1
|
Llano HAB, Robayo-Sánchez LN, Ramírez-Hernández A, Cortés-Vecino JA, Gómez-Ruiz DA, Aguirre-Ramírez JC. First record of ectoparasites (Phthiraptera and Acari) from the Andean condor (Vultur gryphus) in Colombia. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:472-481. [PMID: 39011849 DOI: 10.1111/mve.12743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Several species of ectoparasites, including chewing lice and mites are closely associated with their hosts. The Andean condor (Vultur gryphus) is globally listed as vulnerable by the IUCN and its population has been steadily declining in recent decades suggesting a potential extinction of associated entomofauna. The purpose of this study was to record the species of ectoparasites infesting three individuals of Andean condor found dead in the 'Páramo del Almorzadero' Santander Department, Northeastern Colombia. One juvenile (male) and two adults (male and female) Andean condors received for necropsy were carefully examined for ectoparasite infestation. Specimens were collected and preserved in ethanol (70%) for taxonomic studies. Morphologic identification and morphometric records were made under light microscopy. Some specimens were also prepared for scanning electron microscopy and others were subjected to DNA extraction to amplify and obtain sequences of the cytochrome-C oxidase subunit I (COI) gene for phylogenetic analyses. Lice were collected from the juvenile condor and the adult female and identified as Falcolipeurus assesor (Phthiraptera: Ischnocera) in the juvenile condor (8 females, 19 males and 8 nymphs) and the adult (1 female); Colpocephalum trichosum (Phthiraptera: Amblycera) in the juvenile (19 females, 24 males and 1 nymph) and the adult (2 females, 2 males and 3 nymphs); and Cuculiphilus zonatus (Phthiraptera: Amblycera) in the juvenile (40 females, 43 males and 15 nymphs) and the adult (1 male and 2 nymphs). Moreover, one mite collected from the juvenile condor was identified as Ancyralges cathartinus (Acari: Astigmata) (1 female). Morphometric data was obtained for the adult stages of F. assesor (6 females and 13 males), C. trichosum (9 females and 9 males) and C. zonatus (10 females and 10 males). We obtained the first DNA sequences of COI for F. assessor, and C. trichosum, where phylogenetic tree analysis showed that F. assessor is more closely related to Falcolipeurus marginalis, and C. trichosum to Colpocephalum kelloggi. This represents the first record of parasites in Andean condor from Colombia and contributes to the knowledge of chewing lice and mites associated with an endemic and endangered bird species. Further studies on Andean condor ectoparasites should be focused on documenting host-parasite interactions and potential health impacts in these wild birds.
Collapse
Affiliation(s)
- Horwald A B Llano
- Grupo de Investigación GINVER, Facultad de Medicina Veterinaria, Corporación Universitaria Remington, Medellín, Colombia
| | - Laura N Robayo-Sánchez
- Grupo de Investigación Parasitología Veterinaria, Laboratorio de Parasitología Veterinaria, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alejandro Ramírez-Hernández
- Grupo de Investigación Parasitología Veterinaria, Laboratorio de Parasitología Veterinaria, Universidad Nacional de Colombia, Bogotá, Colombia
- Universidad de La Salle, Bogotá, Colombia
| | - Jesús A Cortés-Vecino
- Grupo de Investigación Parasitología Veterinaria, Laboratorio de Parasitología Veterinaria, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daisy A Gómez-Ruiz
- Grupo de Investigación GINVER, Facultad de Medicina Veterinaria, Corporación Universitaria Remington, Medellín, Colombia
| | - Julio C Aguirre-Ramírez
- Grupo de Investigación GINVER, Facultad de Medicina Veterinaria, Corporación Universitaria Remington, Medellín, Colombia
| |
Collapse
|
2
|
Kolencik S, Stanley EL, Punnath A, Grant AR, Doña J, Johnson KP, Allen JM. Parasite escape mechanisms drive morphological diversification in avian lice. Proc Biol Sci 2024; 291:20232665. [PMID: 38531401 PMCID: PMC10965332 DOI: 10.1098/rspb.2023.2665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Organisms that have repeatedly evolved similar morphologies owing to the same selective pressures provide excellent cases in which to examine specific morphological changes and their relevance to the ecology and evolution of taxa. Hosts of permanent parasites act as an independent evolutionary experiment, as parasites on these hosts are thought to be undergoing similar selective pressures. Parasitic feather lice have repeatedly diversified into convergent ecomorphs in different microhabitats on their avian hosts. We quantified specific morphological characters to determine (i) which traits are associated with each ecomorph, (ii) the quantitative differences between these ecomorphs, and (iii) if there is evidence of displacement among co-occurring lice as might be expected under louse-louse competition on the host. We used nano-computed tomography scan data of 89 specimens, belonging to four repeatedly evolved ecomorphs, to examine their mandibular muscle volume, limb length and three-dimensional head shape data. Here, we find evidence that lice repeatedly evolve similar morphologies as a mechanism to escape host defences, but also diverge into different ecomorphs related to the way they escape these defences. Lice that co-occur with other genera on a host exhibit greater morphological divergence, indicating a potential role of competition in evolutionary divergence.
Collapse
Affiliation(s)
- Stanislav Kolencik
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Edward L. Stanley
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Aswaj Punnath
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - Avery R. Grant
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA
- Departamento de Biología Animal, Universidad de Granada, 18071 Granada, Spain
| | - Kevin P. Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA
| | - Julie M. Allen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Peng Z, Miao Z, Ji X, Zhang G, Zhang J. Engineering flexible loops to enhance thermal stability of keratinase for efficient keratin degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157161. [PMID: 35817113 DOI: 10.1016/j.scitotenv.2022.157161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Keratinase-catalyzed degradation of keratin waste has been shown to be a promising recycling method. Although the recombinant KerZ1 derived from Bacillus subtilis has shown the highest activity among the keratinases reported so far, the low thermal stability caused by the unstable flexible loops limited its keratin-degrading ability. To this end, the flexible loops of KerZ1 were engineered to be more hydrophobic and rigid through B-factor calculations, molecular dynamics simulations, and β-turn redesign. We developed several highly thermostable keratinase variants and showed enhanced keratin degradation activity. In particular, the loop regions of the variants KerZ1A128D/L240N, KerZ1T77E/L240N and KerZ1T77C/A128D were designed to be more stable, with Tm values increased by 8 °C, 6 °C and 5 °C, and corresponding t1/2 increased by 2.3, 3.3 and 5.0 times. The keratin degradation activity of the variant KerZ1T77C/A128D at 60 °C was enhanced by 46 % compared with KerZ1WT. The strategy of this research and the obtained keratinase variants will be a significant improvement in the complete degradation of keratin.
Collapse
Affiliation(s)
- Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhoudi Miao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiaomei Ji
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guoqiang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|