1
|
Patel H, Minkah NK, Kumar S, Zanghi G, Schepis A, Goswami D, Armstrong J, Abatiyow BA, Betz W, Reynolds L, Camargo N, Sheikh AA, Kappe SHI. Malaria blood stage infection suppresses liver stage infection via host-induced interferons but not hepcidin. Nat Commun 2024; 15:2104. [PMID: 38453916 PMCID: PMC10920859 DOI: 10.1038/s41467-024-46270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Malaria-causing Plasmodium parasites first replicate as liver stages (LS), which then seed symptomatic blood stage (BS) infection. Emerging evidence suggests that these stages impact each other via perturbation of host responses, and this influences the outcome of natural infection. We sought to understand whether the parasite stage interplay would affect live-attenuated whole parasite vaccination, since the efficacy of whole parasite vaccines strongly correlates with their extend of development in the liver. We thus investigated the impact of BS infection on LS development of genetically attenuated and wildtype parasites in female rodent malaria models and observed that for both, LS infection suffered severe suppression during concurrent BS infection. Strikingly and in contrast to previously published studies, we find that the BS-induced iron-regulating hormone hepcidin is not mediating suppression of LS development. Instead, we demonstrate that BS-induced host interferons are the main mediators of LS developmental suppression. The type of interferon involved depended on the BS-causing parasite species. Our study provides important mechanistic insights into the BS-mediated suppression of LS development. This has direct implications for understanding the outcomes of live-attenuated Plasmodium parasite vaccination in malaria-endemic areas and might impact the epidemiology of natural malaria infection.
Collapse
Affiliation(s)
- Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nana K Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Antonino Schepis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Biley A Abatiyow
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Will Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laura Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Amina A Sheikh
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Fonte M, Fontinha D, Moita D, Caño-Prades O, Avalos-Padilla Y, Fernàndez-Busquets X, Prudêncio M, Gomes P, Teixeira C. New 4-(N-cinnamoylbutyl)aminoacridines as potential multi-stage antiplasmodial leads. Eur J Med Chem 2023; 258:115575. [PMID: 37390511 DOI: 10.1016/j.ejmech.2023.115575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
A novel family of 4-aminoacridine derivatives was obtained by linking this heteroaromatic core to different trans-cinnamic acids. The 4-(N-cinnamoylbutyl)aminoacridines obtained exhibited in vitro activity in the low- or sub-micromolar range against (i) hepatic stages of Plasmodium berghei, (ii) erythrocytic forms of Plasmodium falciparum, and (iii) early and mature gametocytes of Plasmodium falciparum. The most active compound, having a meta-fluorocinnamoyl group linked to the acridine core, was 20- and 120-fold more potent, respectively, against the hepatic and gametocyte stages of Plasmodium infection than the reference drug, primaquine. Moreover, no cytotoxicity towards mammalian and red blood cells at the concentrations tested was observed for any of the compounds under investigation. These novel conjugates represent promising leads for the development of new multi-target antiplasmodials.
Collapse
Affiliation(s)
- Mélanie Fonte
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal.
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Diana Moita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Omar Caño-Prades
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yunuen Avalos-Padilla
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Spain
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal.
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal; Gyros Protein Technologies Inc., Tucson, AZ, USA
| |
Collapse
|
3
|
Kaushansky A, Minkah N. Liver-stage Plasmodium infection tunes clinical outcomes. Trends Parasitol 2023; 39:321-322. [PMID: 36935339 PMCID: PMC10634323 DOI: 10.1016/j.pt.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Chora and colleagues show that infection of the liver by Plasmodium modulates severity of disease in the experimental cerebral malaria (ECM) model by generating gamma delta (ɣδ) T cells that produce IL-17. This work calls into question the long-standing assumption that liver infection does not modulate severity of malaria.
Collapse
Affiliation(s)
- Alexis Kaushansky
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA.
| | - Nana Minkah
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
4
|
de Koning-Ward TF, Boddey JA, Fowkes FJ. Editorial: Molecular Approaches to Malaria 2020. Int J Parasitol 2022; 52:705-706. [DOI: 10.1016/j.ijpara.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Wang F, Song J, Yan Y, Zhou Q, Li X, Wang P, Yang Z, Zhang Q, Zhang H. Integrated Network Pharmacology Analysis and Serum Metabolomics to Reveal the Anti-malaria Mechanism of Artesunate. ACS OMEGA 2022; 7:31482-31494. [PMID: 36092633 PMCID: PMC9453802 DOI: 10.1021/acsomega.2c04157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Artesunate is a widely used drug in clinical treatment of malaria. The aim of this study was to investigate the therapeutic mechanism of artesunate on malaria using an integrated strategy of network pharmacology and serum metabolomics. The mice models of malaria were established using 2 × 107 red blood cells infected with Plasmodium berghei ANKA injection. Giemsa and hematoxylin-eosin (HE) staining were used to evaluate the efficacy of artesunate on malaria. Next, network pharmacology analysis was applied to identify target genes. Then, a metabolomics strategy has been developed to find the possible significant serum metabolites and metabolic pathways induced by artesunate. Additionally, two parts of the results were integrated to confirm each other. Giemsa and HE staining results showed that artesunate significantly inhibited the proliferation of Plasmodium and reduced liver and spleen inflammation. Based on metabolomics, 18 differential endogenous metabolites were identified as potential biomarkers related to the artesunate for treating malaria. These metabolites were mainly involved in the relevant pathways of biosynthesis of unsaturated fatty acids; aminoacyl-tRNA biosynthesis; valine, leucine, and isoleucine biosynthesis; and phenylalanine, tyrosine, and tryptophan biosynthesis. The results of the network pharmacology analysis showed 125 potential target genes related to the treatment of malaria with artesunate. The functional enrichment was mainly associated with lipid and atherosclerosis; pathways of prostate cancer and proteoglycans in cancer; and PI3K-Akt, apoptosis, NF-κB, Th17 cell, and AGE-RAGE signaling pathways. These findings were partly consistent with the findings of the metabolism. Our results further suggested that artesunate could correct the inflammatory response caused by malaria through Th17 cell and NF-κB pathways. Meanwhile, our work revealed that cholesterol needed by Plasmodium berghei came directly from serum. Cholesterol and palmitic acid may be essential in the growth and reproduction of Plasmodium berghei. In summary, artesunate may have an effect on anti-malarial properties through multiple targets.
Collapse
Affiliation(s)
- Feiran Wang
- Shandong
University of Traditional Chinese Medicine, Jinan 250355, P. R. China
- Shandong
Academy of Chinese Medicine, Jinan 250014, P. R. China
| | - Jian Song
- Shandong
University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Yingying Yan
- Shandong
University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Qian Zhou
- Shandong
Academy of Chinese Medicine, Jinan 250014, P. R. China
| | - Xiaojing Li
- Shandong
Academy of Chinese Medicine, Jinan 250014, P. R. China
| | - Ping Wang
- Shandong
Academy of Chinese Medicine, Jinan 250014, P. R. China
| | - Zongtong Yang
- Shandong
Academy of Chinese Medicine, Jinan 250014, P. R. China
| | - Qiuhong Zhang
- Jinan
Center for Food and Drug Control, Jinan 250102, P. R. China
| | - Huimin Zhang
- Shandong
Academy of Chinese Medicine, Jinan 250014, P. R. China
| |
Collapse
|