs infect humans. At present, little is known about the species and prevalence of GINs in Qinghai-Tibetan Plateau (QTP). METHODS In this study, 528 fresh faecal samples were collected from typical areas in different altitudes with seven species of livestock in Qinghai, Tibet, Gansu and Yunnan Provinces. ITS-2 rRNA gene of nematodes was employed to detect by PCR and sequencing analysis. Phylogenetic analysis of related sequences was performed using MEGA 6.0 software. RESULTS The overall prevalence of GINs was 80.3% with 20 species of GINs detected, while Teladorsagia circumcincta was the dominant one, and four of which were zoonotic species such as Trichostrongylus colubriformis, Trichostrongylus axei, Trichostrongylus vitrinus and Oesophagostomum stephanostomum. CONCLUSION The study provided panoptic information on the prevalence and species diversity of GINs in QTP area, which is useful and valuable for reference of measure formulation in livestock husbandry and public health concerns. The parasites of T. circumcincta, Cylicocyclus nassatus, Strongylus edentatus, Cylicostephanus longibursatus, Telephlebia brevicauda, Cyathostomum catinatum, Mecistocirrus digitatus, Cooperia punctata, Cylicodontophorus bicoronatus, Nematodirus oiratianus and Oesophagostomum asperum were firstly reported the presence in QTP area. The study also showed that horse could be infected by T. circumcincta, goat could be infected by C. nassatus, cattle could be infected by S. edentatus and C. bicoronatus,and O. stephanostomum could infect yak, cattle and Mongolian sheep in worldwide. Nevertheless, more investigations are needed, such as microscopic examination, to accurately determine the species in the region.
Collapse
Affiliation(s)
- Sitong Ai
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- Department of Animal Husbandry and Veterinary MedicineCollege of AgricultureEastern Liaoning UniversityDandongChina
| | - Zhichao Zhang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jinghan Wang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Xiaoqi Wang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Cheng Liu
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Ziyuan Duan
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Matthews JB, Peczak N, Lightbody KL. The Use of Innovative Diagnostics to Inform Sustainable Control of Equine Helminth Infections. Pathogens 2023; 12:1233. [PMID: 37887749 PMCID: PMC10610145 DOI: 10.3390/pathogens12101233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Helminths are commonly found in grazing equids, with cyathostomin nematodes and the cestode Anoplocephala perfoliata being the most prevalent. Most horses harbour low burdens of these parasites and do not develop signs of infection; however, in a small number of animals, high burdens can accumulate and cause disease. Cyathostomins are associated with a syndrome known as larval cyathostominosis. This occurs when large numbers of larvae emerge from the large intestinal wall. This disease has a case fatality rate of up to 50%. A. perfoliata infection has been associated with various types of colic, with burdens of >20 worms associated with pathogenicity. Anthelmintic resistance is a serious problem in cyathostomins and is emerging in A. perfoliata. Control methods that reduce reliance on anthelmintics now need to be applied, especially as no new dewormer compounds are on the horizon. Sustainable control methods must employ diagnostics to identify horses that require treatment. Coprological tests (faecal egg counts, FECs) have been used for several decades to inform treatment decisions to reduce helminth egg shedding. These tests cannot be used to assess host burdens as FECs do not correlate with cyathostomin or A. perfoliata burdens. In the last decade, new tests have become available that measure parasite-specific antibodies, the levels of which have been shown to correlate with parasite burden. These tests measure antigen-specific IgG(T) and are available in serum (cyathostomin, A. perfoliata) or saliva (A. perfoliata) formats. Tests for other helminths have been developed as research tools and need to be translated to support equine clinicians in practice. A key element of sustainable control strategies is that diagnostics must be used in combination with management approaches to reduce environmental transmission of helminths; this will help limit the proportion of horses harbouring parasite burdens that need to be targeted by treatment. This manuscript provides a review of the development, performance and general utility of various diagnostic methods for informing equine helminth management decisions.
Collapse
|
5
|
Rinaldi L, Krücken J, Martinez-Valladares M, Pepe P, Maurelli MP, de Queiroz C, Castilla Gómez de Agüero V, Wang T, Cringoli G, Charlier J, Gilleard JS, von Samson-Himmelstjerna G. Advances in diagnosis of gastrointestinal nematodes in livestock and companion animals. ADVANCES IN PARASITOLOGY 2022; 118:85-176. [PMID: 36088084 DOI: 10.1016/bs.apar.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diagnosis of gastrointestinal nematodes in livestock and companion animals has been neglected for years and there has been an historical underinvestment in the development and improvement of diagnostic tools, undermining the undoubted utility of surveillance and control programmes. However, a new impetus by the scientific community and the quickening pace of technological innovations, are promoting a renaissance of interest in developing diagnostic capacity for nematode infections in veterinary parasitology. A cross-cutting priority for diagnostic tools is the development of pen-side tests and associated decision support tools that rapidly inform on the levels of infection and morbidity. This includes development of scalable, parasite detection using artificial intelligence for automated counting of parasitic elements and research towards establishing biomarkers using innovative molecular and proteomic methods. The aim of this review is to assess the state-of-the-art in the diagnosis of helminth infections in livestock and companion animals and presents the current advances of diagnostic methods for intestinal parasites harnessing (i) automated methods for copromicroscopy based on artificial intelligence, (ii) immunodiagnosis, and (iii) molecular- and proteome-based approaches. Regardless of the method used, multiple factors need to be considered before diagnostics test results can be interpreted in terms of control decisions. Guidelines on how to apply diagnostics and how to interpret test results in different animal species are increasingly requested and some were recently made available in veterinary parasitology for the different domestic species.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy.
| | - J Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - P Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - M P Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - C de Queiroz
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada; Faculty of Veterinary Medicine, St Georges University, Grenada
| | - V Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - T Wang
- Kreavet, Kruibeke, Belgium
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | | | - J S Gilleard
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Hu D, Tang Y, Wang C, Qi Y, Ente M, Li X, Zhang D, Li K, Chu H. The Role of Intestinal Microbial Metabolites in the Immunity of Equine Animals Infected With Horse Botflies. Front Vet Sci 2022; 9:832062. [PMID: 35812868 PMCID: PMC9257286 DOI: 10.3389/fvets.2022.832062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The microbiota and its metabolites play an important role in regulating the host metabolism and immunity. However, the underlying mechanism is still not well studied. Thus, we conducted the LC-MS/MS analysis and RNA-seq analysis on Equus przewalskii with and without horse botfly infestation to determine the metabolites produced by intestinal microbiota in feces and differentially expressed genes (DEGs) related to the immune response in blood and attempted to link them together. The results showed that parasite infection could change the composition of microbial metabolites. These identified metabolites could be divided into six categories, including compounds with biological roles, bioactive peptides, endocrine-disrupting compounds, pesticides, phytochemical compounds, and lipids. The three pathways involving most metabolites were lipid metabolism, amino acid metabolism, and biosynthesis of other secondary metabolites. The significant differences between the host with and without parasites were shown in 31 metabolites with known functions, which were related to physiological activities of the host. For the gene analysis, we found that parasite infection could alarm the host immune response. The gene of “cathepsin W” involved in innate and adaptive immune responses was upregulated. The two genes of the following functions were downregulated: “protein S100-A8” and “protein S100-A9-like isoform X2” involved in chemokine and cytokine production, the toll-like receptor signaling pathway, and immune and inflammatory responses. GO and KEGG analyses showed that immune-related functions of defense response and Th17 cell differentiation had significant differences between the host with and without parasites, respectively. Last, the relationship between metabolites and genes was determined in this study. The purine metabolism and pyrimidine metabolism contained the most altered metabolites and DEGs, which mainly influenced the conversion of ATP, ADP, AMP, GTP, GMP, GDP, UTP, UDP, UMP, dTTP, dTDP, dTMP, and RNA. Thus, it could be concluded that parasitic infection can change the intestinal microbial metabolic activity and enhance immune response of the host through the pathway of purine and pyrimidine metabolism. This results will be a valuable contribution to understanding the bidirectional association of the parasite, intestinal microbiota, and host.
Collapse
Affiliation(s)
- Dini Hu
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yujun Tang
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Chen Wang
- Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, China
| | - Yingjie Qi
- Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, China
| | - Make Ente
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Xuefeng Li
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Dong Zhang
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Kai Li
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- *Correspondence: Kai Li
| | - Hongjun Chu
- Institute of Forest Ecology, Xinjiang Academy of Forestry, Ürümqi, China
- Hongjun Chu
| |
Collapse
|
7
|
Jürgenschellert L, Krücken J, Bousquet E, Bartz J, Heyer N, Nielsen MK, von Samson-Himmelstjerna G. Occurrence of Strongylid Nematode Parasites on Horse Farms in Berlin and Brandenburg, Germany, With High Seroprevalence of Strongylus vulgaris Infection. Front Vet Sci 2022; 9:892920. [PMID: 35754549 PMCID: PMC9226773 DOI: 10.3389/fvets.2022.892920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022] Open
Abstract
The infection of horses with strongylid nematodes is highly prevalent, with multi-species infections being the rule. Strongylus spp. and in particular Strongylus vulgaris are amongst the most pathogenic strongyle equine parasites. Presumably due to regular strategic anthelmintic treatments in combination with long prepatencies, prevalence of these worms was severely reduced in past decades. In this study, 484 horses from 48 farms in Berlin/Brandenburg, Germany were sampled between May 2017 and January 2018. Mini-FLOTAC and combined sedimentation/flotation were used to analyse faecal samples and larval cultures were carried out from individual strongyle infected horses for molecular testing for Strongylus spp. infection. Additionally, for Strongylus vulgaris, antibodies against a recombinant larval antigen were quantified in an ELISA. Strongyle type eggs were detected in 66.7% of the individual faecal samples. Nematode DNA was amplifiable from 311 samples and S. vulgaris and Strongylus edentatus were detected in four (1.3%) and 10 (6.3%) of these, respectively, the latter using a novel high-resolution-melt PCR targeting S. edentatus, Strongylus equinus, and Strongylus asini. On the farm level, prevalence for Strongylus spp. by PCR was 12.5%. Applying a conservative cut-off (sensitivity 0.43, specificity 0.96), 21.2% of all serum samples were positive for antibodies against S. vulgaris larvae (83.3% prevalence on farm level). Newly developed pyrosequencing assays to analyse putatively benzimidazole resistance associated polymorphisms in codons 167, 198, and 200 of the isotype 1 β-tubulin gene of S. vulgaris did not detect such polymorphisms in the four positive samples. Low age and increasing access to pasture were risk factors for egg shedding and seropositivity for S. vulgaris. Time since last treatment increased whereas use of moxidectin and ivermectin for the last treatment decreased the risk for strongyle egg shedding. Noteworthy, horses under selective treatment had significantly higher odds to be seropositive for anti-S. vulgaris antibodies than horses treated four times per year (odds ratio 4.4). The serological findings suggest that exposure to S. vulgaris is considerably higher than expected from direct diagnostic approaches. One potential explanation is the contamination of the environment by a few infected horses, leading to the infection of many horses with larvae that never reach maturity due to regular anthelmintic treatments.
Collapse
Affiliation(s)
- Laura Jürgenschellert
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Jürgen Bartz
- Virbac Tierazneimittel GmbH, Bad Oldesloe, Germany
| | - Nina Heyer
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Martin K. Nielsen
- M.H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
8
|
Mansell SE, Behnke MC. Onchocerca cervicalis: A survey into awareness and knowledge of the parasite amongst UK equine veterinarians. J Equine Vet Sci 2022; 114:103942. [DOI: 10.1016/j.jevs.2022.103942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
9
|
Slater R, Frau A, Hodgkinson J, Archer D, Probert C. A Comparison of the Colonic Microbiome and Volatile Organic Compound Metabolome of Anoplocephala perfoliata Infected and Non-Infected Horses: A Pilot Study. Animals (Basel) 2021; 11:ani11030755. [PMID: 33803473 PMCID: PMC7999024 DOI: 10.3390/ani11030755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary In horses, tapeworm infection is associated with specific forms of colic (abdominal pain) that can be life-threatening without surgical treatment. There is growing evidence that intestinal parasites interact with the gut bacteria, and the consequences of these interactions may influence the ability of the host to resist infection and parasite-associated disease. We aimed to compare the intestinal bacteria and the gases produced by metabolic processes in the gut between horses that had varying levels of tapeworms and those with no tapeworm present. Overall, the diversity of gut bacteria was similar in horses with and without tapeworms. There were some decreases in beneficial bacteria in horses with tapeworms, indicating a possible negative consequence of infection. Intestinal gases correlated with some bacteria indicating their functionality and use as potential markers of active bacteria. Our study validates further research investigating tapeworm and gut bacteria interactions in the horse. Abstract Anoplocephala perfoliata is a common equine tapeworm associated with an increased risk of colic (abdominal pain) in horses. Identification of parasite and intestinal microbiota interactions have consequences for understanding the mechanisms behind parasite-associated colic and potential new methods for parasite control. A. perfoliata was diagnosed by counting of worms in the caecum post-mortem. Bacterial DNA was extracted from colonic contents and sequenced targeting of the 16S rRNA gene (V4 region). The volatile organic compound (VOC) metabolome of colonic contents was characterised using gas chromatography mass spectrometry. Bacterial diversity (alpha and beta) was similar between tapeworm infected and non-infected controls. Some compositional differences were apparent with down-regulation of operational taxonomic units (OTUs) belonging to the symbiotic families of Ruminococcaceae and Lachnospiraceae in the tapeworm-infected group. Overall tapeworm burden accounted for 7–8% of variation in the VOC profile (permutational multivariate analysis of variance). Integration of bacterial OTUs and VOCs demonstrated moderate to strong correlations indicating the potential of VOCs as markers for bacterial OTUs in equine colonic contents. This study has shown potential differences in the intestinal microbiome and metabolome of A. perfoliata infected and non-infected horses. This pilot study did not control for extrinsic factors including diet, disease history and stage of infection.
Collapse
Affiliation(s)
- Rachael Slater
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3GE, UK; (A.F.); (C.P.)
- Correspondence:
| | - Alessandra Frau
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3GE, UK; (A.F.); (C.P.)
| | - Jane Hodgkinson
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Leahurst Campus, Chester High Road, Wirral CH64 7TE, UK; (J.H.); (D.A.)
| | - Debra Archer
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Leahurst Campus, Chester High Road, Wirral CH64 7TE, UK; (J.H.); (D.A.)
| | - Chris Probert
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3GE, UK; (A.F.); (C.P.)
| |
Collapse
|
10
|
Walshe N, Mulcahy G, Crispie F, Cabrera-Rubio R, Cotter P, Jahns H, Duggan V. Outbreak of acute larval cyathostominosis - A "perfect storm" of inflammation and dysbiosis. Equine Vet J 2020; 53:727-739. [PMID: 32920897 PMCID: PMC8246859 DOI: 10.1111/evj.13350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022]
Abstract
Background Cyathostomins are prevalent and pathogenic intestinal helminths of horses, causing acute and chronic disease, including acute larval cyathostominosis, which has a mortality rate of 50%. Factors determining individual susceptibility to acute larval cyathostominosis are unknown. Investigation of these factors could lead to novel treatment and prevention strategies. Objectives To investigate clinicopathological and faecal microbiota changes associated with disease in individual horses in an acute larval cyathostominosis outbreak. Study design Case series. Methods The study population was a herd of 23 mixed breed horses in Ireland. The outbreak occurred in November 2018. Fourteen horses were clinically affected. Clinical status was monitored and recorded. Blood and faecal sampling allowed clinicopathological, faecal 16s rRNA gene sequencing and faecal egg count analyses. Results Two horses were euthanised, whilst 12 recovered. Common clinical signs included loose faecal consistency, weight loss and pyrexia. Consistent clinicopathological findings were borderline anaemia, leucocytosis, thrombocytosis, hyperfibrinogenaemia, hyperglobulinaemia and a reverse A: G ratio. Decreased alpha‐diversity of the faecal microbiota and greater relative abundance of the genus Streptococcus, class Bacilli, order Lactobacillales and family Streptococcaceae, and family Prevotelleceae was found in clinically affected horses compared to their clinically normal cohorts. An increase in obligate fibrolytic bacteria was seen in the clinically normal group compared to the clinical group. Histopathological findings of the colon and caecum revealed a severe necrotising typhlocolitis associated with cyathostomin larvae and bacterial overgrowth in the mucosa of the large intestine. Main limitations The study population in this outbreak is small. There are several confounding factors limiting this to a descriptive case series. Faecal microbiota has been shown to reflect the large intestinal microbiota but do not represent changes directly. Conclusions These findings suggest that acute larval cyathostominosis is associated with dysbiosis of the gut microbiota as well as the inflammatory stimulus of numerous emerging larvae leading to structural and functional pathology of the large intestine.
Collapse
Affiliation(s)
- Nicola Walshe
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland.,Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, APC Microbiome, Moorepark, Ireland.,APC Microbiome Ireland, Moorepark, Ireland
| | | | - Paul Cotter
- Teagasc Food Research Centre, APC Microbiome, Moorepark, Ireland.,APC Microbiome Ireland, Moorepark, Ireland.,Vistamilk, Moorepark, Ireland
| | - Hanne Jahns
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Vivienne Duggan
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|