1
|
Pan T, Seal M, Shaw H, Mohanaraj S, Morinaga G, Hogaboam B, Jenkins M, Coker A, Soghigian J. First record of Culex pipiens (Diptera: Culicidae) in Alberta: expanding distributions and ecotype patterns in a western Canadian province. JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae150. [PMID: 39707157 DOI: 10.1093/jme/tjae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Culex pipiens is an invasive mosquito found in temperate regions globally. It is considered among the most important disease vectors worldwide and is responsible for the transmission of a range of pathogens, including West Nile virus, avian malaria, Saint Louis encephalitis, and filarial worms. Throughout its northern temperate range, this mosquito is found in 2 ecotypes: form pipiens and form molestus. In Canada, this mosquito was previously thought restricted to the Pacific coast of British Columbia and the eastern provinces of Ontario, Quebec, and the Maritimes. Through routine mosquito surveillance and targeted trapping for Cx. pipiens, we detected this mosquito in 2 Albertan municipalities earlier than suggested by species distribution modeling based on climate change data. We confirmed the identity of putative Cx. pipiens specimens using DNA sequencing and found that alleles associated with form molestus were present, but at a low frequency compared to alleles associated with form pipiens. Furthermore, we compared the frequency of ecotype-related alleles in Alberta to elsewhere in North America and found a general trend of increased form pipiens in more northern latitudes, similar to previously reported results. We discuss our findings in the context of vector-borne disease activity in Canada, particularly West Nile virus.
Collapse
Affiliation(s)
- Tiffany Pan
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michaela Seal
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hailey Shaw
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shahaanaa Mohanaraj
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gen Morinaga
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brittany Hogaboam
- Integrated Pest Management Lab, City of Edmonton, Edmonton, Alberta, Canada
| | - Michael Jenkins
- Integrated Pest Management Lab, City of Edmonton, Edmonton, Alberta, Canada
| | - Alexandra Coker
- Parks and Open Spaces, City of Calgary, Calgary, Alberta, Canada
| | - John Soghigian
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Cruz GLT, Gonçalves-Oliveira J, de Lemos ERS, D'Andrea PS, de Andreazzi CS. From host individual traits to community structure and composition: Bartonella infection insights. Parasit Vectors 2024; 17:440. [PMID: 39468608 PMCID: PMC11514747 DOI: 10.1186/s13071-024-06523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Phylogeny, combined with trait-based measures, offers insights into parasite sharing among hosts. However, the specific traits that mediate transmission and the aspects of host community diversity that most effectively explain parasite infection rates remain unclear, even for the Bartonella genus, a vector-borne bacteria that causes persistent blood infections in vertebrates. METHODS This study investigated the association between rodent host traits and Bartonella infection, as well as how rodent community diversity affects the odds of infection in the Atlantic Forest, using generalized linear models. Additionally, we assessed how host traits and phylogenetic similarities influence Bartonella infection among mammal species in Brazil. To this end, rodents were sampled from ten municipalities in Rio de Janeiro, southeastern Brazil. Then, we calculated several diversity indices for each community, including Rényi's diversity profiles, Fisher's alpha, Rao's quadratic entropy (RaoQ), Functional Diversity (FDis), Functional Richness (FRic), and Functional Evenness (FEve). Finally, we compiled a network encompassing all known interactions between mammal species and Bartonella lineages recorded in Brazil. RESULTS We found no significant relationship between diversity indices and the odds of Bartonella infection in rodent communities. Furthermore, there was no statistical support for the influence of individual-level traits (e.g., body length, sex, and age) or species-level ecological traits (e.g., locomotor habitat, dietary guild, and activity period) on Bartonella infection in rodents. A country-scale analysis, considering all mammal species, revealed no effect of host traits or phylogeny on Bartonella infection. CONCLUSIONS This study highlighted wild mammals that share Bartonella lineages with livestock, synanthropic, and domestic animals, underscoring the complexity of their maintenance cycle within the One Health framework. A key question arising from our findings is whether molecular host-cell interactions outweigh host body mass and ecological traits in influencing Bartonella infection, potentially opening new avenues for understanding host-parasite relationships and infection ecology.
Collapse
Affiliation(s)
- Gabriella Lima Tabet Cruz
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Pró-Reitoria de Pós-Graduação, Pesquisa e Inovação (PROPGPI), Universidade Federal do Estado do Rio de Janeiro (Unirio), Rio de Janeiro, Brazil
| | - Jonathan Gonçalves-Oliveira
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Laboratory for Zoonotic and Vector-Borne Diseases, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elba Regina Sampaio de Lemos
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Paulo Sergio D'Andrea
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cecilia Siliansky de Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
- International Platform for Science, Technology and Innovation in Health, PICTIS, Fiocruz, Ílhavo, Portugal.
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Euclydes R, Campião KM. Patterns in parasite diversity and interactions with anurans from the Atlantic Forest. Parasitol Int 2024; 102:102914. [PMID: 38908472 DOI: 10.1016/j.parint.2024.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Knowledge of parasite-host interactions is essential for understanding factors associated with the ecology and evolution of both groups. Some aspects, such as host size and phylogeny, as well as parasite specificity, are significant predictors that help unveil the parasite-host relationship. Thus, the goals of this study were: (1) to describe parasite diversity in regions of the Atlantic Forest; (2) to analyze which host characteristics can influence parasite richness of anuran's parasite component community; and (3) to investigate if the prevalence of parasite infection is related to specificity metrics (ecological and phylogenetic), number of infected hosts and parasite's abundance. We identified 49 parasite taxa, classified into three phyla: Nematoda, Acanthocephala, and Platyhelminthes. Supporting the existing literature, our findings corroborate the positive relationship between host size and parasite richness, further emphasizing the significance of this predictor. Parasite prevalence in the host community is related to the number of infected host species and parasite abundance, but not to phylogenetic and ecological specificity indices. This shows that parasite prevalence is strongly associated with infection opportunity, host sampling effort, and high parasite abundance.
Collapse
Affiliation(s)
- Rafael Euclydes
- Department of Zoology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil.
| | - Karla Magalhães Campião
- Department of Zoology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil
| |
Collapse
|
4
|
De La Torre GM, Kirchgatter K, Anjos CCD, Manica LT, Campião KM. Prevalence and composition of haemosporidians in an avian community from a World Heritage area: Associations with host foraging strata and forest regeneration. Acta Trop 2024; 257:107286. [PMID: 38876165 DOI: 10.1016/j.actatropica.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
Forest regeneration is becoming a powerful tool to combat land conversion which covers 30 % of the Neotropical territory. However, little is known about the effect of forest regeneration on vector-borne diseases. Here, we describe the haemosporidian lineage composition across a successional gradient within an Atlantic Forest bird community. We test whether forest successional stages, in addition to host life history traits affect haemosporidian infection probability. We sampled birds at 16 sampling units with different successional stages between 2017 and 2018 within a forest remnant located in Antonina, Paraná, Brazil. We captured bird individuals using mist-nets, identified them to the species level, and collected blood samples to detect and identify Plasmodium and Haemoproteus lineages based on molecular analysis. We used a Bayesian phylogenetic linear model with a Bernoulli distribution to test whether the haemosporidian infection probability is affected by nest type, foraging stratum, and forest successional stage. We captured 322 bird individuals belonging to 52 species and 21 families. We found 31 parasite lineages and an overall haemosporidian prevalence of 23.9 %, with most infections being caused by Plasmodium (21.7 % of prevalence). The Plasmodium probability of infection was associated with forest successional stage and bird foraging stratum. Birds from the secondary forest in an intermediate stage of succession are more likely to be infected by the parasites than birds from the primary forests (β = 1.21, 95 % CI = 0.11 - 2.43), birds from upper strata exhibit a lower probability of infection than birds from lower foraging strata (β = -1.81, 95 % CI = -3.80 - -0.08). Nest type did not affect the Plasmodium probability of infection. Our results highlight the relevance of forest succession on haemosporidian infection dynamics, which is particularly relevant in a world where natural regeneration is the main tool used in forest restoration.
Collapse
Affiliation(s)
- Gabriel Massaccesi De La Torre
- Programa de Pós-graduação em Sistemas Costeiros e Oceânicos, Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, PR, Brazil; Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Pontal do Paraná, PR, Brazil.
| | - Karin Kirchgatter
- Instituto Pasteur, São Paulo, SP, Brazil; Programa de Pós-graduação em Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carolina Clares Dos Anjos
- Programa de Pós-graduação em Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lilian Tonelli Manica
- Laboratório de Ecologia Comportamental e Ornitologia, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Karla Magalhães Campião
- Laboratório de Interações Biológicas, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
5
|
de Angeli Dutra D. Assessing global drivers of parasite diversity: host diversity and body mass boost avian haemosporidian diversity. Parasitology 2024; 151:478-484. [PMID: 38634315 PMCID: PMC11106501 DOI: 10.1017/s0031182024000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
Biodiversity varies worldwide and is influenced by multiple factors, such as environmental stability and past historical events (e.g. Panama Isthmus). At the same time, organisms with unique life histories (e.g. parasites) are subject to unique selective pressures that structure their diversity patterns. Parasites represent one of the most successful life strategies, impacting, directly and indirectly, ecosystems by cascading effects on host fitness and survival. Here, I focused on a highly diverse, prevalent and cosmopolitan group of parasites (avian haemosporidians) to investigate the main drivers (e.g. host and environmental features) of regional parasite diversity on a global scale. To do so, I compiled data from 4 global datasets on (i) avian haemosporidian (malaria and malaria-like) parasites, (ii) bird species diversity, (iii) avian functional traits and (iv) climate data. Then, using generalized least square models, I evaluated the effect of host and environmental features on haemosporidian diversity. I found that haemosporidian diversity mirrors host regional diversity and that higher host body mass increases haemosporidian diversity. On the other hand, climatic conditions had no effect on haemosporidian diversity in any model. When evaluating Leucocytozoon parasites separately, I found parasite diversity was boosted by a higher proportion of migratory hosts. In conclusion, I demonstrated that haemosporidian parasite diversity is intrinsically associated with their hosts’ diversity and body mass.
Collapse
|
6
|
Anjos CC, Bicudo T, Fecchio A, Anciães M, Mathias BS, Chagas CRF, Bell JA, Guimarães LO, Monteiro EF, Kirchgatter K. Prevalence and genetic diversity of avian haemosporidian parasites in islands within a mega hydroelectric dam in the Brazilian Amazon. Parasitol Res 2023; 122:2065-2077. [PMID: 37391644 DOI: 10.1007/s00436-023-07906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
The Brazilian Amazon supports an extremely diverse avifauna and serves as the diversification center for avian malaria parasites in South America. Construction of hydroelectric dams can drive biodiversity loss by creating islands incapable of sustaining the bird communities found in intact forest sites. Besides anthropogenic actions, the presence of parasites can also influence the dynamics and structure of bird communities. Avian malaria (Plasmodium) and related haemosporidian parasites (Haemoproteus and Leucocytozoon) are a globally distributed group of protozoan parasites recovered from all major bird groups. However, no study to date has analyzed the presence of avian haemosporidian parasites in fragmented areas such as land bridge islands formed during artificial flooding following the construction of hydroelectric dams. The aim of this study is to assess the prevalence and molecular diversity of haemosporidians in bird communities inhabiting artificial islands in the area of the Balbina Hydroelectric Dam. The reservoir area covers 443,700 ha with 3546 islands on the left bank of the Uatumã River known to contain more than 400 bird species. We surveyed haemosporidian infections in blood samples collected from 445 understory birds, belonging to 53 species, 24 families, and 8 orders. Passeriformes represented 95.5% of all analyzed samples. We found a low overall Plasmodium prevalence (2.9%), with 13 positive samples (two Plasmodium elongatum and 11 Plasmodium sp.) belonging to eight lineages. Six of these lineages were previously recorded in the Amazon, whereas two of them are new. Hypocnemis cantator, the Guianan Warbling Antbird, represented 38.5% of all infected individuals, even though it represents only 5.6% of the sampled individuals. Since comparison with Plasmodium prevalence data prior to construction of Balbina is not possible, other studies in artificially flooded areas are imperative to test if anthropogenic flooding may disrupt vector-parasite relationships leading to low Plasmodium prevalence.
Collapse
Affiliation(s)
- Carolina C Anjos
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Thiago Bicudo
- Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, 69553-225, Brazil
| | - Alan Fecchio
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET - Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
| | - Marina Anciães
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, AM, 69081-000, Brazil
| | - Bruno S Mathias
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | | | - Jeffrey A Bell
- Department of Biology, University of North Dakota, 10 Cornell Street, Grand Forks, ND, 58202, USA
| | - Lilian O Guimarães
- Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo, SP, 01027-000, Brazil
| | - Eliana F Monteiro
- Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo, SP, 01027-000, Brazil
| | - Karin Kirchgatter
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.
- Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo, SP, 01027-000, Brazil.
| |
Collapse
|
7
|
Fecchio A, Dias RI, De La Torre GM, Bell JA, Sagario MC, Gorosito CA, dos Anjos CC, Lugarini C, Piacentini VQ, Pinho JB, Kirchgatter K, Ricklefs RE, Schunck F, Cueto VR. Beta diversity, prevalence, and specificity of avian haemosporidian parasites throughout the annual cycle of Chilean Elaenia ( Elaenia chilensis), a Neotropical austral migrant. Parasitology 2022; 149:1760-1768. [PMID: 36165282 PMCID: PMC11010540 DOI: 10.1017/s0031182022001317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/25/2022] [Accepted: 09/10/2022] [Indexed: 12/14/2022]
Abstract
Migratory birds are implicated in dispersing haemosporidian parasites over great geographic distances. However, their role in sharing these vector-transmitted blood parasites with resident avian host species along their migration flyway is not well understood. We studied avian haemosporidian parasites in 10 localities where Chilean Elaenia, a long-distance Neotropical austral migrant species, spends part of its annual cycle to determine local parasite transmission among resident sympatric host species in the elaenia's distributional range across South America. We sampled 371 Chilean Elaenias and 1,818 birds representing 243 additional sympatric species from Brazilian wintering grounds to Argentinian breeding grounds. The 23 haemosporidian lineages found in Chilean Elaenias exhibited considerable variation in distribution, specialization, and turnover across the 10 avian communities in South America. Parasite lineage dissimilarity increased with geographic distance, and infection probability by Parahaemoproteus decreased in localities harbouring a more diverse haemosporidian fauna. Furthermore, blood smears from migrating Chilean Elaenias and local resident avian host species did not contain infective stages of Leucocytozoon, suggesting that transmission did not take place in the Brazilian stopover site. Our analyses confirm that this Neotropical austral migrant connects avian host communities and transports haemosporidian parasites along its distributional range in South America. However, the lack of transmissive stages at stopover site and the infrequent parasite lineage sharing between migratory host populations and residents at breeding and wintering grounds suggest that Chilean Elaenias do not play a significant role in dispersing haemosporidian parasites, nor do they influence local transmission across South America.
Collapse
Affiliation(s)
- Alan Fecchio
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
- Laboratorio de Ecología de Aves, Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET – Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
| | - Raphael I. Dias
- Faculdade de Ciências da Educação e Saúde, Centro Universitário de Brasília, Brasília, DF, Brazil
| | - Gabriel M. De La Torre
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Jeffrey A. Bell
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - M. Cecilia Sagario
- Grupo de Ecología Terrestre de Neuquén, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA–CONICET and UNComahue), and Centro de Ecología Aplicada del Neuquén (CEAN), Junín de los Andes, Neuquén, Argentina
| | - Cristian A. Gorosito
- Laboratorio de Ecología de Aves, Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET – Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
| | - Carolina C. dos Anjos
- Programa de Pós-graduação em Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Camile Lugarini
- Centro Nacional de Pesquisa e Conservação de Aves Silvestres, Instituto Chico Mendes de Conservação da Biodiversidade, Florianópolis, SC, Brazil
| | - Vítor Q. Piacentini
- Departamento de Biologia e Zoologia & Programa de Pós-graduação em Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - João B. Pinho
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Karin Kirchgatter
- Programa de Pós-graduação em Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Bioquímica e Biologia Molecular, Superintendência de Controle de Endemias, São Paulo, SP, Brazil
| | - Robert E. Ricklefs
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Fabio Schunck
- Brazilian Committee for Ornithological Records – CBRO, Brazil
| | - Victor R. Cueto
- Laboratorio de Ecología de Aves, Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET – Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
| |
Collapse
|
8
|
Li Z, Ren XX, Zhao YJ, Yang LT, Duan BF, Hu NY, Zou FC, Zhu XQ, He JJ, Liu QS. First report of haemosporidia and associated risk factors in red junglefowl (Gallus gallus) in China. Parasit Vectors 2022; 15:275. [PMID: 35915463 PMCID: PMC9344640 DOI: 10.1186/s13071-022-05389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/28/2022] [Indexed: 12/01/2022] Open
Abstract
Background Avian haemosporidia infect both domestic and wild birds, causing anemia, acute tissue degeneration, and depopulation in wild birds. Poultry and wild birds have been reported as common reservoirs of haemosporidia, but limited information is available for red junglefowl (Gallus gallus) in China. The present study investigated the prevalence and molecular characterization of haemosporidia in red junglefowl. Methods Blood samples were collected from 234 red junglefowl from Jinghong City of Yunnan Province, and genomic DNA was extracted from these samples. The prevalence of haemosporidia was determined by nested PCR targeting the mitochondrial cytochrome b (cytb) gene. Molecular characterization was investigated based on phylogenetic analysis of cytb sequences, and associated risk factors were analyzed using the Chi-square (χ2) test. Results The overall prevalence of haemosporidia was 74.8% (175/234), and three species were identified, namely Haemoproteus enucleator, Leucocytozoon californicus, and Plasmodium juxtanucleare. The prevalence of haemosporidia in adult fowl (81.1%, 107/132) was significantly higher (χ2 = 6.32, df = 1, P = 0.012) than that in juveniles (66.7%, 68/102). Three novel haemosporidian lineages were revealed. Conclusions This study examined the prevalence and identified species of avian haemosporidians in red junglefowl, providing new information on the molecular epidemiology and geographical distribution of haemosporidian parasites. Our results indicated high prevalence and diverse species distribution of these haemosporidians in red junglefowl. To the best of our knowledge, this is the first record of haemosporidian infection in red junglefowl in China. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Zhao Li
- Animal Research and Resource Center, Yunnan University, Kunming, Yunnan Province, 650500, People's Republic of China. .,State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, 650500, People's Republic of China. .,Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, People's Republic of China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China.
| | - Xiao-Xia Ren
- Animal Research and Resource Center, Yunnan University, Kunming, Yunnan Province, 650500, People's Republic of China.,State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Yin-Jiao Zhao
- Animal Research and Resource Center, Yunnan University, Kunming, Yunnan Province, 650500, People's Republic of China.,State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Lian-Tao Yang
- Animal Research and Resource Center, Yunnan University, Kunming, Yunnan Province, 650500, People's Republic of China.,State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Bo-Fang Duan
- Yunnan Province Center for Animal Disease Control and Prevention, Kunming, Yunnan Province, 650201, People's Republic of China
| | - Na-Ying Hu
- Xishuangbanna Dai Autonomous Prefecture Technical Extension Station for Animal Husbandry and Veterinary Medicine, Jinghong, Yunnan Province, 666100, People's Republic of China
| | - Feng-Cai Zou
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, People's Republic of China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, People's Republic of China.,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, People's Republic of China.
| | - Qi-Shuai Liu
- Animal Research and Resource Center, Yunnan University, Kunming, Yunnan Province, 650500, People's Republic of China. .,State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, 650500, People's Republic of China.
| |
Collapse
|
9
|
De La Torre GM, Fecchio A, Bell JA, Campião KM. Host evolutionary history rather than avian functional traits drives the
Plasmodium
regional assembly in the Atlantic Forest. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriel M. De La Torre
- Programa de Pós‐Graduação em Ecologia e Conservação, Universidade Federal do Paraná Curitiba Brazil
- Laboratório de Interações Biológicas, Universidade Federal do Paraná Curitiba Brazil
| | - Alan Fecchio
- Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso Cuiabá Brazil
| | - Jeffrey A. Bell
- Department of Biology University of North Dakota Grand Forks North Dakota U.S.A
| | - Karla M. Campião
- Laboratório de Interações Biológicas, Universidade Federal do Paraná Curitiba Brazil
| |
Collapse
|
10
|
Abreu FVSD, de Andreazzi CS, Neves MSAS, Meneguete PS, Ribeiro MS, Dias CMG, de Albuquerque Motta M, Barcellos C, Romão AR, Magalhães MDAFM, Lourenço-de-Oliveira R. Ecological and environmental factors affecting transmission of sylvatic yellow fever in the 2017-2019 outbreak in the Atlantic Forest, Brazil. Parasit Vectors 2022; 15:23. [PMID: 35012637 PMCID: PMC8750868 DOI: 10.1186/s13071-021-05143-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yellow fever virus (YFV) is an arbovirus that, despite the existence of a safe and effective vaccine, continues to cause outbreaks of varying dimensions in the Americas and Africa. Between 2017 and 2019, Brazil registered un unprecedented sylvatic YFV outbreak whose severity was the result of its spread into zones of the Atlantic Forest with no signals of viral circulation for nearly 80 years. METHODS To investigate the influence of climatic, environmental, and ecological factors governing the dispersion and force of infection of YFV in a naïve area such as the landscape mosaic of Rio de Janeiro (RJ), we combined the analyses of a large set of data including entomological sampling performed before and during the 2017-2019 outbreak, with the geolocation of human and nonhuman primates (NHP) and mosquito infections. RESULTS A greater abundance of Haemagogus mosquitoes combined with lower richness and diversity of mosquito fauna increased the probability of finding a YFV-infected mosquito. Furthermore, the analysis of functional traits showed that certain functional groups, composed mainly of Aedini mosquitoes which includes Aedes and Haemagogus mosquitoes, are also more representative in areas where infected mosquitoes were found. Human and NHP infections were more common in two types of landscapes: large and continuous forest, capable of harboring many YFV hosts, and patches of small forest fragments, where environmental imbalance can lead to a greater density of the primary vectors and high human exposure. In both, we show that most human infections (~ 62%) occurred within an 11-km radius of the finding of an infected NHP, which is in line with the flight range of the primary vectors. CONCLUSIONS Together, our data suggest that entomological data and landscape composition analyses may help to predict areas permissive to yellow fever outbreaks, allowing protective measures to be taken to avoid human cases.
Collapse
Affiliation(s)
- Filipe Vieira Santos de Abreu
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ Brazil
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Salinas, MG Brazil
| | - Cecilia Siliansky de Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ Brazil
- Present Address: Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | | | - Patrícia Soares Meneguete
- Secretaria de Estado de Saúde, Subsecretaria de Vigilância e Atenção Primária À Saúde, Rio de Janeiro, RJ Brazil
| | - Mário Sérgio Ribeiro
- Secretaria de Estado de Saúde, Subsecretaria de Vigilância e Atenção Primária À Saúde, Rio de Janeiro, RJ Brazil
| | - Cristina Maria Giordano Dias
- Secretaria de Estado de Saúde, Subsecretaria de Vigilância e Atenção Primária À Saúde, Rio de Janeiro, RJ Brazil
| | - Monique de Albuquerque Motta
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ Brazil
| | - Christovam Barcellos
- Laboratório de Informação em Saúde, Instituto de Comunicação e Informação Científica e Tecnológica em Saúde, FIOCRUZ, Rio de Janeiro, RJ Brazil
| | - Anselmo Rocha Romão
- Laboratório de Informação em Saúde, Instituto de Comunicação e Informação Científica e Tecnológica em Saúde, FIOCRUZ, Rio de Janeiro, RJ Brazil
| | | | - Ricardo Lourenço-de-Oliveira
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ Brazil
| |
Collapse
|