1
|
Tangkawattana S, Suyapoh W, Taiki N, Tookampee P, Chitchak R, Thongrin T, Tangkawattana P. Unraveling the relationship among inflammatory responses, oxidative damage, and host susceptibility to Opisthorchis viverrini infection: A comparative analysis in animal models. Vet World 2023; 16:2303-2312. [PMID: 38152278 PMCID: PMC10750739 DOI: 10.14202/vetworld.2023.2303-2312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 12/29/2023] Open
Abstract
Background and Aim Opisthorchis viverrini infection-induced inflammation contributes to cholangiocarcinoma (CCA) development in humans and animals. Inflammation generates free radicals, such as reactive oxygen species and reactive nitrogen species (RNS), which damage the host's DNA. However, only 5% of O. viverrini-infected individuals develop malignancy, suggesting that variations in the inflammatory response of individuals to the parasite may influence susceptibility. Due to limitations in studying human susceptibility, we used an animal model to investigate the profiles of inflammatory reactions, oxidative burst, and irreversible DNA damage. This study aimed to explore the potential role of inflammation and RNS in causing DNA damage that may predispose susceptible hosts and non-susceptible animal models to cancer development in O. viverrini infection. Materials and Methods This experimental study was conducted on 30 Syrian golden hamsters (OV-H) and 30 BALB/c mice (OV-M) infected with O. viverrini, representing susceptible and non-susceptible models, respectively. Five animals per group were examined at six predetermined time points during the experiment. Biliary tract samples were systematically investigated using histopathological evaluation for inflammatory cell infiltration and immunohistochemical staining for RNS production and markers of DNA damage, including nitrotyrosine and 8-hydroxy-2'-deoxyguanosine. These features were quantified and compared among the experimental groups. Mann-Whitney U-test was used for statistical analysis, with p < 0.05 considered statistically significant. Results The comparison revealed that the OV-M group exhibited significantly earlier and higher rates of inflammatory cell infiltration during the acute phase, whereas the OV-H group exhibited chronic and more severe inflammation (p < 0.020). Intracellular RNS production and DNA damage were closely associated with the inflammatory response. Conclusion This study demonstrates differential responses in susceptible and non-susceptible models of O. viverrini infection regarding disease onset and duration, as well as intracellular RNS production and DNA damage caused by inflammation. Persistent inflammation generated oxidatively damaged DNA, which is a distinct pathological characteristic of susceptible hosts and may be critical for CCA development.
Collapse
Affiliation(s)
- Sirikachorn Tangkawattana
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharapol Suyapoh
- Department of Veterinary Science, Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Nathamon Taiki
- Doctor of Veterinary Medicine Program, Faculty of Veterinary Medicine, Khon Kaen University, Thailand
| | - Paramin Tookampee
- Doctor of Veterinary Medicine Program, Faculty of Veterinary Medicine, Khon Kaen University, Thailand
| | - Ravisara Chitchak
- Doctor of Veterinary Medicine Program, Faculty of Veterinary Medicine, Khon Kaen University, Thailand
| | - Theerayut Thongrin
- Master of Science Program in Veterinary Science, Faculty of Veterinary Medicine, Khon Kaen University, Thailand
| | - Prasarn Tangkawattana
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Avgustinovich D, Kizimenko A, Marenina M, Lvova M, Kovner A, Orlovskaya I, Toporkova L, Goiman E, Tsyganov M, Ponomarev D. Prolonged liver fluke infection combined with alcoholization: An experimental mouse model. Exp Parasitol 2022; 242:108399. [DOI: 10.1016/j.exppara.2022.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
|
3
|
Avgustinovich DF, Tenditnik MV, Bondar NP, Marenina MK, Zhanaeva SY, Lvova MN, Katokhin AV, Pavlov KS, Evseenko VI, Tolstikova TG. Behavioral effects and inflammatory markers in the brain and periphery after repeated social defeat stress burdened by Opisthorchis felineus infection in mice. Physiol Behav 2022; 252:113846. [PMID: 35594930 DOI: 10.1016/j.physbeh.2022.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
The combination of 4-week repeated social defeat stress (RSDS) and Opisthorchis felineus infection was modeled in C57BL/6 mice. Various parameters were compared between three experimental groups of male mice (SS: mice subjected to RSDS, OF: mice infected with O. felineus, and OF + SS: mice subjected to both adverse factors) and behavior-tested and intact (INT) controls. The combination caused liver hypertrophy and increased the blood level of proinflammatory cytokine interleukin 6 and proteolytic activity of cathepsin B in the hippocampus. Meanwhile, hypertrophy of the spleen and of adrenal glands was noticeable. Anxious behavior in the elevated plus-maze test was predominantly due to the infection, with synergistic effects of an interaction of the two adverse factors on multiple parameters in OF + SS mice. Depression-like behavior in the forced swimming test was caused only by RSDS and was equally pronounced in SS mice and OF + SS mice. Helminths attenuated the activities of cathepsin B in the liver and hypothalamus (which were high in SS mice) and increased cathepsin L activity in the liver. The highest blood level of corticosterone was seen in SS mice but was decreased to control levels by the trematode infection. OF mice had the lowest level of corticosterone, comparable to that in INT mice. Thus, the first data were obtained on the ability of O. felineus helminths-even at the immature stage-to modulate the effects of RSDS, thereby affecting functional connections of the host, namely "helminths → liver↔brain axis."
Collapse
Affiliation(s)
- Damira F Avgustinovich
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva, 10, Novosibirsk 630090, Russia; Group of Mechanochemistry of Organic Substances, Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Novosibirsk, Russia.
| | - Mikhail V Tenditnik
- Laboratory of Experimental Models of Neurodegenerative Processes, Scientific-Research Institute of Neurosciences and Medicine, SB RAS, Novosibirsk, Russia
| | - Natalia P Bondar
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva, 10, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Mariya K Marenina
- Department of Medicinal Chemistry, Laboratory of Pharmacological Research, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Novosibirsk, Russia
| | - Svetlana Ya Zhanaeva
- Department of Psychoneuroimmunology, Scientific-Research Institute of Neurosciences and Medicine, SB RAS, Novosibirsk, Russia
| | - Maria N Lvova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva, 10, Novosibirsk 630090, Russia
| | - Alexey V Katokhin
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva, 10, Novosibirsk 630090, Russia
| | - Konstantin S Pavlov
- Laboratory of Experimental Models of Neurodegenerative Processes, Scientific-Research Institute of Neurosciences and Medicine, SB RAS, Novosibirsk, Russia
| | - Veronica I Evseenko
- Group of Mechanochemistry of Organic Substances, Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Novosibirsk, Russia
| | - Tatiana G Tolstikova
- Department of Medicinal Chemistry, Laboratory of Pharmacological Research, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Novosibirsk, Russia
| |
Collapse
|